![]() |
![]() |
§ 4 Vorpraxis und praxisbezogene Studienanteile (Zu § 6 APSO-INGI)
(2) In den Studiengängen Fahrzeugbau und Flugzeugbau ist ein von der Hochschule gelenktes industrielles
Projekt bestehend aus Praxisphase und Bachelorarbeit von insgesamt 22 Wochen Dauer [!!!=5,5 Monate!!!] ... im siebten Semester durchzuführen.
Das industrielle Projekt ist vorzugsweise im industriellen Berufsfeld des Fahrzeugbau- oder Flugzeugbauingenieurs durchzuführen.
§ 7 Praxisphase und Bachelorarbeit (Zu § 15 APSO-INGI)
(4) Die Bearbeitungsdauer der Bachelorarbeit beträgt drei Monate.
(6) Entscheiden sich die Studierenden, die Praxisphase und die Bachelorarbeit in mehreren Einrichtungen
oder Betrieben durchzuführen [die BACHELORARBEIT AN DER HAW HAMBURG bei mir],
kann dieses in Praxisphase (15 CP) und Bachelorarbeit mit Kolloquium (15 CP) [also BACHELORARBEIT bei mir] getrennt werden.
Die Trennung ist bei dem jeweiligen Praktikumsbeauftragten für das industrielle
Projekt zu beantragen [DAS GEHT SCHRIFTLICH FORMLOS OHNE SCHWIERIGKEITEN].
In diesem Fall beträgt die getrennt von der Bachelorarbeit ablaufende Praxisphase
[nur noch] zwei Monate [!!!] ..., die Bearbeitungsdauer der Bachelorarbeit bleibt unverändert. [!!! Sie sparen dabei sogar noch 2 Wochen !!!]
Thema / Topic | Typ der Arbeit / Type of Work | Aufgabenstellung / Task | Status |
Optimization in Aircraft Design with Excel's "Solver" | Project (Thesis with extended task) | In the research project SAS (Simple Aircraft Sizing) we have developed optimization tools to support the first step in Aircraft Design called Preliminary Sizing. All of these little tools use an Evolutionary Algorithm (EA) of type Differential Evolution (DE). The Excel Solver has been used only as part of the global Differential Evolution. This is described in the Dissertation (PDF, 10 MB) in Chapter 6.2 and 7.3.3. The dissertation was part of OPerA. In order so simplify the tools from SAS, we want to find out, if we can also produce a tool for Preliminary Aircraft Design that makes use only of Excel's Solver. | available |
Calculating Aircraft Utilization | Project ![]() |
How many hours can a passenger aircraft fly in one year? How many in one day? How many in one hour? How many flights each day? Block hours or flight hours? How much time needs to be reserved for maintenance, turn around, taxiing? All these questions can be answered from equations given in DOC methods. How do they compare? Can we find more on the Internet? Start with these documents: Script Aircraft Design: Design Evaluation / DOC, Chapter 14.3.10 and TU Berlin DOC Method. | available |
Proposing a Classification for Aeronautics, Astronautics, and Aerospace Sciences | Project ![]() |
Classifications - the heart of science. Examples of classifications are DDC (German), ICD-11, and other standard classifications. For the task here, please have a look at this: A first idea to get started (written by myself). What other classifications exist in our field of Aeronautics, Astronautics, and Aerospace Sciences? What is the best and most suitable one? What are applications for such a classification (apart from the publishing industry)? | available |
Digital Publishing in Engineering Research & Development | Project or Thesis | As an individual in a company or as part of the international science community the need arises to communicate/disseminate your work results among your peers.
Today the communication and/or dissemination will primarily be digital, but in most cases still traditionally based on writing.
Other means of digital communication (voice, graphical, video, data centered) are possible, but not the main focus of this task.
A company would have (hopefully) defined its product centered communication strategies and standards.
Information will primarily be pushed through the organization as need to know requires.
Corporate research results are archived and kept secret, protected by patents, or shared with the international science community.
In the international science community, the information is rather pulled by researchers in literature reviews.
For this reason, researchers make their results publically available in established databases and/or
consider alternative means of dissemination through the Internet.
The project gives an overview of the various modern digital publishing concepts and provides students with a hands-on experience
ranging from scientific writing to publishing strategies for their own career development, be it in industry or academia.
A proposed Table of Contents is also available. Your task is to write a report about all major aspects of "Digital Publishing in Engineering Research & Development". |
available |
Software Testing: Rapid Air System Concept Exploration (RASCE) | Project or Thesis |
RASCE is an Excel-based aircraft design tool which is offered as "Complimentary Program" to OpenVSP (www.openvsp.org).
RASCE comes in four versions. We are most interested in the turbofan design tool.
Check out the tool and redesign a selected aircraft.
Compare with the aircraft design tools used in my lecture (http://fe.ProfScholz.de) and research group (software will be provided).
You could even compare with ADAS (see task below).
What can we learn or add from RASCE? Links: http://www.openvsp.org/wiki/doku.php?id=rasce http://www.openvsp.org/wiki/lib/exe/fetch.php?media=rasce:f2009.rasce_overview.pdf RASCE for Turbofan Aircraft: http://www.openvsp.org/wiki/lib/exe/fetch.php?media=rasce:rasce.tbfan.2009.xls |
available |
Reserved: | |||
Software Testing: VSPAero | Project or Thesis |
VSPAero is based on linear potential flow theory and represents thickness via panels on the surface to a limited extend.
Results, however, are very much like those from vortex lattice methods as known from e.g. AVL or Tornado.
Check out the tool and calculate the aerodynamic characteristics of a selected aircraft. Compare with Tornado (http://tornado.redhammer.se).
Links: http://www.openvsp.org/wiki/doku.php?id=vspaerotutorial http://www.openvsp.org/wiki/doku.php?id=vspaeromodeling https://groups.google.com/forum/#!topic/openvsp/9UP6htxR6YI VSPAero is integrated into OpenVSP and is included in the download: http://openvsp.org/download.php |
reserved |
Software Testing: CEASIOMpy | Project or Thesis |
CEASIOMpy is a conceptual aircraft design environment. CEASIOMpy can be used to set up complex design and optimization workflows, both for conventional and unconventional configurations. Tools for various disciplines in aircraft design are provided, amongst others:
aerodynamics, weight and balance, flight mechanics, structures, aeroelasticity. Please find details here: https://ceasiompy.readthedocs.io https://github.com/cfsengineering/CEASIOMpy Compare also with the Master Thesis written by Maria Pester in 2010 archived in http://library.ProfScholz.de. |
reserved |
Analytical Balanced Field Length Estimation | Thesis | Calculation of the balanced field length (BFL) traditionally involves a numerical calculation, where the various forces are evaluated as a function of speed, using a step-wise integration and an estimate for V1. The process is iterated with different values for the engine failure speed until the accelerate-stop and accelerate-go distances are equal. Are there simple analytical methods to estimate BFL? (See: Thesis Ehrig, SAE-Paper [new link!] or Raymer) | reserved |
Design of a Hydrogen Near Zero Emission Passenger Aircraft | Master Thesis | Requirements: 120 .. 200 pax, 2000 NM, cruise Mach number 0.78 (i.e. the reference are the A320 TLAR) Technology options (and combinations): Hydrogen turbofan or turboprop, hybrid with fuel cell and embedded electric motor (for boost or cruise). Fuel options: LH2 (new design), synthetic fuel (drop-in fuel). Design for different objectives (minimum of ...): DOC, fuel, primary energy, climate impact, environmental impact (climate & resources). Note: Zero emission (zero climate impact) is impossible. Burning hydrogen produces water and NOx. It is primarily NOT about "decarbonization". The major environmental effect depends on cruise altitude and Aviation Induced Cloudiness (AIC). Aviation has a water problem more than a CO2 problem. All considerations have to be based on a Life Cycle Analysis (LCA) and its "Single Score". |
reserved |
Turbofan SFC, Thrust and Mass from Correlated Engine Parameters | Master Thesis | Characteristics of engine Specific Fuel Consumption (SFC) and engine thrust changing with aircraft speed and altitude are the main inputs
for calculations in Flight Mechanics and Aircraft Design. In Aircraft Design also engine mass as part of aircraft mass is important.
Simple but reliable engine black box models are needed in aircraft analysis and design. SFC can be represented by a linear function
c = c_a* V + c_b as explained in my
SFC-Memo.
The table
Civil Turbojet/Turbofan Specifications
is an open source with input parameters as required to build black box engine models.
An Excel version is available that also includes the year of entry into service of the engines.
Use Excel to find c_a and c_b for all engines (this is simple)! Correlate engine parameters to find ... ... how c_a and c_b depend on BPR, entry into service, ...; ... how thrust reduction depends on altitude, speed (or Mach number), BPR, ...; ... how engine mass depends on thrust, BPR, and/or engine geometric parameters. You may also want to apply Singular Value Decomposition (SVD) to the table. See how Lehnert applied SVD to find aircraft mass. Once you are familiar with ways of working, you probably want to follow your own ideas! Build on what Bensel and Schulz did already on the topic. |
reserved |
Flying with Wind Power over the Atlantic? (title TBC) | Master Thesis | TBD. | reserved |
Thema | Firma | Typ der Arbeit | Aufgabenstellung |
--- | --- | --- |
Hochschule | Typ der Arbeit | Bemerkung |
University of Limerick Department of Mechanical, Aeronautical and Biomedical Engineering |
Projekt, Bachelor- oder Masterarbeit | I.d.R. persönliche Betreuung der Arbeit durch Dr. Trevor Young |
Wichita State University Department of Aerospace Engineering |
Projekt, Bachelor- oder Masterarbeit | I.d.R. persönliche Betreuung der Arbeit durch Prof. Dr. Roy Myose |
Aufnahme einer Projektarbeit
Ich muss leider feststellen, dass ich von Studenten wegen einer Arbeit angesprochen werde, ich Themen reserviere, es dann aber irgendwie nicht oder nur sehr verzögert zu einer Eintragung in Helios kommt. Ich lege daher dieses Verfahren fest:
Erst nach 1.) und 2.) besprechen wir die tiefergehenden fachlichen Details Ihres Themas. Abgabe einer Projektarbeit Die Bearbeitungszeit für eine Projektarbeit beträgt 6 Monate. Bitte teilen Sie sich Ihre Arbeitszeit entsprechend ein. Man kann auch durchfallen, weil die Abgabefrist nicht eingehalten wird. Sie können bei mir formlos einen Antrag auf Fristverlängerung stellen. Das muss aber spätestens zwei Wochen vor Fristablauf geschehen. Sie werden von mir an dieses Datum nicht erinnert, sondern müssen selbst die Seite http://ArbeitenAngefangen.ProfScholz.de beachten. Bei einer möglicherweise unrichtigen Darstellung auf der Seite, sollten Sie rechtzeitig um Korrektur bitten, damit wir eine übereinstimmende Sichtweise auf Ihre Arbeit herstellen. Wenn das eingetragene Abgabedatum überschritten ist, ohne dass mir das Ergebnis der Arbeit vorliegt, werde ich (am nächsten Tag ohne weitere Rücksprache) eine 5,0 in Helios eintragen. Sie haben dann die Möglichkeit sich bei mir zu einer neuen Arbeit mit ähnlichem Thema anzumelden.
Ich weise schon an dieser Stelle darauf hin, dass ich sogenannte "4.0-Bescheinigungen" nicht erteile.
Das werden andere Kollegen auch nicht anders handhaben, denn es gibt eine Handreichung
vom Prüfungsausschuss unseres Departments u.a. zu "Bescheinigungen zu Studienarbeiten":
|
Prof. Dr. Scholz
Aircraft Design and Systems Group (AERO)
Studiengang Flugzeugbau
Department Fahrzeugtechnik und Flugzeugbau
Fakultät Technik und Informatik
HAW Hamburg