![]() |
![]() |
§ 4 Vorpraxis und praxisbezogene Studienanteile (Zu § 6 APSO-INGI)
(2) In den Studiengängen Fahrzeugbau und Flugzeugbau ist ein von der Hochschule gelenktes industrielles
Projekt bestehend aus Praxisphase und Bachelorarbeit von insgesamt 22 Wochen Dauer [!!!=5,5 Monate!!!] ... im siebten Semester durchzuführen.
Das industrielle Projekt ist vorzugsweise im industriellen Berufsfeld des Fahrzeugbau- oder Flugzeugbauingenieurs durchzuführen.
§ 7 Praxisphase und Bachelorarbeit (Zu § 15 APSO-INGI)
(4) Die Bearbeitungsdauer der Bachelorarbeit beträgt drei Monate.
(6) Entscheiden sich die Studierenden, die Praxisphase und die Bachelorarbeit in mehreren Einrichtungen
oder Betrieben durchzuführen [die BACHELORARBEIT AN DER HAW HAMBURG bei mir],
kann dieses in Praxisphase (15 CP) und Bachelorarbeit mit Kolloquium (15 CP) [also BACHELORARBEIT bei mir] getrennt werden.
Die Trennung ist bei dem jeweiligen Praktikumsbeauftragten für das industrielle
Projekt zu beantragen [DAS GEHT SCHRIFTLICH FORMLOS OHNE SCHWIERIGKEITEN].
In diesem Fall beträgt die getrennt von der Bachelorarbeit ablaufende Praxisphase
[nur noch] zwei Monate [!!!] ..., die Bearbeitungsdauer der Bachelorarbeit bleibt unverändert. [!!! Sie sparen dabei sogar noch 2 Wochen !!!]
Thema / Topic | Typ der Arbeit / Type of Work | Aufgabenstellung / Task | Status |
The Drag Polar of the 50 Most Used Passenger Aircraft | Thesis or Project |
Start your topic with a Systematic Literature Review (SLR). What data is available in the public?
Consider:
|
available |
Fuselage Tank Location Trade-Off for Passenger Aircraft Powered with Liquid Hydrogen | Thesis or Project | It seems to be advantageous, to store Liquid Hydrogen (LH2) in future passenger aircraft in the fuselage and to make the fuselage longer according to the required fuel volume. Two solutions are possible: 1.) a balanced aircraft configuration with one tank in the back of the fuselage and on tank aft of the cockpit, 2.) a less well balanced aircraft configuration (page 6) with two tanks (for reduncancy) both in the back of the fuselage . In solution 1.) the integration of the forward tank outside of the pressure cabin (for safety reasons) is difficult. Show solutions how this could be done. Estimate the increase in mass due to additional pressure bulk heads and similar additions related to the baseline. How does this translate to increased fuel consumption? In solution 2.) the shift in CG location will be larger. Start with a simple calculation to show the CG shift from full to empty tank expressed in percent MAC. Look at the chapter Empennage Sizing from the Aircraft Design lecture notes. Estimate by what percentage the horizontal tail will be larger on a less well balanced aircraft configuration (2) related to the baseline. How does this translate to mass and drag increase (and L/D reduction)? How does this translate to increased fuel consumption? Calculate with an Excel Table. Keep your calculations general, so that it is based on a set of input parameters. What is the better solution (1) or (2)? | available |
Simple Aerodynamic and Structure Coupled Optimized Wing Design | Thesis or Project | The classic aircraft design optimization task is to find optimum wing parameters. A known problem is that an aerodynamic optimum shape may result in a heavy wing, which requires more lift and hence more induced drag. For this reason, the "optimum" aerodynamic shape (like an elliptical wing) may not be the overall optimum. We have a problem that couples two disciplines: aerodynamics and structure. If we ask not for minimum drag, but for minimum costs, we add economics as a third discipline. This is called Multidisciplinary Design Optimization (MDO). Usually, people think of MDO coupling CFD and FEM, but we can simply couple the equations from preliminary sizing to get an understanding of MDO. Here are the simple ingredients for our "teaching MDO": zero lift drag (13.22), wave drag (2.7) and (2.10), induced drag, mass (10.6), DOC of the wing derived from DOC equations for the aircraft, and an Estimate of costs of the high lift system from the "unswept maximum lift coefficient" (explanation follows later). All these few equations should be combined in Excel. The Solver from Excel can be used as optimizer. The task is to a) set up this "teaching MDO", b) perform parameter variations to show the classical trade-offs, c) find optimum wing parameters. If this task is used for a thesis, it would be possible to extend the MDO (described above; initially bound to the wing) to wing parameter optimization within full preliminary aircraft design. This can be done with a program already available. It is called OPerA - Optimization in Preliminary Aircraft Design. What are the differences if wing parameters are optimized in the context of the whole aircraft? Compare your general findings with results from "real" MDO as reported in the literature. | available |
Why the 2nd Segment is Sizing CS-25 Aircraft for Climb Requirements | Thesis or Project | Read in my Aircraft Design lecture notes in Chapter 5.3 about Climb Requirements from CS-25. The climb is defined in (so called) 1st Segment, 2nd Segment, 3rd Segment, and 4th Segment (Fig. 5.6). The lecture notes show (Chapter 5.3 and 5.4) how a required thrust-to-weight ratio is calculated and how it is sizing the aircraft based on 2nd Segment climb requirements. Experience (from where? literature review!) shows that 2nd Segment requirements lead to a higher thrust-to-weight ratio than the other three segments. This can easily be shown with assumptions from the lecture notes applied to all four segments considering (as required) landing gear extended or retracted, flaps extended or retracted, considering two, three, or four engines, and assuming different (plausible) lift-to-drag ratios. Show that the 2nd Segment in all variations of your parameters leads to the highest thrust-to-weight ratio (or show where the opposite is true). Now also consider Chapter 5.5 "Climb Rate during Missed Approach". This is considered separately in preliminary sizing, because it could well lead to higher thrust-to-weight ratio than 2nd Segment requirements. Please change parameters as above including CS/FAR-differences (landing gear extended or retracted) and consider different (plausible) mass ratios at landing and take-off. Sum up your finding in a report, in which you explain "Why the 2nd Segment (and Missed Approach) are Sizing CS-25 Aircraft for Climb Requirements". | available |
Comparison of Airline Environmental Performance Based on the Ecolabel | Thesis or Project | How this works has been shown already here (page 62-64) and here (page 28-30). The Ecolabel for Aircraft has its own page with all information. | available |
Calculating Ecolabels for Propeller-Driven Passenger Aircraft | Project or Thesis (with extension of topic) | We launched an Ecolabel for Aircraft. Now we want to apply it in different ways. Here is one way to use the ecolabel: Passenger aircraft with propellers have generally a quite good environmental performance. Propellers offer a high propulsive efficiency. Propeller aircraft cruise at moderate Mach number, which reduces drag. They fly at lower altitude, which substantially(!) reduces equivalent CO2. Ecolabels exist already of the propeller aircraft ATR 42 and ATR 72. Your task is to use our Ecolabel Calculator to calculate more ecolabels of propeller-driven passenger aircraft. Comment on your findings and derive general hints for passengers, when it comes to selecting an aircraft type for the next flight. | available |
In the projekt SAS (Simple Aircraft Sizing)
I have always tasks on offer for a Project, Bachelor Thesis, or Master Thesis. Next task in line is: SAS-Part23-Prop. Modify SAS-Part25-Prop for the small Part23 aircraft. Please get in touch: ![]() |
available | ||
Fuel-Optimum Flight Speed for Jets | Project![]() |
Part 1: Re-evaluate the optimum speed of jets for maximum range (equivalent to minimum fuel)
and compare the result with the "classically" taught optimum aircraft speed of Vopt = 1.316 Vmd .
Consider Thrust-Specific Fluel Consucmption (TSFC) to follow c = ca V + cb and
D = A V 2 + B V -2.
Bensel
determined the improved Vopt numerically with
Excel. Drag, D was calculated for feasible speeds, V and
that speed selected that gave maximum range. In contrast to this approach, start with an equation as derived
here. You would need to plot the function f(V) and
find the root f(V) = 0 of this polynomial.
Part 2: Now you may want to extend the task by introducing a Mach-dependend Oswald Factor: e(M) = e(M=0) . ke,M(M). The equation for ke,M(M) is given here on page 5. The solution will most probably be numerical as shown in Bensel. |
available |
Aircraft Contrails – Observation and Prediction | Project or Thesis |
Aviation-induced cloudiness (due to contrails, persistent contrails and contrail cirrus) is responsible for about half of the warming effect of aviation (depending on the metric).
We see contrails and contrail cirrus on the blue sky. Let's have a closer look: Collect pictures of contrails in all forms
and measure (if possible) their life time. Use
https://www.flightradar24.com
to identify the aircraft (type, airline causing the contrail and its data.
This requires a "GOLD subscription" (4,50 €/month) and yields: GPS altitude, TAS, IAS, M, T (outside temperature), vertical speed (probably zero), aircraft type, airline.
Also calculate T from a = V/M, a = a0θ1/2 and θ = T/T0.
Compare with given temperature and with ICAO temperature at GPS altitude to give ΔT.
Calculate pressure at altitude (accounting for ΔT).
Compare with satellite data: Erklärung: Unterschiedliche Satellitenbild: Visuell / Infrarot / Wasserdampf Erklärung: Eiswolken im Satellitenbild Eigene Komposition von Satellitenbildern Satellite images, Europe: visual, infrared, water vapor Life satellite image: visual Life satellite image: infrared Life satellite image: water vapor Predict the possibility of contrail formation with the Schmidt-Appleman Diagram (Fig. 4a). In order to do so, we need to have a rough value of the relative humidity from sattellite images showing water vapor. Alternatively, a relative humidity of 90% is assumed in case of apparent persistent contrails. A comparison can be made between the observed contrail and its physical possibility according to the Schmidt-Appleman Diagram. The ideas for this task came from a lecture (pages 20-26). The task may conclude, wether flying lower (or higher) could be a means to avoid contrails based on observation and prediction. What would this imply further related to aircraft operation and design? |
available |
Flow Visualization with the CFD Tool VSPAero | Project or Thesis |
VSPAero includes a Vortex Lattice Method (VLM) and a Panel Method.
It is based on linear potential flow theory and represents thickness via panels on the aircraft's surface.
Continue in the foot steps of another student with his thesis titled
Software Testing: VSPAERO.
Show, how VSPAero especially with its Panel Method can be used to visualize the flow around propeller and jet passenger aircraft.
Make use of actuator disks for aero-propulsive analysis.
VSPAero is integrated into OpenVSP and is included in its download: http://openvsp.org/download.php. More related links at OpenVSP: http://www.openvsp.org/wiki/doku.php?id=vspaerotutorial http://www.openvsp.org/wiki/doku.php?id=vspaeromodeling https://groups.google.com/forum/#!topic/openvsp/9UP6htxR6YI |
available |
Typical Aerodynamic Coefficients – Unfit for Aircraft Comparison! | Project | Aircraft can be compared at system level by evaluating their fuel consumption when flying a certain range, but the results also depend e.g. on aircraft weight and engine specific fuel consumption. This delutes matters, if we are interested in aerodynamic differences. It would be good to be able to compare aircraft purely at an aerodynamic level using their lift and drag coefficients, CL and CD, or their induced drag coefficients, CDi and Oswald factor, e, but these numbers will mostly yield misleading results, because they are based on a somewhat arbitrary wing (reference) areas. For a tail aft aircraft already many definitions exist to define a wing (reference) areas. Things become even more complicated when unconventional configurations are investigated. The only resource available to the aerodynamicist for evaluating and comparing different aircraft at an aerodynamic level is the glide ratio L/D (= CL/CD), because wing area cancels out. Your task is to show how "wrong" a comparison of aircraft (vehicles) can be, if it is based on CL, CD, CDi, and e. Show this in theory and with practical examples. In which way could a "standard reference area" be defined to limit confusion? | available |
Thema | Firma | Typ der Arbeit | Aufgabenstellung |
--- | --- | --- |
Hochschule | Typ der Arbeit | Bemerkung |
University of Limerick Department of Mechanical, Aeronautical and Biomedical Engineering |
Projekt, Bachelor- oder Masterarbeit | I.d.R. persönliche Betreuung der Arbeit durch Dr. Trevor Young |
Aufnahme einer Projektarbeit
Ich muss leider feststellen, dass ich von Studierenden wegen einer Arbeit angesprochen werde, ich Themen reserviere, es dann aber irgendwie nicht oder nur sehr verzögert zu einer Eintragung in MyHAW kommt. Ich lege daher dieses Verfahren fest:
Erst nach 1.) und 2.) besprechen wir die tiefergehenden fachlichen Details Ihres Themas. 3.) Basierend auf meinen anfänglichen Informationen arbeiten Sie sich bitte in das Thema ein. Es ist Ihre Aufgabe, mir Informationen über den Arbeitsfortschritt zukommen zu lassen. Ich muss NICHT danach fragen. Am besten, Sie kommen alle zwei Wochen in meine Sprechstunde! Entsprechend Ihrem Arbeitsfortschritt werde ich Ihnen dann weitere Informationen zum Thema zukommen lassen. Es handelt sich also um einen wechselseitigen Informationsaustausch. Geben Sie mir rechtzeitig Schreibproben (z. B. ein Musterkapitel). Nur so können wir Ihren Schreibstil rechtzeitig absprechen. Meine Erfahrung: Arbeiten misslingen, weil zu wenig kommuniziert wurde. Die Fertigstellung Ihrer Arbeit kostet viel Zeit (rechnen Sie mit 1/3 der Bearbeitungszeit). Insbesondere das Literaturverzeichnis erfordert sehr viel Aufmerksamkeit im Detail.
Abgabe einer Projektarbeit Die Bearbeitungszeit für eine Projektarbeit beträgt 6 Monate. Bitte teilen Sie sich Ihre Arbeitszeit entsprechend ein. Man kann auch durchfallen, weil die Abgabefrist nicht eingehalten wird. Sie werden von mir an dieses Datum nicht erinnert, sondern müssen selbst die Seite http://ArbeitenAngefangen.ProfScholz.de beachten. Bei einer möglicherweise unrichtigen Darstellung auf der Seite, sollten Sie rechtzeitig um Korrektur bitten, damit wir eine übereinstimmende Sichtweise auf Ihre Arbeit herstellen. Wenn das eingetragene Abgabedatum überschritten ist, ohne dass mir das ERGEBNIS der Arbeit vorliegt, werde ich (am nächsten Tag ohne weitere Rücksprache) eine 5,0 in Helios eintragen. Sie haben dann die Möglichkeit, sich bei mir zu einer neuen Arbeit mit ähnlichem Thema anzumelden. Das ERGEBNIS Ihrer Arbeit besteht aus: Dem Bericht im PDF und als Word-Datei, der ausgefüllten/unterschriebenen Checkliste und gegebenenfalls den erstellten Programmen und Daten. Was passiert, wenn Ihre Planung nicht aufgeht und es abzusehen ist, dass Sie die Abgabefrist nicht einhalten können?
Ich weise schon an dieser Stelle darauf hin, dass ich sogenannte "4.0-Bescheinigungen" nicht erteile.
Das werden andere Kollegen auch nicht anders handhaben, denn es gibt eine Handreichung
vom Prüfungsausschuss unseres Departments u. a. zu "Bescheinigungen zu Studienarbeiten":
|
Prof. Dr. Scholz
Aircraft Design and Systems Group (AERO)
Studiengang Flugzeugbau
Department Fahrzeugtechnik und Flugzeugbau
Fakultät Technik und Informatik
HAW Hamburg