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14 Design Evaluation / DOC

14.1 Costing as an Assessment Method in Aircraft Design

Just as the general assessment of an aircraft design depends on the particular perspective, so
too does cost analysis depend on the respective standpoint.

14.1.1  Cost Analysis from the Perspective of the Aircraft Manufacturer

The aircraft manufacturer, as a "traditional" manufacturing enterprise, differentiates between
fixed costs and variable costs.

e Fixed costs (non recurring costs, NRC) are the costs incurred particularly during the pro-
ject, definition and development phase. They include:

— costs incurred due to development and design: engineer's services (in-house and
contracted out), equipping of development and design offices (computers);

— costs incurred by testing departments: engineer's services, test setups (wind tunnel
models, wind tunnel operation);

— costs from cooperation with suppliers;

— costs of analyzing reliability, maintainability, certification procedures;

— costs of analyzing manufacturing methods;

— costs of construction of jigs and fixtures;

— costs of building prototypes (if necessary);

— costs from flight testing and certification;

— financing costs.

e Variable costs (recurring costs, NRC) are costs incurred particularly by Manufacturing and
Product Support. They include:

— costs of manufacturing support: services connected with rectifying errors/faults, taking
into account customers' wishes, instruction manuals;

— production costs: wage costs, cost of materials, tool costs, quality assurance costs, costs
of purchased parts: auxiliary power unit (APU), landing gear; ...

— costs incurred from flight testing with production planes and customer service,

— financing costs.
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Even for the aircraft manufacturer, practical calculation of these cost elements during the
project phase is only possible at considerable expense and entails a large number of assump-
tions. Simple models for estimating the costs of the aircraft manufacturer are available in the
literature (Roskam VIII 1990, Nicolai 1975, Raymer 1992).

An aircraft design assessment based on cost analysis from the perspective of the aircraft
manufacturer must be viewed critically. Aircraft design parameters are scarcely included as
input parameters in simple cost analysis models from the perspective of the aircraft
manufacturer (see above). The models therefore provide little information on how costs
change if the aircraft design parameters vary. Optimization of the aircraft design parameters is
therefore scarcely possible with these simple models.

14.1.2  Cost Analysis from the Perspective of the Operator

There are a whole series of models for cost analysis from the perspective of the operator.
These models are labeled by abbreviations such as LCC, COO, DOC, I0C, TOC, COC. The
abbreviations are universally used, but should one search for detailed information on these
models, one realizes that

e extensive literature research is necessary,

e different authors have very varied concepts of the same method.

Therefore, the following pages will be restricted to two purposes:
e to briefly characterize the models;
e to provide references to further reading.

Design according to Life Cycle Costs (LCC) is established in the military sphere, but has also
been used for civil subsonic aircraft (Johnson 1990). LCC give the costs of the aircraft project
as a whole (Roskam VIII 1990) or the life cycle costs of a single aircraft (Johnson 1990,
Raymer 1992). ARP 4294 states the elements of LCC. For civil operators the LCC are only
of limited interest. For them, the costs of development and manufacture are simply part of the
purchase price of the aircraft. Costs of scrapping the aircraft are also scarcely of interest to
civil operators, because they will ultimately sell the aircraft at the end of its use and are there-
fore only interested in the residual value.

Cost of Ownership (COO) also constitutes an approach from the perspective of the operator.
Some authors use COO to refer to the costs resulting solely from ownership of the aircraft
(purchase and fixed operating costs) (Odell 1993, p.14), whereas others also include the vari-
able operating costs (Raymer 1992, Carubba 1992). COO models have often also been used
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as marketing and selling instruments or to assess aircraft (sub-) systems (Honeywell 1991,
Dechow 1994).

Direct Operating Costs (DOC) include the entire operating costs of the aircraft. In aircraft
construction, DOC methods have become more widely accepted than any other and will
therefore be examined in detail here. DOC methods of aircraft manufacturers, aircraft
operators and associations (e.g. the Air Transport Association of America, ATA, and the
Association of European Airlines, AEA) exist. The great success of DOC calculations started
in 1967 with the method created by the Air Transport Association (ATA 1967). This method
is now outdated, because the equations used no longer correctly reflect the current
relationships between the individual cost elements (Torenbeek 1988, p. 387). DOC methods,
by definition, only contain the aircraft-related costs. DOC methods have been used in practice
in the past in preference to all other methods. They were used by airlines to optimally select
their aircraft and by aircraft or engine manufacturers to evaluate new designs.

Cash Operating Costs (COC) (also: "Cash DOC") are DOC without depreciation. An exami-
nation of COC is of importance for operators who do not purchase their aircraft, but rather
lease them. COC are also applied in academia if the (true) aircraft price is not known.

Indirect Operating Costs (IOC) complement DOC: while DOC are aircraft-related costs,
I0C are passenger-related costs which depend on the management of the airline. An aircraft
design assessment can be mainly restricted to DOC as IOC do not, by definition, depend on
the aircraft. A close examination shows that the allocation of costs to DOC and 10C is not
actually very clear-cut. Consequently, differing interpretations exist. The respective defini-
tions of DOC and IOC therefore have to be looked at closely when studying the various
sources. The IOC option has generally attracted less interest than DOC in the past. Lockheed
1970 is one of the few IOC methods. It is conceived as a counterpart to the DOC method
ATA 1967 and contains costs for premises and equipment, fees and charges, cabin personnel
costs, passenger service, ticket sales, advertising, luggage and cargo loading. For an airline
operating scheduled flights, IOC are roughly of the same magnitude as DOC. In the case of
charter flights, IOC are somewhat lower than DOC (Fielding 1999).

Total Operating Costs (TOC) are the sum total of DOC and I0C.
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14.2 Overview of Assessment Methods

Fig. 14.1 shows an overview of the assessment methods employed in aircraft construction.
The calculation of return, cash value or breakeven point makes the most sense from an
economic perspective. However, for such a calculation both the revenue and expenditure
always have to be known. A calculation may be made from the perspective of the aircraft

manufacturer or the airline.

Applicability in practice is especially possible from the perspective of the operator with the
aid of DOC methods. The method used by the Association of European Airlines (AEA 1989a
and AEA 1989b) is presented here in full. A comparison with other DOC methods is also

offered.

Return on investment — Net present value — Break-even point

Manufacturer's perspective

Operator's perspective

Revenues

Expenses

Revenues

Expenses

® estimated aircraft
price

® estimated sales
figues

(See also Chapter 3)

Cost methods
according to

® Nicolai 1975
® Roskam VIII 1990
® Raymer 1992

® estimated ticket
price

® estimated load
factor

(See also Chapter 3)

Cost methods
according to

e LCC

¢ COC

¢ |OC

e TOC

« DOC:
e ATA 1967
e AA 1980
e DLH 1982
e AEA 1989
e Al 1989
e Fokker 1993

Fig. 14.1

Overview of assessment methods
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14.3 Direct Operating Costs (DOC)

In this section, an attempt is to be made to summarize the various DOC methods listed in Ta-
ble 14.1. In doing so, the DOC method applied by the Association of European Airlines,
which is often used in Europe, will be described in full. The Fokker method will also be pre-
sented in full. Some of the other methods specified in Table 14.1 are very wide-ranging and
are therefore not presented in full. Other DOC methods (such as the Boeing method) are not
dealt with here.

Table 14.1 Overview of selected DOC-Methods

Organization Comment Year of Publication  Source
Air Transport Predecessors to this method are from 1967 ATA 1967
Association of America the year: 1944, 1949, 1955 and 1960.
(ATA)
American Airlines The Method is based on Large Studies 1980 AA 1980
(AA) sponsored by NASA.
See also: NASA 1977.
Lufthansa The Method was continuously devel- 1982 DLH 1982
oped further.
Association of Method for Short- and 1989 AEA 1989a
European Airlines Medium Range Aircraft
(AEA)
Association of Method for Long Range Aircraft (a 1989 AEA 1989b
European Airlines modification of the method AEA 1999a)
(AEA)
Airbus Industries The Method was continuously devel- 1989 Al 1989
(Al oped further.
Fokker The Method was produced to evaluate 1993 Fokker 1993

aircraft design project.

14.3.1 Calculation of DOC

As a rule, DOC methods calculate the direct operating costs of an aircraft from the costs C
incurred due to

e depreciation C,,
e interest C,,
e insurance C

e fuel C,
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e maintenance C,,, consisting of the sum of

— airframe maintenance C,, ,,

— power plant maintenance C,, ,,
e crew C,, consisting of the sum of

— cockpit crew C.. .,

— cabin crew C_ .,

e fees and charges C,,, , consisting of the sum of

— landing fees CFEE,LD
— ATC or navigation charges C;

— ground handling charges C.; ;.\

The DOC are then (taking into account Table 14.2) the sum of these cost elements.

CDOC = CDEP + C[NT + CINS + CF + CM + CC + CFEE (141)
Table 14.2 Included cost elements of the here mentioned DOC methods
ATA 67 AA 1980 DLH 1982 AEA 1989a Al 1989 Fokker 1993
AEA 1989b

CDEP

based on A/C X X X X X X
prize

based on spare X X X X X
part

CINT X X X X

Cns X X X X X X

C, X X X X X X
CM,AF X X X X X X
CM,PP X X X X X X
Cc,co X X X X X X

X X X X X
C.,CA

CFEE,LD X X X X X

CFEE,NAV X X X X X
X X X X

CFEE ,GND
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Table 14.2 provides an overview of the cost elements included by DOC methods. ATA 1967
does not include interest expense, costs due to cabin crew or costs due to fees and charges.
The other DOC methods examined here contain virtually the same cost elements.

A closer examination of DOC methods reveals a number of other peculiarities relating to
individual methods:

o Al 1989 contains inflation factors. This means that the fundamental equations can be
adjusted to subsequent years taking into account differing inflation rates for spare parts,
wages, and fees and charges. Economic parameters of the method are adjusted to the
altered circumstances at yearly intervals.

e NASA 1977/AA 1980 contain the most wide-ranging research and equations for determin-
ing maintenance costs. The maintenance costs are examined and added together at the level
of the individual ATA chapters.

e DLH 1982 and AI 1989 take into account the revenue potential from transporting cargo
(see below).

14.3.2  Representation of DOC

The DOC can be recorded in different ways. Here, we will firstly consider DOC as the costs
incurred by an aircraft (Index: a/c) in a fleet within one year (annual costs, Index: a). These
are aircraft annual costs

here: C,,. =C (14.2)

alc,a °

The analysis of DOC applied here over one year then also means that in this case all the cost
elements C,;,, Cpvrs Cpis» Cry Cyy, Co and C,y, are calculated for one year.

DOC are calculated for a specific aircraft trip characterized by a specific range R, a specific
flight time ¢, and block time, #, (see below for definitions). An aircraft trip for calculating

DOC according to AEA 1989b is shown in Fig. 14.2. It would also be possible to calculate
the DOC for such a defined flight, cycle or trip (Index: #) of an aircraft (Index: a/c). In this
way one can obtain the aircraft trip costs

—alea (14.3)
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Here n,, is the number of flights per year that an aircraft can make on such an aircraft trip. It

is also possible to relate the DOC to the distance flown. These are then (depending on the unit

used) the aircraft mile costs.

Zalet _ Talea (14.4)

The DOC can also be related to the distance flown and the number of seats or the maximum
number of passengers on the flight » , . This then gives the seat-mile costs (depending on the

unit used)

Ca/ca
. = a_ (14.5)
v on,R non, R

pax

_C

alet __

The number of seats is taken from standard seat layouts, which can be arranged differently for
short, medium and long haul flights. The calculation of seat-mile costs is also still purely a
cost analysis. However, the revenue potential is already included to a certain extent because
an alternative aircraft or cabin design with more seats reduces the seat-mile costs while the
aircraft trip costs remain the same.

The revenue potential can also be taken into account if the DOC is related to the distance
flown and the payload. If only the payload of passengers and luggage is taken into account,
the seat-ton-mile costs (depending on the unit used) are obtained. In the case of a cargo plane
the cargo-ton-mile costs are obtained analogously.

_ Ca/c,t _ Ca/c,a (14 6)
pax,t,m - . .
(mpax + mbaggage) R (mpax + mbuggage) nt,a R
C C
_ alet alc,a
Ccargo,t,m - R - R . (147)
mcargo mcargo nt,a

If one regards the total payload mp, =m,, +m,,... +m as the sum total of the payload

cargo

constituted by passengers, luggage and cargo, one obtains the fon-mile costs

alcet

C C .
= alea . (14.8)

C = =
mPL R mPL nt,a R

t,m

In this case the entire revenue potential can now be taken into account. However, the disad-

vantage is that cargo masses have just as big an influence on the relevant costs as does the
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"higher-value" transportation of passenger masses. In order to correct this influence, equiva-
lent ton-mile costs can be calculated, in which a correction factor is applied to the cargo
masses k (see Table 14.3). In doing so, a distinction can be made according to the type of

cargo

cargo:

e cargo that is accommodated in containers on the main deck (such as on combi aircraft)
- Index: CMD;

e cargo that is accommodated in containers on the lower deck - Index: CLD;

e bulk cargo - Index: B.

Ca/c t
Coivim = : (14.9)
L k +k m +k m
(m pax + mbuggage + cargo,CMD mcargo,CMD cargo,CLD cargo,CLD cargo,B cargo,B
Table 14.3 Correction factors for the calculation of equivalent ton-mile costs
correction factor type of freight DLH 1982 Al 1989
kwrgo’CMD containerized, 1.0 -
main deck
1 m ax + mba> age a
k containerized, 0.8 0.005—-—* - =0.5
cargo ,CLD kg n ax
lower deck i
1 m, +m, b
0.0025 — =% < (.25
kcargo B bUIk 05 kg npax
@ Al 1989 assumes that 1000 kg of containerized freight generates as much revenues as 5 pas-
sengers.
b Al 1989 assumes that only 50 percent of the bulk cargo transport volume will be used, but 100
percent of the container transport volume.
DOC can also be related to the flight time, ¢ ,or block time, ¢,
Ca/c t Ca/c a
c, = —= (14.10)
ael g nt
S ta “f
Ca/ct Cu/c a
Copep=—7T=—"" . (14.11)
l n,t,

The term flight time is defined in JAR 1:

"Flight time" means the time between lift-off and touchdown.
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According to WATOG 1992, the term block time essentially means:

Time that commences when an aircraft moves under its own power for the purpose of flight and

ends when the aircraft comes to rest after landing.
Note: According to FAR 1 this is the definition of flight time!!!

The block time, as opposed to the flight time, also includes ground times, such as due to the
push back of the aircraft, taxi prior to take-off and after landing, or waiting on the ground for

clearance. Table 14.4 contains assumed time differences At =1¢, — ¢, .

Table 14.4 Standardized assumed time difference between block time and flight time
At=t,—t, remark source
15min.=0.25h short and medium range AEA 1989a
25min. =0.42 h long range AEA 1989b

14.3.3  Calculation of DOC Cost Elements - Depreciation

Depreciation C,,, is the distribution of the reduction in value of an item over the useful
service life (see above). The useful service life over which the item is to be depreciated n,,,

has to be set and the occurring reduction in value has to be determined. The value of a new

item corresponds to its total purchase price P, (if the value were otherwise, the purchase

price would probably not have been paid). After the end of use, the item can still be sold at a

price that corresponds to its residual value P The reduction in value is

residual *
P

residua

therefore P

total ~

, and the depreciation

})mm, (1 __ = residual j
— Ptotal _Presidual — Ptotal . (1412)

N pep N pep

CDEP

DOC methods use a similar useful service life 7,,, and a similar relative residual

value P /P A list is shown in Table 14.5.

residual total *

The total purchase price of an aircraft P and the

tota,

, comprises the delivery price P,

price for the spares (Index: S) P purchased with each aircratft.
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P

total — P delivery

+P . (14.13)

The delivery price P, includes:

elivery

e the /ist price for a standard configuration (manufacturers standard study price);

e from which discounts are deducted;

e to which surcharges for modifications (change orders) are added;

e the price for equipment components that the customer buys on its own responsibility (buyer
furnished equipment, BFE); this may also include engines, which account for a consider-
able proportion of the total price of the aircraft;

e the interest on construction progress payments.

These payments can scarcely be determined due to the lack of publications. However, estima-
tion methods do exist for determining the delivery price.

The following estimate is provided for the maximum take-off mass m,,, at the time of

this publication

P, .
Pdelivery = = mMTO (1414)
Myiro
with
_delvery 500 Us$ for short and medium haul aircratft,
Myiro kg

P, .
—delvery. 350 Uss for long haul aircraft.
Myro kg

The following estimate is provided for operating empty mass m,,. according to Jenkin-

son 1999a

P,
= ey 4y (14.15)

P, delivery — OE
OE

with
P
Zaaver 960 Y58 g1 short to long haul aircraft.

Mog kg

When using these estimation equations it is important to bear in mind that the values only
apply to aircraft of a typical construction type. If an aircraft is built to a lighter specification
by means of complex construction, manufacture and materials, then this does not, of course,
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mean that it will be cheaper, as equations (14.14) and (14.16) would show, but that it will be
more expensive!

The following estimate of the number of seats » , is provided at the time of this publica-

tion
P, delive,
delivery = = npax (1 4 1 6)
n
pax
with

P, .
—delvery ~ 265000 US$ ~ for short to long haul aircraft.
n

pax

The price for spares (Index: S) P is calculated from a proportionk; ,,. of the price of the air-
frame (Index: AF) P, and a proportion kg, of the price of the engines (Index: E) n, P, .

n, is the number of engines. Table 14.5 contains the proportions kg . and kg .
Py =kg p Py +kgpng, Py (14.17)
The price of the airframe is the price of the aircraft minus the price of the engines

P,.=P

delivery

—n, P, . (14.18)

The engine price can be obtained from the manufacturer or estimated according to the follow-
ing statistical equation (based on data from Jenkinson 1999b). The estimate is based on the
take-off thrust 77, , of one engine in N

T 0.81
P. =293 US$~[%) . (14.19)
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Table 14.5 Parameters for the calculation of depreciation
Source nDEP Presidual kS,AF kS,E
Ptotal
ATA 1967 12 0.00 0.10 0.10
NASA 1977 0.06 0.06
widebody * 16 0.10
turbo fan ® 14 0.02
turbo jet 10 0.05
turbo prop * 10 0.15
DLH 1982 14 0.00 calculated from necessary
availability of spare parts in stock
AEA 1989a 14 0.10 0.10 0.30
AEA 1989b 16 0.10 0.10 0.30
Al 1989 15 0.10 0.06 0.25
Fokker 1993 15 0.10 0.08 0.08

a

Data in NASA 1977 are quotes from the Hamurghden "Depreciation Guidelines" of the U.S. Civil
Aeronautics Board (CAB).

14.3.4 Calculation of DOC Cost Elements - Interest

It is assumed that the investment for a new aircraft (price: P,,,) is financed wholly from out-

side sources. Therefore k, = P,

total *

The interest payable to the investor C,,, is calculated with

the aid of an average interest rate p,, and comes to the following per year

C]NT :pav kO :pav ljtotal : (1420)

The average interest rate is inserted in the DOC methods as an operand for the sake of sim-
plicity and is included in Table 14.6. p_, is lower than the interest rate p that one would ex-

pect on the capital market.

A more detailed version assumes that the outside capital will be repaid in equal installments
and annual payments a at the end of the year over n,,, years. After the n,,, years a relative

residual value k, /k, of the outside capital may then remain in the company. This relative

residual value of the outside capital is independent of the relative residual value of the depre-
/P

tota

ciation P

residual

, and may differ from this.

In order to calculate the average interest we take equation (14.21) from any math book on fi-
nancial mathematics




4= _ 2 _ (14.21)

Here, n is the number of repayment years, which we will designate as n,,, to avoid confusion

with the useful service life n,,,.

a refers to the size of the required annual installment. Over a period of n,,, years, the
following is spent altogether in interest and amortization as fotal payment: a n,,, . The total
of the redemption payments is by definition k,—k, . The total of interest payments is then the

difference between the total payment and the redemption payments:

k
anp,y —(ky—k,)=any,, -k (1 _k_nJ (14.22)
0

To calculate an average interest rate, these interest payments are spread over 7., years dur-

ing which the aircraft is depreciated. Per year this comes to interest of

k,
anp,y —k, (1 _k]
Cpr = : . (14.23)

P pep

According to the definition of the average interest rate, this is also

Cinr = Pay ko (14.20)

Equation (14.32) together with (14.30) gives

k
anpy =k (l_knj
0

Npep Ky

P = (14.24)

and finally equation (14.33) together with equation (14.31) provides the calculation equation
for the average interest rate:
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Rpyy kn
(CI o _koj(q_l)nPAY _[l_knj

Mpay _1
Pu = 9 (14.25)

N pep

The average interest rate p, that the individual DOC methods assume and the parameters of

equation (14.25) according to which p, is calculated are contained in Table 14.6.

Table 14.6 Parameters for the calculation of the average interest rate p_,
kn

source P g=1+p Npay k, N pep Puw
ATA 1967 0.00 1.000 - - 12 0.0000
NASA 1977 | AA 1980 0.00 1.000 - - - 0.0000
DLH 1982 0.09 1.09 14 0.0 14 0,0570
AEA 1989a 0.08 1.08 14 0.1 14 0.0529
AEA 1989b 0.08 1.08 16 0.1 16 0.0534
Al 1989 0.05 1.05 10 0.0 15 0.0197
Fokker 1993 0.08 1.08 15 0 15 0.0502

14.3.5 Calculation of DOC Cost Elements - Insurance

All the DOC methods examined here take into account the costs caused by insuring the air-
craft against hull damage or even against hull loss. The insurance costs that are incurred per
year C,,, are calculated by all methods as a percentage of the aircraft price, for the sake of

simplicity

Cis =ks P, delivery (14.26)
ks 1s listed in Table 14.7.
Table 14.7 Parameters for the calculation of the insurance costs
ATA 67 AA 1980 DLH 1982 AEA 1989a Al 1989 Fokker 1993
AEA 1989b
0.0200 0.0100 0.0056 0.005 0.005 0.004

k INS
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14.3.6 Calculation of DOC Cost Elements — Fuel Costs

The fuel costs incurred per year C,. are calculated according to

Cp.=n,, P.m, (14.27)

In this equation #, , is the number of flights made per year, P, is the fuel price (in relation to

a mass unit) and m,. is the mass of the fuel consumed during a flight.

The number of flights per year »,, is dealt with in more detail below. At the moment let us

assume that », , is known from the airline's statistics.

Composition of the fuel price: The price for kerosene is ascertained on a daily basis on the
commodity markets. Rotterdam, for example, is an important trading center for North Western
Europe. The prices negotiated in Rotterdam are referred to as spot market prices. They are
specified as "free on board", or FOB for short. The FOB fuel price can be taken from pub-
lished statistics. FOB means that the price includes loading for further transportation. Further
transportation takes place from Rotterdam to Germany by inland waterway, for example. In
this case FOB therefore means "price including loading onto the inland waterway vessel". The
airlines pay a price consisting of the price FOB plus the so-called "Into-Plane-Differential".
The "Into-Plane-Differential" is negotiated individually with the oil companies and specifies
the difference between the spot market price and the purchase price. The "Into Plane Differen-
tial" is not made public, but comes to approximately 0.052 US$/kg in the case of a large air-
line.

The fuel price is subject to considerable fluctuations. In order to calculate the ratio of the op-
erating cost elements to each other correctly, it is necessary to research the fuel price carefully.
The fuel price is published in various statistical works and journals and can also be obtained
from oil companies, airlines or airports. The DOC methods also specify a fuel price. However,
these fuel prices are only of historical interest. To calculate DOC, the current fuel price has to
be obtained. At the time of publication of this document P.=0.22 US$/kgis a plausible

value.

In the case of a design assessment, not only the current fuel price is of interest, but rather the
fuel price on the date in the future when the projected aircraft is to be operated. As this fuel
price is unknown, only a parameter variation of the fuel price helps — that is the multiple cal-
culation of DOC with the inclusion of various fuel prices. When setting the range within
which the fuel price parameter is to be varied, it may be helpful to take a look at the price
trend in the past. Fig. 14.2 shows the fuel price trend over a period of 20 years.
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Fig. 14.2 Development of the fuel price from 1972 to 1992. Source: Publication of the American

Institute of Aeronautics and Astronautics: Paper Nr.: AIAA-86-2667 quoted from Jen-
kinson 1999a

The mass of the fuel consumed during a flight — fuel mass m,. — is calculated according to the

methods outlined in Section 5. In doing so, it is important to define the aircraft trip. The stage
length, i.e. the range R between the departure and destination airport, is selected according to
the probable and typical use of the aircraft. The selected stage length must be stated together
with the calculated DOC, as the DOC is greatly influenced by the choice of this parameter.
The DOC methods provide information on how the aircraft trip is to be perceived in detail.
Fig. 14.3 shows the definition of the aircraft trip according to AEA 1989b. According to
AEA 1989b and AEA 1989a the aircraft is to be filled with enough fuel that

e a 5% reserve additional to the actually required fuel is included,
e in addition, an alternative airfield at a distance of 250 NM could be reached,

e in addition, the aircraft could fly for 30 minutes in a holding pattern at 1500 ft with mini-
mal drag.

Of course only the actually consumed fuel mass is then included in the DOC calculation
according to flight phases A to G from Fig. 14.3. The fuel reserve therefore only affects the
fuel consumption due to additional aircraft weight and therefore drag and fuel consumption.
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" T~ )

A-xB¥— C D > E —%— F %G >
STAGE LENGTH
————— FLIGHT TIME AND FLIGHT FUEL >
e BLOCK TIME AND BLOCK FUEL
A. Start-up and taxi-out (20 min)
B. Take-off and initial climb to 1,509 £e.
C. Climb from 1,500 ft to initial cruise altlztude.‘
D. Cruise at selected speed and altitude including any
stepped climb required (min 4000 ft).
E. Descent to 1,500 ft. ) )
F. 8 min. hold ét 1,500 £t including APP and landing.
G. Taxi-in 5 min.
Fig. 14.3 Definition of the flight mission according to AEA 1989b (long range). Remark: accord-
ing to AEA 1989a (short and medium range) for flight phase A only 10 min would have
to be used

14.3.7 Calculation of DOC Cost Elements — Maintenance Costs

According to WATOG 1992 maintenance is defined as

Those actions required for restoring or maintaining an item in serviceable condition, including
servicing, repair, modification, overhaul, inspection and determination of condition.

A distinction is made between the following:

e scheduled maintenance - = 30% of costs;
e unscheduled maintenance - = 70% of costs;

e on-aircraft maintenance - = 30% of costs;
e off-aircraft maintenance - =70% of costs;
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e time-dependent maintenance (increased costs on long flights);
e cycle-dependent maintenance (increase costs in the case of a large number of short flights
as opposed to a few long flights).

Cycles are the number of flights made by an aircraft during a specific period.

The calculation of maintenance costs depends to a large extent on the figures available, which
in turn depend on how maintenance costs are recorded in a maintenance organization. In addi-
tion to the classifications stated above, the following distinctions are made:

e Direct Maintenance Costs, DMC;
e Indirect Maintenance Costs, IMC.

As with the division of operating costs into DOC and IOC, the following also applies
accordingly:

e DMC are the maintenance costs caused directly by the aircraft;
e IMC are the maintenance costs incurred by operation of the maintenance organization,
which cannot be allocated directly to an aircraft.

IMC are incurred, for example, through training and education for the maintenance team. In
the case of aircraft families with a large degree of similarity (commonality) these costs are
lower. Therefore, in the case we are dealing with here even IMC can be influenced by the
aircraft design. Therefore, DMC and IMC cannot always be clearly separated.

The labor rate charged for one maintenance hour on the aircraft is called

e unburdened labor rate: if only DMC elements are contained in the labor rate;
e burdened labor rate: if IMC elements are also included in the labor rate.

If the maintenance is carried out by the airline itself, then it is possible to differentiate between
the burdened and unburdened labor rate. However, if the maintenance work is carried out by
other organizations, the labor rate understandably also includes the IMC elements, but the
maintenance expenses appear to the operator as costs caused directly by the aircraft. There-
fore, it is difficult to differentiate between the burdened and unburdened labor rate. When
calculating the DOC, the normal procedure is to select a labor rate that contains a specific
proportion of IMC. A typical labor rate in relation to the maintenance man hour, MMH L, is

69 US$/h in 1989-USS.

In general, maintenance costs comprise the labor costs C,, , and the material costs C,, ,,
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C,=Cy,,+Cyy (14.28)
or, calculated from the maintenance hours ¢,,
Cy=t,L,+C,, . (14.29)

In this case this is firstly interpreted as being the costs incurred with respect to the aircraft

within one year: C,, =C,, ,
Cu=ty,L,+Cyyo - (14.30)
Maintenance costs are related to the flight timez, , as a rule. It is then

Cory =ty Ly +Co s (14.31)

and

Cy =0y, Ly +Cyy )t n, (14.32)

The maintenance man hours per flight hour, MMH/FH ¢, . increase with the size of the

aircraft. Table 14.8 contains comparative values for various types of aircraft with typical con-
ditions of service and typical aircraft utilization. With the same type of aircraft the mainte-
nance costs per flight hour also increase steeply with falling aircraft utilization U, , (see

14.59). With the aid of values from Nicolai 1975, the following correlation is produced for jet
transports as a guide:

ty, =——+6 . (14.33)
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Table 14.8 Required maintenance (man) hours per flight hour (MMH/FH) for typical operational
conditions and utilization — comparative values

type of aircraft ty s (MMH/FH) source
Cessna 172, Piper PA 28 =1

Cessna Citation 3.0 Nicolai 1975
DC-9-30 6.4 Nicolai 1975
DC-9 (military: C-9) =12 Raymer 1992
B737-200 6.6 Nicolai 1975
B727-100 7.9 Nicolai 1975
DC-10-10 10.9 Nicolai 1975
L1011 14.1 Nicolai 1975
B747-100 14.5 Nicolai 1975
A340 ~6

Of course, it is difficult to estimate the maintenance hours and cost of materials for the aircraft
as a whole in one step. For this reason, the maintenance costs for individual parts of the
aircraft are calculated and then added together. In NASA 1977, the maintenance costs are
calculated at the levels of ATA chapters. In DOC methods, it is more the norm to
differentiate between airframe (Index: AF) and engine (Index: E)

Cy = ((tM,AF,f + tM,E,f) Ly + CM,M,AF,f + CM,M,E,f) byl - (14.34)

Following AEA 1989a und AEA 1989b: L, = 65 US$/h in 1989-USS.

For maintenance of the airframe, wage costs account for roughly 65% and the cost of materi-
als 35%. In the case of engine maintenance the ratio is the opposite.

It is especially difficult to estimate and calculate maintenance costs within the scope of DOC
methods if the calculation equations are to be based on simple aircraft design parameters.
For this reason, the equations for calculating maintenance costs often take up the biggest
space when using DOC methods. The equations for calculating maintenance costs of the AEA-
DOC method (AEA 1989a and AEA 1989b) are presented here.

t

Ivary =

1 ( 1 350000 kg

9-10° —-m . +6.7- 0.8h+0.681, 14.35
kg mAF+75000ng( /) (1435)

S

Crratars :%(4.2-106 +22:10°° % 1) Py (14.36)
S
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L1 04 13h
tys, =g 021k k[ 1+1.02-10 E-TM,E : 1+t— (14.37)
f

0.8
Conroy =N -2.56UTS$-k1 (k, +k3)-(1 +1.02-107* %-TM,EJ -(1 +l;th-k,NF (14.38)
f

In equations (14.35) to (14.38):

the mass of the airframe is M =My, =My, (14.39a)
the mass of all engines on the aircraftis m,,,, =k, k,, n, m, (14.39b)
kp,=1.16 for single engine piston props,
k=135 for twin engine piston props,
kp,=1.15 for jet transports and engines in pods,
k,=1.40 for aircraft with buried engines
k,, =1.00 without reverse thrust,
k, =1.18 with reverse thrust,
ng number of engines,
mg mass of one engine without parts used for engine integration.
the price of the airframe is P =Py =1y Py see above (14.18)
the take-off thrust of an engine is Trio5 as calculated in the design
k, =1.27-0.2- BPR"* (14.40)
1.3
k,=0.4 (wJ +0.4 (14.41)
20
ky=0.032n. +k, (14.42)
0.50 fir ng=1
k,=(057 fir ny=2 (14.43)

0.64 fir ng=3

The engine data contained in equations (14.40) to (14.43) can be taken from the literature or
directly from the manufacturer's data. The following are required:
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e the bypass ratio BPR,
e the overall pressure ratio OAPR;
e the number of compressor stages — including the fan n.;

e the number of shafts of the engine n;.

The engine IAE V2530-A5 (for the Airbus A321), for example, is characterized by BPR = 4.6
and OAPR=32.5, n. =15 and ng =2.

The equations (14.35) to (14.38) always adapt to the current financial conditions if the current
labor rate and the current aircraft price are used. If equations provide costs relating to the year
in which the method was developed, compensation for inflation must be provided. This is
carried out by means of an inflation factor

Koy = (14 p e ) (14.44)

I have added this factor to equation (14.38) compared with the AEA original. With this factor
the "old" equation is adjusted to the current financial conditions. The following are inserted in
(14.44):

e the annual mean inflation rate p,. ;
e the year for which the calculation is being made n

year

e the year that the method refers to n,,,,, -

pr = 0.033 is a plausible value according to AI 1989. For equation (14.47) n,,,,, = 1989
according to the publication date of the AEA method.

The DOC method of Fokker (Fokker 1993) does not provide any equations for calculating
maintenance costs. In this case one has to rely on known values of comparative aircraft. Equa-

tions for calculating maintenance costs are also included in Raymer 1992.

According to Jenkinson 1999a a simple estimate of maintenance costs is possible with

Co =Crarptn: Cypp)tyn, (14.45)
Crrars =175 UTS$+O.004IE—1§2-MOE s (14.46)
USS$

Cirps =0.00029 =Ty (14.47)
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In equations (14.45) to (14.47) the maintenance costs for the airframe and engine are related to
the block time. The equations apply to the year 1994 and must, if necessary, be corrected with
the inflation factor according to (14.44). m,, is the operating empty mass, 7,,, is the take-off

thrust of one engine. The costs of engine maintenance apply to modern engines with a bypass
ratio of approximately 5.

14.3.8 Calculation of DOC Cost Elements — Staff Costs

Many DOC methods include the costs of the cabin crew C,. ., in addition to the costs of the

cockpit crew C.. ., . Per year the following costs are incurred:

Co=Cecot+Crpy - (14.48)

It is customary to pay the crew according to block time. Then the cockpit crew 7., are paid at

a mean hourly rate L., and cabin crew n., at a mean hourly rate L.,

Ce=(neo Leo+tnes Ley)t, ng - (14.49)

The AEA method works on the basis of one cabin crew member per 35 passengers. Ta-
ble 14.9 contrasts the hourly rates according to AEA 1989a and AEA 1989b with the current
approximate hourly rates of a large German airline. The hourly rates of the over 20-year-old
DOC method are somewhat higher than today’s comparative figures. For DOC calculations
according to the AEA method the AEA hourly rates can be used unchanged to make calcula-
tions.




14 -25

Table 14.9 Comparison of flight crew costs per hour (block time)
crew short and medium long range
range US$/h
US$/h
AEA-DOC-method
cockpit crew, average value: L, 246.5 355.0
cabin crew, average value: L, 81.0 90.0

German airline ?

captain 208 254
co-pilot 102 120
cockpit crew, average value: L, 155 187
cabin crew, average value: L, 53 61

Conversion basis (2000): 1.) Overhead costs are accounted for with 85 percent of the gross
salary, crew training costs are not included.
2.)1US$ =2 DM.

14.3.9  Calculation of DOC Cost Elements - Fees and Charges

Many DOC methods include fees and charges C,,, in the DOC calculation. The following

fees and charges may feature in a calculation:

e landing fees C,,, ,, are incurred for using the airfield with its runways;
e ATC or navigation charges C,;; ,,, are incurred for use of the airways, radio navigation

and direction by air traffic control;

¢ ground handling charges C,,; ;,, may include:

— ground service: services connected with passengers, luggage, cargo and post; landing,
unloading, provisioning and cleaning; pulling, parking and starting the aircraft; informa-
tion and documentation services;

— technical services: refuelling (these fees and charges are already included in the "Into
Plane Differential" as a rule (see above)), filling up with other fluids, de-icing and main-
tenance (rectification of small defects);

— flight advisory services.

The costs incurred due to ground handling have to be assigned to IOC according to general

opinion (and according to Lockheed 1970) unless they are affected by specific design pa-

rameters of the aircraft. We note that some DOC methods also include the ground handing
charges for simplicity's sake and with little differentiation.
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The following costs are incurred per year

CFEE = CFEE LD + CFEE,NAV + CFEE,GND : (1450)

The cost elements of fees and charges are often calculated according to the following funda-
mental equations:

Cregp = kip Mymo n, ke - (14.51)
CFEE,NAV =kygy RAIMymo n, ke - (14.52)
C ez onp =keyp Mpy 4 ke - (14.53)

Equations (14.51) to (14.53) have been created by first calculating the fees and charges for the
individual flight. Multiplied by the number of flights per year #, , this gives the annually in-

curred fees and charges. As fixed costs are calculated in US$ in this case and the fees and
charges have increased sharply over the years, it is necessary to make an adjustment to the
current cost level with the inflation factor (14.44). An inflation rate for the fees and charges of
6.5% is a plausible value (AI 1989: 3.3%, DLH 1982: 8%, value from 1998: 7.2%)).

In the case of the simplified study carried out here:

e the landing fees depend on the maximum take-off mass;
e the ATC or navigation charges depend on the flight distance and the maximum take-off
mass;

e the ground handling charges depend on the payload.
There are DOC methods that use other correlations for individual types of fees and charges.
The correlations shown here are, however, very widespread. Thus, the handling charges ac-

cording to Fokker 1993, for example, are calculated with

Creeovp =182 US$+6.6USS - npyy n, , kyyr (14.54)

The other parameters of equations (14.51) to (14.53) are contained in Table 14.10.
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Table 14.10 Parameters for the calculation of fees and taxes

kip Ky kenp Pinr
souree US$/kg uss US$/kg
nm ykg
diff t text diff t text -
AA 1980 0.0022 My /mL ifferent contex ifferent contex
DLH 1982 different context different context 0,080
Germany 0.00706
Europe 0.00547
long range 0.00141
AEA 1989a 0.0078 0.00414 0.10 -
AEA 1989b 0.0059 0.00166 0.11 -
Al 1989 0.0025 0.00180 nota DOC - component  0.033
Fokker 1993 0.0090 0.00716 see (14.54) -

14.3.10 Calculation of Aircraft Utilization

The equations for calculating DOC contain one further parameter that has been tacitly
assumed to be known so far, namely the number of flights per year n,,. This parameter is of

great importance in practice and indicates the efficiency of an airline's operation.

If a large number of flights are carried out each year with an aircraft, then the fixed costs
(depreciation, interest, insurance) are distributed over more flights, so that the individual flight
is burdened with fewer costs. The question is how many flights per year can be managed — or
to be more precise, how many flight hours can be carried out with an aircraft in a year. The
number of flight hours carried out in a defined period is called flight utilization U. There is a
fixed correlation, via the flight time, between the number of flights per year and the aircraft
utilization.

The number of flight hours (FH, Index: /) flown annually (Index: a) gives the annual aircraft
utilizationU, , , calculated by

(14.55)

t, is the flight time already defined above.
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With the number of flights per year n,, we can also calculate the number of flights during a

different period:

Trips (Index: #) daily (Index: d) n,=n,,/365 , (14.56)
Trips (Index: ¢) hourly (Index: /) n,=n,/24=n,, /(365-24) (14.57)

t,h

and also the aircraft use in relation to the flight time, Index: f'¢,

daily utilization (Index: d) U,p=t,n, , (14.58)
hourly utilization (Index: /) U,,=t;n, (14.59)

The number of block hours (BH, Index: ) flown annually (Index: a) gives the annual aircraft

utilizationU , , calculated with

ab

U,,=t,n, (14.60)
The number of flights during another period can also be calculated here:
daily utilization (Index: d) Ujp=t,n, , (14.61)
hourly utilization (Index: /) U,,=t,n, . (14.62)

Annual aircraft utilization (unit: hours per year) and daily utilization (unit: hours per day) are
common parameters in practice. Calculations can be made especially easily with the
dimensionless hourly aircraft utilization — relative aircraft utilization.

Some DOC methods provide calculation equations for aircraft utilization and therefore make
it possible to make a conclusive DOC comparison between different aircraft and aircraft trips.
All these calculation equations for annual aircraft utilization have the same structure:

kUl

o (14.63)
s t, +ky,

U, =t

a,,

The only difference between the calculation equations are the parameters &, and k,,. These

parameters are stated in Table 14.11.
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Table 14.11 Parameters for the calculation of the aircraft utilization according to equation (14.64)

kUl kUZ

source h h
AA 1980 / NASA 77 3205 0.327
AEA 1989a 3750 0.750
AEA 1989b 4800 0.420
Al 1989 °

R <1000 nm (1) 3994 0.754

1000 nm < R <2000 nm  (2) 5158 1.650

2000 <R nm (3) 6566 3.302

a

1.) Al 1989 gives an equation for calculating Ua,b.
U, , was calculated in this case assuming ¢, —¢, =0.25h

2.) Ris the distance flown in the flight time ¢,

Fig. 14.4
0.6 T . . . . Relative aircraft utilization U, ,

calculated according to equation (14.64) and
parameters taken from Table 14.11 and
equation (14.64)
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The relative flight utilization U, , calculated with the aid of the parameters from Table 14.11

is shown in Fig. 14.4. According to this, aircraft utilization increases with increasing flight
time. This corresponds to experience in practice: a large number of short flights cause more
ground times than a few long flights. Therefore, more flight hours can be flown with fewer but

longer flights.
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After the introduction of the new long haul aircraft, such as the Airbus A340, it became clear
that this simple view of things no longer applied. After a flight of 8 hours, it is still possible to
schedule an additional flight within 24 hours. With longer flight times this becomes difficult,
with the result that the aircraft may only be able to embark on another long haul flight the next
day. As a result of this enforced waiting time caused by planning the rosters, it may therefore
be the case that the aircraft utilization falls again with extremely long flight times. This corre-
lation evaluated on the basis of data from Airbus 1996 leads to an alternative equation struc-
ture for calculating aircraft utilization

Uh,f = kU,A (tf _kU,B)2 +kU,C (14.64)
with

k, , =-0.00796 1/h®

k,,= 8.124h

kue = 0525 .

This correlation is also shown in Fig. 14.4.

14.3.11 DOC Model Data

Fig. 14.5 contains DOC expressed in US$ per block hour. The data have been taken from
Friend 1992 and are average values of selected American airlines from the years 1986 and
1988. If DOC of various aircraft are compared, a chart as shown in Fig. 14.5 provides a good
overview. The results of an individual DOC calculation are normally illustrated in a pie chart,
as is the case in Fig. 14.6.
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Fig. 14.5 Direct Operating Costs, DOC: Average values of selected American airlines from 1986
and 1988. Data taken from Friend 1992

others
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Fig. 14.6  Direct Operating Costs (DOC) of the Boeing 767 from Fig. 14.5. A common way of pres-
entation of DOC is the pie chart
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14.4 Final Comments

This section of the Aircraft Design lecture notes has tried to give an insight into aircraft
assessment. The aim was to describe the correlations relevant in practice and to provide
equations for actual calculations. Many correlations cannot be proven in the physical sense
and demand a certain degree of intuition when applied. I have compiled comparative values
from various sources in order to demonstrate the range of variation of the parameters. In
practice you will endeavor to obtain the most up-to-date and meaningful parameters from your
organization.

Actual aircraft assessments are carried out at the university with a DOC method. With the
information given from these lecture notes, the method from the Association of European
Airlines (AEA) will be used. In a first step the annual DOC are calculated. The conversion of
these DOC to equivalent ton-mile costs increases the informative value of the results.



