![]() |
![]() |
§ 4 Vorpraxis und praxisbezogene Studienanteile (Zu § 6 APSO-INGI)
(2) In den Studiengängen Fahrzeugbau und Flugzeugbau ist ein von der Hochschule gelenktes industrielles
Projekt bestehend aus Praxisphase und Bachelorarbeit von insgesamt 22 Wochen Dauer [!!!=5,5 Monate!!!] ... im siebten Semester durchzuführen.
Das industrielle Projekt ist vorzugsweise im industriellen Berufsfeld des Fahrzeugbau- oder Flugzeugbauingenieurs durchzuführen.
§ 7 Praxisphase und Bachelorarbeit (Zu § 15 APSO-INGI)
(4) Die Bearbeitungsdauer der Bachelorarbeit beträgt drei Monate.
(6) Entscheiden sich die Studierenden, die Praxisphase und die Bachelorarbeit in mehreren Einrichtungen
oder Betrieben durchzuführen [die BACHELORARBEIT AN DER HAW HAMBURG bei mir],
kann dieses in Praxisphase (15 CP) und Bachelorarbeit mit Kolloquium (15 CP) [also BACHELORARBEIT bei mir] getrennt werden.
Die Trennung ist bei dem jeweiligen Praktikumsbeauftragten für das industrielle
Projekt zu beantragen [DAS GEHT SCHRIFTLICH FORMLOS OHNE SCHWIERIGKEITEN].
In diesem Fall beträgt die getrennt von der Bachelorarbeit ablaufende Praxisphase
[nur noch] zwei Monate [!!!] ..., die Bearbeitungsdauer der Bachelorarbeit bleibt unverändert. [!!! Sie sparen dabei sogar noch 2 Wochen !!!]
Thema / Topic | Typ der Arbeit / Type of Work | Aufgabenstellung / Task | Status |
AeroSHARK – Lufthansa's Low Drag Riblet Coating under Independent Investigation | Thesis or Project |
Summary of a
document from Lufthansa Technik (2021), which starts with this text:
Close to 5 million tons of kerosene per year. That's the fuel savings the global fleet of aircraft could achieve with AeroSHARK coating technology. And we're well past proof of concept. Lufthansa has developed a film with a barely perceptible ribbed texture made up of small elevations, so-called riblets. The film has millions of prism-shaped riblets, each 50 micrometers high. In October 2019, the team applied 500 m2 riblet film to the lower fuselage of a Boeing 747-400. Here it says: "Up to 500 m2 were used on a Boeing 747-400's lower fuselage and belly fairing." The AVIATAR Fuel Analytics solution developed by Lufthansa Technik was used to measure variations in fuel consumption before and after the modification. AVIATAR delivers precise measurements to within +/- 0.1%. Initial results for the Boeing 747-400 with a lower fuselage modification showed a friction reduction of 0.8% due to the effect of AeroSHARK. For one aircraft, this is equivalent to an annual fuel saving of approximately 300 t of kerosene and cost savings of approximately 225000 EUR, including 25000 EUR saved by avoiding the purchase of emission certificates. If the whole aircraft would be covered with the film, friction reduction would be 2.5%. Lufthansa supplies more data: The film mass is 180 g/m2, durability of the film is 4 years (or more), Return on Investment (ROI) is less than two years. Lufthansa Technik holds an EASA Part 21 certification as an aircraft design organization. In early November 2019, the European Union Aviation Safety Agency (EASA) granted the Supplemental Type Certificate (STC) required for flight trials of the B747 with AeroSHARK.
The task includes these steps:
|
available |
The Drag Polars of the 50 Most Used Passenger Aircraft | Thesis or Project |
Start your topic with a Systematic Literature Review (SLR). What data is available in the public?
Consider:
|
available |
Why the 2nd Segment is Sizing CS-25 Aircraft for Climb Requirements | Project (or Thesis)![]() |
Read in my Aircraft Design lecture notes in Chapter 5.3 about Climb Requirements from CS-25. The climb is defined in (so called) 1st Segment, 2nd Segment, 3rd Segment, and 4th Segment (Fig. 5.6). The lecture notes show (Chapter 5.3 and 5.4) how a required thrust-to-weight ratio is calculated and how it is sizing the aircraft based on 2nd Segment climb requirements. Experience (from where? literature review!) shows that 2nd Segment requirements lead to a higher thrust-to-weight ratio than the other three segments. This can easily be shown with assumptions from the lecture notes applied to all four segments considering (as required) landing gear extended or retracted, flaps extended or retracted, considering two, three, or four engines, and assuming different (plausible) lift-to-drag ratios. Show that the 2nd Segment in all variations of your parameters leads to the highest thrust-to-weight ratio (or show where the opposite is true). Now also consider Chapter 5.5 "Climb Rate during Missed Approach". This is considered separately in preliminary sizing, because it could well lead to higher thrust-to-weight ratio than 2nd Segment requirements. Please change parameters as above including CS/FAR-differences (landing gear extended or retracted) and consider different (plausible) mass ratios at landing and take-off. Sum up your finding in a report, in which you explain "Why the 2nd Segment (and Missed Approach Climb) are Sizing CS-25 Aircraft for Climb Requirements". | available |
Comparison of Airline Environmental Performance Based on the Ecolabel | Thesis or Project | How this works has been shown already here (page 62-64) and here (page 28-30). The Ecolabel for Aircraft has its own page with all information. | reserved |
Calculating Ecolabels for Propeller-Driven Passenger Aircraft | Project or Thesis (with extension of topic) | We launched an Ecolabel for Aircraft. Now we want to apply it in different ways. Here is one way to use the ecolabel: Passenger aircraft with propellers have generally a quite good environmental performance. Propellers offer a high propulsive efficiency. Propeller aircraft cruise at moderate Mach number, which reduces drag. They fly at lower altitude, which substantially(!) reduces equivalent CO2. Ecolabels exist already of the propeller aircraft ATR 42 and ATR 72. Your task is to use our Ecolabel Calculator to calculate more ecolabels of propeller-driven passenger aircraft. Comment on your findings and derive general hints for passengers, when it comes to selecting an aircraft type for the next flight. | available |
Recalculating Drag Polars of Passenger Aircraft | Project or Thesis | The drag polar (Lilienthal polar) of passenger aircraft is considered an industry secret.
Nevertheless, some (full) polars (with Mach number dependancy) are out in the open.
E.g. the drag polar of the Boeing 737-800 is given here (page 17, left).
In our lectures
Flight Mechanics and
Aircraft Design
we use a method to construct a drag polar in the form CD = CD0 + ΔCD,w + CL2/(π A e).
Several documents (lecture note, memo) are in use to explain how this method works:
| available |
Typical Aerodynamic Coefficients - Unfit for Aircraft Comparison! | Project![]() |
Aircraft can be compared at system level by evaluating their fuel consumption when flying a certain range, but the results also depend e.g. on aircraft weight and engine specific fuel consumption. This delutes matters, if we are interested in aerodynamic differences. It would be good to be able to compare aircraft purely at an aerodynamic level using their lift and drag coefficients, CL and CD, or their induced drag coefficients, CDi and Oswald factor, e, but these numbers will mostly yield misleading results, because they are based on a somewhat arbitrary wing (reference) areas. For a tail aft aircraft already many definitions exist to define a wing (reference) areas. Things become even more complicated when unconventional configurations are investigated. The only resource available to the aerodynamicist for evaluating and comparing different aircraft at an aerodynamic level is the glide ratio L/D (= CL/CD), because wing area cancels out. Your task is to show how "wrong" a comparison of aircraft (vehicles) can be, if it is based on CL, CD, CDi, and e. Show this in theory and with practical examples. In which way could a "standard reference area" be defined to limit confusion (page 7-3 to 7-5)? | available |
Debunking Aeronautical Engineering Myths | Project![]() |
A fuel cell produces electricity with higher efficiency than a generator connected to the aircraft engine.
Aircraft fly high to save on drag.
SFC (Thrust Specific Fuel Consumption) is constant in a first order evaluation.
Winglets improve wings.
Wave drag is difficult to calculate.
The drag coefficient starts to increases at Mach numbers beyond normal cruise speed.
Aircraft should fly at an optimum speed which is quite high.
An aircraft uses more fuel when it flies lower.
Low Cost Airlines are the cause for additional fuel consumption and pollution.
We have to reduce CO2 to save the world.
The aviation industry does the utmost to save the world. --- Is it all true?
The idea is to write the text in the form of a Preprint chosen to be published with preprints.org at MDPI. Please see this example: https://doi.org/10.20944/preprints202208.0228.v1. Do not worry, I will take care of the handling of the manuscript. |
reserved |
Exploring the Applications of ChatGPT in Aeronautical Engineering | Project or Thesis![]() |
Objective: The objective of this project is to investigate and evaluate the potential applications of ChatGPT, a large language model, in the field of aeronautical engineering. The project will focus on identifying how ChatGPT can be used to solve complex problems in the industry, provide efficient communication and collaboration among engineers and technicians, and enhance the quality of decision-making in various aspects of aeronautical engineering.
Methodology:
Deliverables:
Expected outcomes: This task was generated with ChatGPT from "Write a task for university project work on 'Using ChatGPT in aeronautical engineering'". You are allowed(!) to use ChatGPT to produce your report (this is why the task is marked "easy-going"). We may decide to modifiy the task from ChatGPT's proposal. |
available |
Using Artificial Intelligence Art in Aeronautical Engineering for Project Work and Theses - Opportunities and Limitations | Project or Thesis![]() |
Objective: The objective of this project is to investigate the opportunities and limitations of using artificial intelligence (AI) art in aeronautical engineering project work and theses. The project will focus on identifying the potential benefits and challenges of using AI art for various tasks in aeronautical engineering, including aircraft design and visualization. Methodology: Literature review: Conduct a comprehensive review of existing literature on the application of AI art in aeronautical engineering, project work, and theses. Identify the potential opportunities and limitations of using AI art for various tasks in the field of aeronautical engineering. Data collection: Collect data on the experiences and opinions of aeronautical engineering students, professors, and industry professionals regarding the use of AI art in project work and theses. This will involve conducting surveys and interviews. Development of AI art models: Develop AI art models specifically for aeronautical engineering applications. This will involve training the models on a range of aeronautical engineering data, such as aircraft design and aerodynamics. Testing and evaluation: Test and evaluate the performance of the AI art models in creating visualizations for aeronautical engineering problems. This will involve comparing the performance of AI art models against traditional methods and assessing the accuracy and effectiveness of the visualizations. Analysis and conclusion: Analyze the results obtained from the testing and evaluation phase, and draw conclusions on the potential benefits and limitations of using AI art in aeronautical engineering project work and theses. Deliverables: A report outlining the results of the literature review, data collection, and model development phases of the project. A set of AI art models specifically designed for aeronautical engineering applications. A demonstration of the performance of the AI art models in creating visualizations for aeronautical engineering problems. An assessment of the potential benefits and limitations of using AI art in aeronautical engineering project work and theses. Expected outcomes: The project is expected to provide insights into the opportunities and limitations of using AI art in aeronautical engineering project work and theses. The project will demonstrate the capabilities of AI art in creating visualizations and enhancing the quality of work. The project will also provide recommendations for the ethical use of AI art in student work. This task was generated with ChatGPT from "Write a task for university project work on 'Using Artificial Intelligence Art in Aeronautical Engineering for Project Work and Theses - Opportunities and Limitations' ". You are allowed(!) to use ChatGPT to produce your report (this is why the task is marked "easy-going"). We may decide to modifiy the task from ChatGPT's proposal. Here my first results that certainly need MUCH improvement:
Text input to DALL-E2:
"Colorful von
Karman
vortext street
behind pink cylinder"
Text input to DALL-E2:
"A biplane aircraft for 150 passengers"
Text input to DALL-E2:
"A passenger aircraft with 6 jet engines" |
available |
From CAS to EAS – Calculating and Plotting the Compressibility Correction Chart | Project![]() |
The FM-Script from Trevor Young has all necessary equations.
It is supplemented by Unterlagen zur Vorlesung Flugmechanik 1.
Task is to produce a plot of the Compressibility Correction Chart.
ΔVC = VC – VE.
VC is the input value (x axis).
VE is calculated from [1.4-20] (from page 25) with δ = f(h) from "Equations for the International Standard Atmosphere".
h is taken as parameter producing the various curves in the Compressibility Correction Chart.
See also Example 1.3 in the FM-Script from Trevor Young and consider
ΔVC = VC – VE.
Plotting can be done with
gnuplot.
More difficult to produce is the Compressibility Correction Chart with Mach number, M as parameter producing the various curves. This is the way forward: ΔVC is calculated with [1.4-20] (from page 24) as function of M. Nondimensional pressure, δ is calculated from δ = (1 + 0.2 M2)-3.5. This equation is [1.4-15] (page 23). VC as value for the x-axis is obtained from VC = ΔVC + M a0 δ1/2. Again: δ = (1 + 0.2 M2)-3.5. Here values for the x-axis and the y-axis are calculated, stored in a file and introduced into the plot from the file. Again, gnuplot can be used.
The report should give an introduction into the topic similar to the section "Calibrated Airspeed"
from FM-Script by Trevor Young.
It should show the derivation of the equation used to produce the plot.
A literature review should point to other publications, in which the production of the Compressibility Correction Chart is explained.
One such example is Walter Bislin.
Please note also the contribution of Dennis Lucht and his check of the rule of thumb (ROT) based on two equations: |
available |
Fuel-Optimum Cruise Speed for Jets | Project![]() |
Part 1: Re-evaluate the optimum speed of jets for maximum range (equivalent to minimum fuel)
and compare the result with the "classically" taught optimum aircraft speed of Vopt = 1.316 Vmd .
Consider Thrust-Specific Fuel Consucmption (TSFC) to follow c = ca V + cb and
D = A V 2 + B V -2.
Bensel
determined the improved Vopt numerically with
Excel. Drag, D was calculated for feasible speeds, V and
that speed selected that gave maximum range. In contrast to this approach, start with an equation as derived
here. You would need to plot the function f(V) and
find the root f(V) = 0 of this polynomial. Part 2: Now you may want to extend the task by introducing a Mach-dependend Oswald Factor: e(M) = e(M=0) . ke,M(M). The equation for ke,M(M) is given here on page 5. The solution will most probably be numerical as shown in Bensel. |
available |
Thema | Firma | Typ der Arbeit | Aufgabenstellung | Status |
Derzeit keine Arbeit im Angebot. |
Hochschule | Typ der Arbeit | Bemerkung |
University of Limerick Department of Mechanical, Aeronautical and Biomedical Engineering |
Projekt, Bachelor- oder Masterarbeit | I.d.R. persönliche Betreuung der Arbeit durch Dr. Trevor Young |
Aufnahme einer Projektarbeit
Ich muss leider feststellen, dass ich von Studierenden wegen einer Arbeit angesprochen werde, ich Themen reserviere, es dann aber irgendwie nicht oder nur sehr verzögert zu einer Eintragung in MyHAW kommt. Ich lege daher dieses Verfahren fest:
2.) Parallel gewähren Sie mir noch schriftlich das Recht, Ihre Arbeit gegebenenfalls (wenn diese dafür gut genug ist) bei mir im Internet zugänglich zu machen. Siehe dazu: http://Bibliothek.ProfScholz.de. Sie erhalten von mir dazu ein Formblatt per E-Mail. Erst nach 1.) und 2.) besprechen wir die tiefergehenden fachlichen Details Ihres Themas. 3.) Basierend auf meinen anfänglichen Informationen arbeiten Sie sich bitte in das Thema ein. Es ist Ihre Aufgabe, mir Informationen über den Arbeitsfortschritt zukommen zu lassen. Ich muss NICHT danach fragen. Am besten, Sie kommen alle zwei Wochen in meine Sprechstunde! Dort erhalten Sie dann auch meine Unterschrift auf Ihren ...
Entsprechend Ihrem Arbeitsfortschritt werde ich Ihnen dann weitere Informationen zum Thema zukommen lassen. Es handelt sich also um einen wechselseitigen Informationsaustausch. Geben Sie mir rechtzeitig Schreibproben (z. B. ein Musterkapitel). Nur so können wir Ihren Schreibstil rechtzeitig absprechen. Meine Erfahrung: Arbeiten misslingen, weil zu wenig kommuniziert wurde. Die Fertigstellung Ihrer Arbeit kostet viel Zeit (rechnen Sie mit 1/3 der Bearbeitungszeit). Insbesondere das Literaturverzeichnis erfordert sehr viel Aufmerksamkeit im Detail.
Abgabe einer Projektarbeit Die Bearbeitungszeit für eine Projektarbeit beträgt 6 Monate. Bitte teilen Sie sich Ihre Arbeitszeit entsprechend ein. Man kann auch durchfallen, weil die Abgabefrist nicht eingehalten wird. Sie werden von mir an dieses Datum nicht erinnert, sondern müssen selbst die Seite http://ArbeitenAngefangen.ProfScholz.de beachten. Bei einer möglicherweise unrichtigen Darstellung auf der Seite, sollten Sie rechtzeitig um Korrektur bitten, damit wir eine übereinstimmende Sichtweise auf Ihre Arbeit herstellen. Wenn das eingetragene Abgabedatum überschritten ist, ohne dass mir das ERGEBNIS der Arbeit vorliegt, werde ich (am nächsten Tag ohne weitere Rücksprache) eine 5,0 in Helios eintragen. Sie haben dann die Möglichkeit, sich bei mir zu einer neuen Arbeit mit ähnlichem Thema anzumelden. Das ERGEBNIS Ihrer Arbeit besteht aus: Dem Bericht im PDF und als Word-Datei, der ausgefüllten/unterschriebenen Checkliste und gegebenenfalls den erstellten Programmen und Daten. Was passiert, wenn Ihre Planung nicht aufgeht und es abzusehen ist, dass Sie die Abgabefrist nicht einhalten können?
Allgemeine Prüfungs- und Studienordnung für Bachelor- und Masterstudiengänge der Ingenieur-, Natur- und Gesundheitswissenschaften sowie der Informatik an der Hochschule für Angewandte Wissenschaften Hamburg (APSO-INGI) vom 21. Juni 2012 zuletzt geändert am 2. Dezember 2021
§ 10 Lehrveranstaltungsarten, Anwesenheitspflicht und Studienplan
6. Projekt (Pj) [im Bachelorstudium: Studienarbeit]
§ 14 Prüfungen – Prüfungsarten und -formen
9. Projekt (Pj) [im Bachelorstudium: Studienarbeit]
Beamtenstatusgesetz § 36 – Verantwortung für die Rechtmäßigkeit Das bedeutet: Es gibt für Profesoren und Professorinnen keinen legalen Spielraum anders zu entscheiden, als oben dargelegt ist.
Ich weise schon an dieser Stelle darauf hin, dass ich sogenannte "4.0-Bescheinigungen" nicht erteile.
Das werden andere Kollegen auch nicht anders handhaben, denn es gibt eine Handreichung
vom Prüfungsausschuss unseres Departments u. a. zu "Bescheinigungen zu Studienarbeiten":
|
Prof. Dr. Scholz
Aircraft Design and Systems Group (AERO)
Studiengang Flugzeugbau
Department Fahrzeugtechnik und Flugzeugbau
Fakultät Technik und Informatik
HAW Hamburg