Definition of an Ecolabel for Aircraft

Master Thesis

Autor: Lynn Van Endert

Date: 2017-09-10

Supervisor: Dieter Scholz


In attempting to increase the environmental awareness in the aviation sector and to eliminate the green washing phenomenon, an investigation was done into the development and definition of an ecolabel for aircraft. Based on life cycle assessment it was found that aviation affects the environment most with the impact categories resource depletion and global warming (both due to fuel consumption), local air pollution (due to the nitrogen oxide emissions in the vicinity of airports) and noise pollution. For each impact category a calculation method was developed based solely on official, certified and publicly available data to meet the stated requirements of the ISO standards about environmental labeling. To ensure that every parameter is evaluated independently on aircraft size, which allows comparison between different aircraft, normalizing factors such as number of seats, rated thrust and noise level limits are used. Additionally, a travel class weighting factor is derived in order to account for the space occupied per seat in first class, business class and economy class. To finalize the ecolabel, the overall environmental impact is determined by weighting the contribution of each impact category. For each category a rating scale from A to G is developed to compare the performance of the aircraft with that of others. The harmonization of the scientific and environmental information, presented in an easy understandable label, enables the traveling customers to make a well informed and educated choice when booking a flight, selecting among airline offers with different types of aircraft and seating arrangements.

Download full text
PDF/A TextVanEndert.pdf    Size: 2.4M

URN, the Persistent Identifier (from the German National Library) to quote this Landing Page: https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2017-09-10.016 pin

Entries into

will come later.

Associated research data: https://doi.org/10.7910/DVN/LEHDUD

Airbus Plant Hamburg-Finkenwerder

LAST UPDATE:  16 February 2022
AUTHOR:  Prof. Dr. Scholz

home  Prof. Dr. Scholz
home  Aircraft Design and Systems Group (AERO)
home  Aeronautical Engineering
home  Department of Automotive and Aeronautical Engineering
home  Faculty of Engineering and Computer Science
home  Hamburg University of Applied Sciences