Die Hierarchie meiner WWW-Seiten logo

Angeboten: Projekte, Bachelor- und Masterarbeiten

International students: Please scroll down to the table!

Arbeiten am Department Fahrzeugtechnik und Flugzeugbau, Prüfer: Prof. Scholz

Some tasks below are written in German while others are written in English. Of course every task can be done in either language. I did not go through the trouble of writing everything in both languages. German students can understand both and can decide in which language they want to work and write. International students, please ask me for a translation if a task described in German seems interesting for you (or get started by using an online translator).

 

Bachelorarbeit bei mir - wie geht das rechtlich?

Fachspezifische Prüfungs- und Studienordnung der Bachelorstudiengänge Fahrzeugbau und Flugzeugbau der Hochschule für Angewandte Wissenschaften Hamburg (University of Applied Sciences) vom 11. Juni 2015

§ 4 Vorpraxis und praxisbezogene Studienanteile (Zu § 6 APSO-INGI)
(2) In den Studiengängen Fahrzeugbau und Flugzeugbau ist ein von der Hochschule gelenktes industrielles Projekt bestehend aus Praxisphase und Bachelorarbeit von insgesamt 22 Wochen Dauer [!!!=5,5 Monate!!!] ... im siebten Semester durchzuführen. Das industrielle Projekt ist vorzugsweise im industriellen Berufsfeld des Fahrzeugbau- oder Flugzeugbauingenieurs durchzuführen.

§ 7 Praxisphase und Bachelorarbeit (Zu § 15 APSO-INGI)
(4) Die Bearbeitungsdauer der Bachelorarbeit beträgt drei Monate.
(6) Entscheiden sich die Studierenden, die Praxisphase und die Bachelorarbeit in mehreren Einrichtungen oder Betrieben durchzuführen [die BACHELORARBEIT AN DER HAW HAMBURG bei mir], kann dieses in Praxisphase (15 CP) und Bachelorarbeit mit Kolloquium (15 CP) [also BACHELORARBEIT bei mir] getrennt werden. Die Trennung ist bei dem jeweiligen Praktikumsbeauftragten für das industrielle Projekt zu beantragen [DAS GEHT SCHRIFTLICH FORMLOS OHNE SCHWIERIGKEITEN]. In diesem Fall beträgt die getrennt von der Bachelorarbeit ablaufende Praxisphase [nur noch] zwei Monate [!!!] ..., die Bearbeitungsdauer der Bachelorarbeit bleibt unverändert. [!!! Sie sparen dabei sogar noch 2 Wochen !!!]

 

Gibt es auch etwas einfachere/schnellere Projekte?

easy-going
I have been approached by students saying they want to get their credit for a project (or thesis) with as little work as possible. Other professors would be offering projects requiring very little work. In order to compete also in this race for lowest effort, I offer "Easy-Going-Projects". Time for the investigation is very limited, however, I cannot compromise on writing style. Students will have to deliver a report written to scientific standards with proper references. "Easy-Going-Projects" can also be team projects. In this case, the limited work is even shared in the group. In any case, the report will look ok, but for the individual there is very little work due to the limited scale of the task.

 

Liste der Angebote / Tasks Offered

Thema / Topic Typ der Arbeit / Type of Work Aufgabenstellung / Task Status
The Blaine Rawdon Factor in Aircraft Design Project
(extended: Thesis)
easy-going
The Blaine Rawdon Factor is defined as

.

lv: vertical tail lever arm, γ: diheral angle, b: wing span, CL: lift coefficient of the aircraft. The Blaine Rawdon Factor shows if the aircraft is spirally unstable:

    B > 5 spirally stable
    B = 5 spirally neutral
    B < 5 spirally unstable
    
Mark Drela (MIT) explains here:
    B = EDA x (ver_tail_arm/span) / CL  
    
    EDA: Equivalent Dihedral Angle
    CL is the typical CL (CL = 0.7)
    B = 2.0 - 5.0 (I like at least 3.0) [for an aircraft with ailerons]
    
Surjeet Yadav, who reports about the Blaine Rawdon Factor, writes in view of RC planes: "Spiral stability is not a hard requirement, and most aircraft are in fact spirally unstable. Level flight is then ensured either by the pilot, or by a wing-levelling autopilot, provided the instability is slow enough. RC aircraft which can fly stably hands-off must be spirally stable, although a small amount of instability (B = 3…4, say) does not cause major difficulties for an experienced pilot." (https://surjeetyadav.wordpress.com/2014/01/22/74)

Accordingly, to design a spirally stable aircraft, B = 5.5 (or another similar value) could be an option and the diheral angle can be calculated from

.

Compare this with the Aircraft Design lecture notes (PDF, page 7-35) and the thesis (PDF, 10 MB, Chapter 2.2.9).

Try the Blaine Rawdon Factor on many passengers aircraft. I will give you a database with parameters of such aircraft. Perform a literature review, comment on the theory of the equation and the summarize the usefulness based on the parameter study. You may also want to write a chapter about the originator of the equation Blaine Rawdon (https://www.linkedin.com/in/blaine-rawdon-57771587, https://ocw.mit.edu/courses/16-886-air-transportation-systems-architecting-spring-2004/afc7cd4280edbdfa91fd92907b6ec4e0_h07bkresumfornsf.pdf, https://www.jetzero.aero/company, http://goldfinger.utias.utoronto.ca/IWACC5/IWACC7/Page.pdf, ...)

The extension to a thesis goes beyond a statistical investigation and looks into the lecture Flight Mechanics 2. Go to the lecture notes (student, mobiles). It would be possible to look at the denominator of the spiral mode (and roll subsidence) transfer function approximation, ΔSR. Please look here (page 23). The roots of this polynomial show the stability of the mode(s). The problme is "only" to find values for the stability derivatives. Also this is possible (follow the lecture notes). I can give you some derivaties for a start. Calculations in flight dynamics are easy with MATLAB. Eventually, you may want to provide also a small Excel table.

Even more can be done. I suppose, the Blaine Rawdon Factor will show spiral stability irgnoring many of the aircraft parameters (wing sweep and wing position). Also the size of the vertical tail is important. A large tail can make an aircraft spirally unstable (statement has to be checked), but is needed for Dutch Roll damping. In the end we may be able to show our own simple design rules for the lateral dynamic stability of an aircraft.

reserved
Analytical Balanced Field Length Calculation Project or Thesis Calculation of the Balanced Field Length (BFL) traditionally involves a numerical calculation, where the various forces are evaluated as a function of speed, using a step-wise integration and an estimate for V1. The process is iterated with different values for the engine failure speed until the accelerate-stop and accelerate-go distances are equal. Dennis Lucht wrote a thesis: Numerical and Analytical Takeoff Field Length Calculations for Jet Aircraft. He performs a numeric integration with MATLAB (Chapter 5.2.4) to obtain BFL. The equations are also listed in the MATLAB m-files. Instead of using MATLAB with the function "ode45", now BFL is calculated with an equation obtained from solving the integral of the equation of motion. This is explained in Chapter 5.2.3. As such, all equations from Lucht can be inserted into Excel. A spread sheet with a friendly Graphical User Interface (GUI) should be produced to allow eays and accurated BFL calculation. Instead of using the Oswald factor (span efficiency factor) from Howe (Chapter 2.4, Equation 2.38), the method from Nita 2012 should be included into Excel. See also here. Apply your Excel-Table to the Airbus A320 and A340 and compare your results with those from Lucht. A comparison with Take-Off Filed Length (TOFL) values from Airbus should also be included. reserved
Calculating Parameters for the Double Trapezoidal Wing Project
easy-going
A double trapezoidal wing, i.e. a wing with a kink, becomes necessary for the integration of a wing mounted landing gear (and has several other advantages). The wing is where the center of gravity (CG) is located and the main landing gear needs to be positioned aft of the CG. If in this situation it is decided to attach the landing gear to the wing, a strong structural member (an additional inboard rear spar further aft) is needed for landing gear attachment. This additional rear spar needs to be integrated into the wing planform and leads to a "Yehudi". For "Yehudi" compare with Mason, Lissys, and Leeham. Once optimum parameters are found for the trapezoidal wing, the database needs to be extended to include also all parameters to describe the double trapezoidal wing. This has been programed in Excel in OpenVSP-Connect (http://openvsp.profscholz.de) and is described in Ramachandran 2017. However missing is a) a small separate Excel table for double trapezoidal wing layout, parameter calculation, and planform visualization, b) a simple explanation of the iterative(?) nature of this calculation. The project should also include a systematic literature review of the "Yehudi". available
AeroSHARK – Lufthansa's Low Drag Riblet Coating under Independent Investigation Thesis or Project Summary of a document from Lufthansa Technik (2021), which starts with this text:

Close to 5 million tons of kerosene per year. That's the fuel savings the global fleet of aircraft could achieve with AeroSHARK coating technology. And we're well past proof of concept.

Lufthansa has developed a film with a barely perceptible ribbed texture made up of small elevations, so-called riblets. The film has millions of prism-shaped riblets, each 50 micrometers high. In October 2019, the team applied 500 m2 riblet film to the lower fuselage of a Boeing 747-400. Here it says: "Up to 500 m2 were used on a Boeing 747-400's lower fuselage and belly fairing." The AVIATAR Fuel Analytics solution developed by Lufthansa Technik was used to measure variations in fuel consumption before and after the modification. AVIATAR delivers precise measurements to within +/- 0.1%. Initial results for the Boeing 747-400 with a lower fuselage modification showed a friction reduction of 0.8% due to the effect of AeroSHARK. For one aircraft, this is equivalent to an annual fuel saving of approximately 300 t of kerosene and cost savings of approximately 225000 EUR, including 25000 EUR saved by avoiding the purchase of emission certificates. If the whole aircraft would be covered with the film, friction reduction would be 2.5%. Lufthansa supplies more data: The film mass is 180 g/m2, durability of the film is 4 years (or more), Return on Investment (ROI) is less than two years. Lufthansa Technik holds an EASA Part 21 certification as an aircraft design organization. In early November 2019, the European Union Aviation Safety Agency (EASA) granted the Supplemental Type Certificate (STC) required for flight trials of the B747 with AeroSHARK.

Further links:
The AeroSHARK Story - Part I
The AeroSHARK Story - Part II
The AeroSHARK Story - Part III

The AeroSHARK film can only be bent in one dimension. If an attempt is made to bent it in two dimensions, the film wrinkles. This means that an application is possible on the cylindrical part of the fuselage, but not e.g. on the belly fairing.

The task includes these steps:

  • Make a review (literature and online) of the media and the scientific presentation of the topic "AeroShark".
  • Look at the zero-lift drag calculation of a passenger aircraft (Lecture Notes: Aircraft Design). Estimate the total wetted area of a B747-400. Estimate the wetted area of its fuselage. Estimate the wetted area of its "lower fuselage". Compare this number with the given "up to 500 m2". List the parameters that influence zero-lift drag. Which of these parameters are influenced by AeroSHARK. Estimate the drag reduction potential and compare with the 0.8% drag reduction measured and the 2.5% projection. Look here and here at the non-flexible film patches and consider possible gaps between them.
  • AeroShark increases aircraft mass. Calculate the mass increase. Estimate the induced drag. Relate this to the zero-lift drag reduction.
  • Estimate the annual utilization (flight hours) of the B747. Assume, Lufthansa has only included purchase costs of the film in its financial calculation. Calculate the purchase costs of the film from fuel saving, ROI, and durability of the film (depreciation).
  • Make a new financial calculation of AeroSHARK and consider now also (German) labor costs for the repeated application of the film on the aircraft. Consider maintenance costs for checking the film at regular intervals.
  • Consider Direct Operating Costs, DOC (full aircraft) and extended "DOCsys" for systems on the aircraft in order to estimate the total costs of AeroSHARK. All methods you can find online.
  • Perform a limited Failure Mode Effect (and Criticality) Analysis (FMEA) for the application of AeroSHARK. Also this method is available online.
  • Discuss your results.
  • Compare the results of your AeroShark analysis with the media and scientific portrayal by Lufthansa.
available
Recalculating Drag Polars of Passenger Aircraft Project or Thesis
easy-going
The drag polar (Lilienthal polar) of passenger aircraft is considered an industry secret. Nevertheless, some (full) polars (with Mach number dependancy) are out in the open. E.g. the drag polar of the Boeing 737-800 is given here (page 17, left). In our lectures Flight Mechanics and Aircraft Design we use a method to construct a drag polar in the form CD = CD0 + ΔCD,w + CL2/(π A e). Several documents (lecture note, memo) are in use to explain how this method works: Task is
  1. to calculate the drag polar of the Boeing 737-800 with given tools,
  2. to scan and digitize (e.g. with the WebPlotDigitizer used also in Chapter 2.5 of this project) Boeing's given drag polar,
  3. to compare the two,
  4. to try the same with the Airbus A320 (depending on time and type of work; rather for a thesis),
  5. to propose improvements to the method for a better fit,
  6. to explain the core of the method in the project or thesis report.
available
The Drag Polars of the 50 Most Used Passenger Aircraft Thesis or Project In Flight Mechanics and Aircraft Design we use a method to calculate the zero-lift drag coefficient, CD0 and the Oswald Factor, e. With these two numbers we know the (simple symmetrical) drag polar. Here are the documents: Calculate also the maximum glide ratio, (L/D)max. Compare your results with what can be found elsewhere. Produce the numbers (CD0, e) for the 50 most used passenger aircraft. The task is reduced, if selected for a project.

You may want to start your topic with a Systematic Literature Review (SLR). What data is available in the public? Consider:

available
Why the 2nd Segment is Sizing CS-25 Aircraft for Climb Requirements Project (or Thesis)
easy-going
Read in my Aircraft Design lecture notes in Chapter 5.3 about Climb Requirements from CS-25. The climb is defined in (so called) 1st Segment, 2nd Segment, 3rd Segment, and 4th Segment (Fig. 5.6). The lecture notes show (Chapter 5.3 and 5.4) how a required thrust-to-weight ratio is calculated and how it is sizing the aircraft based on 2nd Segment climb requirements. Experience (from where? literature review!) shows that 2nd Segment requirements lead to a higher thrust-to-weight ratio than the other three segments. This can easily be shown with assumptions from the lecture notes applied to all four segments considering (as required) landing gear extended or retracted, flaps extended or retracted, considering two, three, or four engines, and assuming different (plausible) lift-to-drag ratios. Show that the 2nd Segment in all variations of your parameters leads to the highest thrust-to-weight ratio (or show where the opposite is true). Now also consider Chapter 5.5 "Climb Rate during Missed Approach". This is considered separately in preliminary sizing, because it could well lead to higher thrust-to-weight ratio than 2nd Segment requirements. Please change parameters as above including CS/FAR-differences (landing gear extended or retracted) and consider different (plausible) mass ratios at landing and take-off. Sum up your finding in a report, in which you explain "Why the 2nd Segment (and Missed Approach Climb) are Sizing CS-25 Aircraft for Climb Requirements". available
Calculating Ecolabels for Propeller-Driven Passenger Aircraft Project or Thesis (with extension of topic) We launched an Ecolabel for Aircraft. Now we want to apply it in different ways. Here is one way to use the ecolabel: Passenger aircraft with propellers have generally a quite good environmental performance. Propellers offer a high propulsive efficiency. Propeller aircraft cruise at moderate Mach number, which reduces drag. They fly at lower altitude, which substantially(!) reduces equivalent CO2. Ecolabels exist already of the propeller aircraft ATR 42 and ATR 72. Your task is to use our Ecolabel Calculator to calculate more ecolabels of propeller-driven passenger aircraft. Comment on your findings and derive general hints for passengers, when it comes to selecting an aircraft type for the next flight. available
Preliminary Sizing of Propeller Aircraft (Part 23) Project or Thesis 1.) The Preliminary Sizing Tool: PreSTo-Classic – see also here – has been used by many more than 1000 students over two decades. These are simple tools for manual aircraft design. Marlis Krull has produced a new version for (large) Part 25 propeller aircraft "PreSTo-Classic-Prop.xlsx".

2.) We have extended PreSTo-Classic with a simple optimization capability and call it Simple Aircraft Sizing, SAS. See http://SAS.ProfScholz.de. I have published Marlis' work on SAS and her project report on http://library.ProfScholz.de (29.04.2022). Joeri Heinemann produced a Master Thesis titled "Preliminary Sizing of FAR Part 23 and Part 25 Aircraft" (12.07.2012). Please find the thesis also on http://library.ProfScholz.de. I will provide you with the Part 23 Excel file. It has all been done in some way. Only a few things are missing.

Task 1: Please use the latest CS-23 Certification Standards and check, if sizing in the Excel file (and described by Joeri in his thesis) is done according to the latest standards.
Task 2 (for SAS): The standardized layout (also used by Marlis) needs to be applied to Joeri's Excel file for Part 23 aircraft. This task will add another Excel-Table to the project "SAS".
Task 3 (for PreSTo-Classic): Please produce a simple version from Joeri's Excel table to be in line with the other tools from PreSTo-Classic.
Task 4: Test the tools with the redesign of a small propeller aircraft.

available
Flow Visualization with the CFD Tool VSPAero Thesis VSPAero includes a Vortex Lattice Method (VLM) and a Panel Method. The Panel Method is based on linear potential flow theory and represents thickness via panels on the aircraft's surface. Continue in the foot steps of other students Software Testing: VSPAERO and CFD Tool VSPAERO: Actuator Disk and Flow Visualization. Combine both theses and show, how VSPAero with its Panel Method can be used to visualize the flow around propellers and jet engines together with the flow around the whole (passenger) aircraft. Make use of actuator disks for aero-propulsive analysis. VSPAero is integrated into OpenVSP and is included in its download:
http://openvsp.org/download.php. More related links at OpenVSP:
http://www.openvsp.org/wiki/doku.php?id=vspaerotutorial
http://www.openvsp.org/wiki/doku.php?id=vspaeromodeling
https://groups.google.com/g/openvsp
available
Debunking Aeronautical Engineering Myths Project
easy-going
A fuel cell produces electricity with higher efficiency than a generator connected to the aircraft engine. Aircraft fly high to save on drag. SFC (Thrust Specific Fuel Consumption) is constant in a first order evaluation. Winglets improve wings. Wave drag is difficult to calculate. The drag coefficient starts to increases at Mach numbers beyond normal cruise speed. Aircraft should fly at an optimum speed which is quite high. An aircraft uses more fuel when it flies lower. Low Cost Airlines are the cause for additional fuel consumption and pollution. We have to reduce CO2 to save the world. The aviation industry does the utmost to save the world. --- Is it all true?

The idea is to write the text in the form of a Preprint chosen to be published with preprints.org at MDPI. Please see this example: https://doi.org/10.20944/preprints202208.0228.v1. Do not worry, I will take care of the handling of the manuscript.

reserved
Using ChatGPT in Aeronautical Engineering for Project Work and Theses - Opportunities, Limitations, and Detection of Unauthorized Use Project or Thesis
easy-going
Objective:
The objective of this project is to investigate the opportunities and limitations of using ChatGPT, a large language model, in aeronautical engineering project work and theses. The project will focus on identifying the potential benefits and challenges of using ChatGPT for various tasks in aeronautical engineering and also explore methods for detecting unauthorized use of ChatGPT in student work.

Methodology:
Literature review: Conduct a comprehensive review of existing literature on the application of ChatGPT in aeronautical engineering, project work, and theses. Identify the potential opportunities and limitations of using ChatGPT for various tasks in the field of aeronautical engineering.
Data collection: Collect data on the experiences and opinions of aeronautical engineering students, professors, and industry professionals regarding the use of ChatGPT in project work and theses. This will involve conducting surveys and interviews.
Development of ChatGPT models: Develop ChatGPT models specifically for aeronautical engineering applications. This will involve training the models on a range of aeronautical engineering data, such as aircraft design and maintenance, aerodynamics, and flight simulation.
Testing and evaluation: Test and evaluate the performance of the ChatGPT models in addressing specific problems in aeronautical engineering. This will involve comparing the performance of ChatGPT models against traditional methods and assessing the accuracy and efficiency of the models.
Analysis and conclusion: Analyze the results obtained from the testing and evaluation phase, and draw conclusions on the potential benefits and limitations of using ChatGPT in aeronautical engineering project work and theses. Also, explore the methods for detecting unauthorized use of ChatGPT in student work.

Deliverables:
A report outlining the results of the literature review, data collection, and model development phases of the project.
A set of ChatGPT models specifically designed for aeronautical engineering applications.
A demonstration of the performance of the ChatGPT models in addressing specific problems in aeronautical engineering.
An assessment of the potential benefits and limitations of using ChatGPT in aeronautical engineering project work and theses.
A set of recommendations for the ethical use of ChatGPT in student work, including methods for detecting unauthorized use.

Expected outcomes:
The project is expected to provide insights into the opportunities and limitations of using ChatGPT in aeronautical engineering project work and theses. The project will demonstrate the capabilities of ChatGPT in solving complex problems and enhancing the quality of work. The project will also provide recommendations for the ethical use of ChatGPT in student work, including methods for detecting unauthorized use.

This task was generated with ChatGPT from "Write a task for university project work on 'Using ChatGPT in Aeronautical Engineering for Project Work and Theses - Opportunities and Limitations'. Include also the aspects of checks (detection) of unauthorized use of ChatGPT in student's work". You are allowed(!) to use ChatGPT to produce your report (this is why the task is marked "easy-going"). We may decide to modifiy the task from ChatGPT's proposal. We decided to include aspects of Debunking Aeronautical Engineering Myths. Please consider: 5 Free Tools For Detecting ChatGPT.

available
Exploring the Applications of ChatGPT in Aeronautical Engineering Project or Thesis
easy-going
Objective:
The objective of this project is to investigate and evaluate the potential applications of ChatGPT, a large language model, in the field of aeronautical engineering. The project will focus on identifying how ChatGPT can be used to solve complex problems in the industry, provide efficient communication and collaboration among engineers and technicians, and enhance the quality of decision-making in various aspects of aeronautical engineering.

Methodology:
Literature review: Conduct a comprehensive review of existing literature on the application of ChatGPT in various industries, including aeronautical engineering, to identify the potential applications and limitations of the technology.
Data collection: Collect data on the challenges and opportunities in aeronautical engineering that can be addressed using ChatGPT. This will involve interviewing aeronautical engineers, technicians, and other experts in the field.
Development of ChatGPT models: Develop ChatGPT models specifically for aeronautical engineering applications. This will involve training the models on a range of aeronautical engineering data, such as aircraft design and maintenance, aerodynamics, and flight simulation.
Testing and evaluation: Test and evaluate the performance of the ChatGPT models in addressing specific problems in aeronautical engineering. This will involve comparing the performance of ChatGPT models against traditional methods and assessing the accuracy and efficiency of the models.
Analysis and conclusion: Analyze the results obtained from the testing and evaluation phase, and draw conclusions on the potential applications of ChatGPT in aeronautical engineering.

Deliverables:
A report outlining the results of the literature review, data collection, and model development phases of the project.
A set of ChatGPT models specifically designed for aeronautical engineering applications.
A demonstration of the performance of the ChatGPT models in addressing specific problems in aeronautical engineering.
A set of recommendations on the potential applications of ChatGPT in aeronautical engineering.

Expected outcomes:
The project is expected to provide insights into the potential applications of ChatGPT in aeronautical engineering. The project will demonstrate the capabilities of ChatGPT in solving complex problems, enhancing collaboration, and improving decision-making in the industry. The project will also provide recommendations for future research and development in the field.

This task was generated with ChatGPT from "Write a task for university project work on 'Using ChatGPT in aeronautical engineering'". You are allowed(!) to use ChatGPT to produce your report (this is why the task is marked "easy-going"). We may decide to modifiy the task from ChatGPT's proposal.

available
Using Artificial Intelligence Art in Aeronautical Engineering for Project Work and Theses - Opportunities and Limitations Project or Thesis
easy-going
Objective:
The objective of this project is to investigate the opportunities and limitations of using artificial intelligence (AI) art in aeronautical engineering project work and theses. The project will focus on identifying the potential benefits and challenges of using AI art for various tasks in aeronautical engineering, including aircraft design and visualization.

Methodology: Literature review: Conduct a comprehensive review of existing literature on the application of AI art in aeronautical engineering, project work, and theses. Identify the potential opportunities and limitations of using AI art for various tasks in the field of aeronautical engineering. Data collection: Collect data on the experiences and opinions of aeronautical engineering students, professors, and industry professionals regarding the use of AI art in project work and theses. This will involve conducting surveys and interviews. Development of AI art models: Develop AI art models specifically for aeronautical engineering applications. This will involve training the models on a range of aeronautical engineering data, such as aircraft design and aerodynamics. Testing and evaluation: Test and evaluate the performance of the AI art models in creating visualizations for aeronautical engineering problems. This will involve comparing the performance of AI art models against traditional methods and assessing the accuracy and effectiveness of the visualizations. Analysis and conclusion: Analyze the results obtained from the testing and evaluation phase, and draw conclusions on the potential benefits and limitations of using AI art in aeronautical engineering project work and theses.

Deliverables: A report outlining the results of the literature review, data collection, and model development phases of the project. A set of AI art models specifically designed for aeronautical engineering applications. A demonstration of the performance of the AI art models in creating visualizations for aeronautical engineering problems. An assessment of the potential benefits and limitations of using AI art in aeronautical engineering project work and theses.

Expected outcomes: The project is expected to provide insights into the opportunities and limitations of using AI art in aeronautical engineering project work and theses. The project will demonstrate the capabilities of AI art in creating visualizations and enhancing the quality of work. The project will also provide recommendations for the ethical use of AI art in student work.

This task was generated with ChatGPT from "Write a task for university project work on 'Using Artificial Intelligence Art in Aeronautical Engineering for Project Work and Theses - Opportunities and Limitations' ". You are allowed(!) to use ChatGPT to produce your report (this is why the task is marked "easy-going"). We may decide to modifiy the task from ChatGPT's proposal.

Here my first results that certainly need MUCH improvement:

Text input to DALL-E2: "Colorful von Karman vortext street behind pink cylinder"
Vortex Street behind Pink Cylinder

Text input to DALL-E2: "A biplane aircraft for 150 passengers"
Biplane Aircraft

Text input to DALL-E2: "A passenger aircraft with 6 jet engines"
Aircraft with 6 Engines

available

 

Arbeiten in Kooperation mit Firmen und Instituten

Sprechen Sie mich an: e-mail  Prof. Scholz
Thema Firma Typ der Arbeit Aufgabenstellung Status
Praktikum oder Abschlussarbeit bei Boeing Global Services (BGS) Digital Solutions
Abteilung: Product Research & Incubation
Ort: Frankfurt
Homepage mit Video.

 

Arbeiten an Hochschulen im Ausland

Sprechen Sie mich an: e-mail  Prof. Scholz
Hochschule Typ der Arbeit Bemerkung
University of Limerick
Department of Mechanical, Aeronautical and Biomedical Engineering
Projekt, Bachelor- oder Masterarbeit I.d.R. persönliche Betreuung der Arbeit durch Dr. Trevor Young

 

Weitere nützliche Links zu angebotenen Arbeiten

www.die-bachelorarbeit.de
www.die-masterarbeit.de

 

Vorgehen bei der Aufnahme und Abgabe einer Projektarbeit / Studienarbeit

Aufnahme einer Projektarbeit

Ich muss leider feststellen, dass ich von Studierenden wegen einer Arbeit angesprochen werde, ich Themen reserviere, es dann aber irgendwie nicht oder nur sehr verzögert zu einer Eintragung in MyHAW kommt.

Ich lege daher dieses Verfahren fest:

1.) Sie melden sich in MyHAW an:
  • 3900 Projekt/Schwerp.Entwurf (Bachelor)
  • 900 Projekt im Flugzeugbau (Master, PO 2010)
  • 16031 Projekt im Master (Master, PO 2015)
In den Zeiten der Verarbeitung des Cybernangriffs an der HAW Hamburg erfolgt die Anmeldung so wie dargelegt unter: http://pruefung.ProfScholz.de.

2.) Parallel gewähren Sie mir noch schriftlich das Recht, Ihre Arbeit gegebenenfalls (wenn diese dafür gut genug ist) bei mir im Internet zugänglich zu machen. Siehe dazu: http://Bibliothek.ProfScholz.de. Sie erhalten von mir dazu ein Formblatt per E-Mail.

Erst nach 1.) und 2.) besprechen wir die tiefergehenden fachlichen Details Ihres Themas.

3.) Basierend auf meinen anfänglichen Informationen arbeiten Sie sich bitte in das Thema ein. Es ist Ihre Aufgabe, mir Informationen über den Arbeitsfortschritt zukommen zu lassen. Ich muss NICHT danach fragen. Am besten, Sie kommen alle zwei Wochen in meine Sprechstunde! Dort erhalten Sie dann auch meine Unterschrift auf Ihren ...

PDF Laufzettel_fuer_studentische_Arbeiten.pdf

Entsprechend Ihrem Arbeitsfortschritt werde ich Ihnen dann weitere Informationen zum Thema zukommen lassen. Es handelt sich also um einen wechselseitigen Informationsaustausch. Geben Sie mir rechtzeitig Schreibproben (z. B. ein Musterkapitel). Nur so können wir Ihren Schreibstil rechtzeitig absprechen. Meine Erfahrung: Arbeiten misslingen, weil zu wenig kommuniziert wurde. Die Fertigstellung Ihrer Arbeit kostet viel Zeit (rechnen Sie mit 1/3 der Bearbeitungszeit). Insbesondere das Literaturverzeichnis erfordert sehr viel Aufmerksamkeit im Detail.


Abgabe einer Projektarbeit – Datum der Einreichung

Im Rahmen der Betreuung Ihrer Arbeit werden Sie Arbeitsergebnisse (Texte, Tabellen, Diagramme, ...) in immer besserer Form zur Diskussion bei mir einreichen. Sie erhalten dazu Kommentare und Anregungen für die weitere Bearbeitung. Genau so funktioniert die Betreuung der Arbeit: Ergebnisse werden vorgelegt, vom mir kommentiert und damit in einer Iteration einem Sollstand zugeführt. Erstrebenswert ist, dass sogenannte "finale Abgaben" nur in begrenzter Anzahl auftreten. Dies kann erreicht werden, indem meine Hinweise auf http://WritingHints.ProfScholz.de genau beachtet werden. Typisch ist der "erste Versuche der sogenannten finale Abgabe" gefolgt von einer umfangreichen Korrektur, einer Diskussion zu dieser Korrektur und dann das "Einreichen des Endergebnisses". Wenn danach noch weitere (umfangreichere) Korrekturen erforderlich sind, dann haben Sie meine vielen Hinweise "sträflich" vernachlässigt und werden meinen Unmut darüber spüren. Ich definiere, wann Sie die Arbeit finale eingereicht haben. Das ist der Fall, wenn ich signalisiere, dass man das Ergebnis so stehenlassen kann.

Im Zusammenhang mit der Aufnahme des Praktikums kommt es aber leider immer wieder zu Diskussionen. Daher wurde zusammen mit dem Beauftragten für das Praktikum festgelegt:

Eine Arbeit gilt als eingereicht,
wenn keine weiteren Iterationen mehr zwischen dem Professor und dem/der Studierenden erforderlich sind
und der Arbeit "nur" noch die Benotung fehlt.
Die Abgabe einer Projekt- oder Abschlussarbeit ist vergleichbar mit der Abgabe einer Leistung, die durch das Handwerk, die Industrie oder den Dienstleistungsbereich ausgeführt wird. Dabei kann dem Kunden keine minderwertige Leistung abgegeben werden mit dem Worten "zahlen Sie bitte, was immer passend erscheint". Die Leistung muss so lange nachgearbeitet werden, bis die Spezifikation (Aufgabenstellung) erfüllt ist. Erst nach erfolgreicher Abnahme wird bezahlt. Insofern unterscheidet sich die Anfertigung einer Projekt- oder Abschlussarbeit grundsätzlich von der Bearbeitung einer Klausur, bei der nach vorgegebener Zeit notfalls auch ein leeres Blatt abgegeben werden kann (5,0) oder eine Leistung, mit der keiner zufrieden sein kann, die aber dennoch durchgewunken wird (4,0).

Ich lasse Studierende an meiner Forschung teilhaben. Dafür gibt es eine umfangreiche und oft auch sehr zeitaufwendige Betreuung. Studierende müssen dafür vorzeigbare Ergebnisse abliefern. Ein anderes Arbeiten mit Studierenden ist mir nicht möglich. Wer sich auf diese Art der Zusammenarbeit nicht einlassen möchte, muss sich bitte von Anfang an eine andere Betreuung suchen, bei der aber im Grundsatz die gleichen Bedingungen gelten werden. Sie lesen diesen Text und erklären sich dadurch mit diesem (selbstverständlichen) Vorgehen einverstanden!


Abgabe einer Projektarbeit – Abgabedatum

Die Bearbeitungszeit für eine Projektarbeit beträgt 6 Monate. Bitte teilen Sie sich Ihre Arbeitszeit entsprechend ein. Man kann auch durchfallen, weil die Abgabefrist nicht eingehalten wird. Sie werden von mir an dieses Datum nicht erinnert, sondern müssen selbst die Seite http://ArbeitenAngefangen.ProfScholz.de beachten. Bei einer möglicherweise unrichtigen Darstellung auf der Seite, sollten Sie rechtzeitig um Korrektur bitten, damit wir eine übereinstimmende Sichtweise auf Ihre Arbeit herstellen. Wenn das eingetragene Abgabedatum überschritten ist, ohne dass mir das ERGEBNIS der Arbeit vorliegt, werde ich (am nächsten Tag ohne weitere Rücksprache) eine 5,0 in Helios eintragen. Sie haben dann die Möglichkeit, sich bei mir zu einer neuen Arbeit mit ähnlichem Thema anzumelden. Das ERGEBNIS Ihrer Arbeit besteht aus: Dem Bericht im PDF und als Word-Datei, der ausgefüllten/unterschriebenen Checkliste und gegebenenfalls den erstellten Programmen und Daten.

Was passiert, wenn Ihre Planung nicht aufgeht und es abzusehen ist, dass Sie die Abgabefrist nicht einhalten können?

  • Sie können bei mir formlos einen Antrag auf Fristverlängerung stellen (E-Mail). Das muss aber spätestens zwei Wochen vor Fristablauf geschehen. Die Fristverlängerung muss sich im Rahmen halten und inhaltlich begründet werden. Evtl. haben Sie schon viele gute Ergebnisse erhalten, benötigen aber noch ein wenig mehr Zeit, um alle Aspekte des Themas vollständig zu bearbeiten?
  • Falls Ihnen erst kurz vor Abgabe auffällt, dass Sie ja noch ein Thema in Bearbeitung haben, sich aber noch kaum damit beschäftigt haben, dann haben Sie die Möglichkeit mir das bereits vor dem Abgabetermin mitzuteilen. Ich kann dann auf Ihren formlosen Antrag hin bereits vor Abgabetermin eine 5,0 in Helios eintragen. Sie erhalten dann weitere 6 Monate Bearbeitungszeit zum GLEICHEN Thema.


Allgemeine Prüfungs- und Studienordnung für Bachelor- und Masterstudiengänge der Ingenieur-, Natur- und Gesundheitswissenschaften sowie der Informatik an der Hochschule für Angewandte Wissenschaften Hamburg (APSO-INGI) vom 21. Juni 2012 zuletzt geändert am 2. Dezember 2021

§ 10 Lehrveranstaltungsarten, Anwesenheitspflicht und Studienplan
(1) Lehrveranstaltungsarten sind insbesondere:

6. Projekt (Pj) [im Bachelorstudium: Studienarbeit]
Das Projekt ist eine fächerübergreifende Lehrveranstaltung mit entsprechenden Aufgabenstellungen und übergeordneten Zielsetzungen. Die Studierenden gestalten ihre Projektanteile [soweit es sich um eine Arbeit im Team handelt] kooperativ und eigenverantwortlich unter Moderation der Lehrenden und üben sich in Literaturrecherche, Argumentation und Präsentation oder praktischen Tätigkeiten.

§ 14 Prüfungen – Prüfungsarten und -formen
(3) Prüfungen werden durch eine der nachfolgenden Prüfungsformen erbracht:

9. Projekt (Pj) [im Bachelorstudium: Studienarbeit]
Ein Projekt ist eine zu bearbeitende fachübergreifende Aufgabe aus dem jeweiligen Berufsfeld des Studiengangs. Die Ergebnisse des Projektes sind [in einem Bericht] zu dokumentieren. Die Bearbeitungszeit beträgt zwischen 6 bis 26 Wochen [hier: 6 Monate] und wird mit einem Kolloquium abgeschlossen [hier: Kolloquium wird ersetzt durch mindestens 6 Projektbesprechungen, die nachzuweisen sind (s.o.)]. In der jeweiligen studiengangsspezifischen Prüfungs- und Studienordnung können zusätzliche Bedingungen zu Form, Inhalt und Ziel des Projektes und eine andere Form des Abschlusses als durch ein Kolloquium festgelegt werden. [Bei F&F gibt es dazu keine weiteren Angaben.]

Beamtenstatusgesetz § 36 – Verantwortung für die Rechtmäßigkeit
(1) Beamtinnen und Beamte tragen für die Rechtmäßigkeit ihrer dienstlichen Handlungen die volle persönliche Verantwortung.
(2) Bedenken gegen die Rechtmäßigkeit dienstlicher Anordnungen haben Beamtinnen und Beamte unverzüglich auf dem Dienstweg geltend zu machen ...
https://www.gesetze-im-internet.de/beamtstg/__36.html

Das bedeutet: Es gibt für Profesoren und Professorinnen keinen legalen Spielraum anders zu entscheiden, als oben dargelegt ist.


Ich weise schon an dieser Stelle darauf hin, dass ich sogenannte "4.0-Bescheinigungen" nicht erteile. Das werden andere Kollegen auch nicht anders handhaben, denn es gibt eine Handreichung vom Prüfungsausschuss unseres Departments u. a. zu "Bescheinigungen zu Studienarbeiten":
*.pdf 2020-10-18_HinweiseVomPA_Abschluss-und-ProjektArbeiten.pdf
Ich hatte gerade (06.10.2022) ein intensives Gespräch mit Frau Fremder-Sauerbeck vom FSB. Alle Mitarbeiter im FSB sind angewiesen worden, sogenannte "4.0-Bescheinigungen" nicht zu dulden. Es kann nur EINE Noteneintragung geben. Danach ist eine Verbesserung der Note wegen Nacharbeit NICHT mehr möglich. Eine Notenänderung (nach oben oder unten) kann nur erfolgen, wenn der Prüfer dem FSB einen Irrtum bei der Notenermittlung mit schriftlicher Begründung anzeigt. Das gilt sowohl für Studien-/Projektarbeiten, als auch für Abschlussarbeiten!


STAND:  16.02.2024
AUTOR:  Prof. Dr. Scholz
IMPRESSUM (PDF)

E-Mail-Adresse
home  Prof. Dr. Scholz
home  Aircraft Design and Systems Group (AERO)
home  Studiengang Flugzeugbau
home  Department Fahrzeugtechnik und Flugzeugbau
home  Fakultät Technik und Informatik
home  HAW Hamburg