CHAPTER 1

Solar Radiation

The sun’s structure and characteristics determine the nature of the energy it
radiates into space. This chapter notes the characteristics of this energy outside
of the earth’s atmosphere and the effects of the atmosphere in attenuating
the radiation. Then the characteristics of the resulting energy resource available
at the earth’s surface are outlined, that is, its intensity, spectral distribution,
and its directional characteristics. We are concerned primarily with radiation
in a wavelength range of 0.3 to 3.0 um, the portion of the spectrum that includes
most of the energy radiated by the sun.

In general, it is not practical to start from knowledge of extraterrestrial
radiation and predict the intensity and spectral distribution to be expected
on the ground. Adequate meteorological data for such calculations are seldom
available, and recourse usually is made to measurements. However, an under-
standing of the nature of extraterrestrial radiation, atmospheric attenuation,
and the effects of orienting a receiving surface is important in understanding
and using solar radiation data.

1.1 THE SUN

The sun is a sphere of intensely hot gaseous matter with a diameter of 1.39 x
10° mand is, on the average, 1.5 x 10'! m from the earth. As seen from the earth,
the sun rotates on its axis about once every four weeks. However, it does not
rotate as a solid body; the equator takes about 27 days and the polar regions
take about 30 days for each rotation.

The sun has an effective blackbody temperature of 5762 K.* The temperature
in the central interior regions is variously estimated at 8 x 10° to 40 x 10® K
and the density at about 100 times that of water. The sun is, in effect, a continuous
fusion reactor with its constituent gases as the “containing vessel” retained by
gravitational forces. Several fusion reactions have been suggested to supply the

* This effective blackbody temperature of 5762 K is the temperature of a blackbody radiating the
same amount of energy as does the sun. Other effective temperatures can be defined, for example,
that corresponding to the blackbody temperature giving the same wavelength of maximum radiation
as solar radiation (about 6300 K).
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Figure 1.1.1 The structure of the sun.

energy radiated by the sun; the one considered the most important is a process
in which hydrogen (i.e., four protons) combines to form helium (i.e., one helium
nucleus); the mass of the helium nucleus is less than that of the four protons,
mass having been lost in the reaction and converted to energy.

This energy is produced in the interior of the solar sphere, at temperatures
of many millions of degrees. It must be transferred out to the surface and then be
radiated into space. A succession of radiative and convective processes must
occur, with successive emission, absorption, and reradiation ; the radiation in the
sun’s core must be in the x-ray and gamma-ray parts of the spectrum with the
wavelengths of the radiation increasing as the temperature drops at larger
radial distances.

A schematic of the structure of the sun is shown in Figure 1.1.1. It is estimated
that 909/ of the energy is generated in the region of 0 to 0.23R (where R is the
radius of the sun), which contains 40 % of the mass of the sun. At a distance 0.7R
from the center, the temperature has dropped to about 130,000 K and the
density has dropped to 70 kg/m?; here convection processes begin to become
important and the zone from 0.7 to 1.0R is known as the convective zone.
Within this zone, the temperature drops to about 5000 K and the density to
about 19‘5 kg/m3.
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The sun’s surface appears to be composed of granules (irregular convection
cells), with dimensions of cells from 1000 to 3000 km and with cell lifetime of a
few minutes. Other features of the solar surface are small dark areas cailed pores,
which are of the same order of magnitude as the convective cells, and larger dark
areas called sunspots, which vary in size. The outer layer of the convective zone
is called the photosphere. The edge of the photosphere is sharply defined, even
though it is of low density (about 10~* that of air at sea level). It is essentially
opaque, as the gases of which it is composed are strongly ionized and able to
absorb and emit a continuous spectrum of radiation. The photosphere is the
source of most solar radiation.

Outside of the photosphere is a more or less transparent solar atmosphere,
which is observable during total solar eclipse or by instruments that occult the
solar disk. Above the photosphere is a layer of cooler gases several hundred
kilometers deep called the reversing layer. Outside of that is a layer referred
to as the chromosphere, with a depth of about 10,000 km. This is a gaseous layer
with temperatures somewhat higher than that of the photosphere and with
lower density. Still further out is the corona, of very low density and of very high
(10® K) temperature. For further information on the sun’s structure see Thomas
(1958) or Robinson (1966).

This simplified picture of the sun, its physical structure, and its temperature
and density gradients, will serve as a basis for appreciating that the sun does not,
in fact, function as a blackbody radiator at a fixed temperature. Rather, the
emitted solar radiation is the composite result of the several layers that emit
and absorb radiation of various wavelengths. The resulting extraterrestrial solar
radiation and its spectral distribution have now been measured by various
methods in several experiments; the results are noted in the following two
sections.

1.2 THE SOLAR CONSTANT

Figure 1.2.1 shows schematically the geometry of the sun-earth relationships.
The eccentricity of the earth’s orbit is such that the distance between the sun and
the earth varies by 1.7%,. At a distance of one astronomical unit, 1.495 x 10'! m,
the mean earth-sun distance, the sun subtends an angle of 32". The radiation
emitted by the sun and its spatial relationship to the earth result in a nearly
fixed intensity of solar radiation outside of the earth’s atmosphere. The solar
constant, G, is the energy from the sun, per unit time, received on a unit area
of surface perpendicular to the direction of propagation of the radiation, at the
earth’s mean distance from the sun, outside of the atmosphere.

Until recently, estimates of the solar constant had to be made from ground-
based measurements of solar radiation after it had been transmitted through the
atmosphere, and thus in part absorbed and scattered by components of the
atmosphere. Extrapolations from the terrestrial measurements, which were
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Figure 1.2.1 Sun-earth relationships.

made from high mountains, were based on estimates of atmospheric trans-
mission in various portions of the solar spectrum. Pioneering studies were done
by C. G. Abbot and his colleagues at the Smithsonian Institution. These studies
and later measurements from rockets were summarized by Johnson (1954);
Abbot’s value of the solar constant of 1322 W/m? was revised upward by
Johnson to 1395 W/m?.

More recently, the availability of very-high-altitude aircraft, balloons, and
spacecraft has permitted direct measurements of solar radiation outside most
or all of the earth’s atmosphere. These measurements were made with a variety
of instruments in nine separate experimental programs. They resulted in a value
of the solar constant, G, of 1353 W/m? (1.940 cal/cm? min, 428 Btu/ft? hr,
or 4.871 MJ/m? hr). The estimated error was + 1.5 percent. For discussions of
these experiments, see Thekaekara (1976) or Thekaekara and Drummond
(1971). This standard value was accepted by NASA [see NASA (1971)] and by
the American Society for Testing Materials.

The data on which the 1353 W/m? value was based, have been reexamined
by Frohlich (1977), and reduced to a new pyrheliometric scale* based on
comparisons of the instruments with absolute radiometers. Data from Nimbus
and Mariner satellites have also been included in the analysis, and as of 1978,
Frohlich recommends a new value of the solar constant of G,. = 1373 W/m?,
with a probable error of 1 to 2 percent. This is 1.5 percent higher than the
earlier value, and 1.2 percent higher than the best available determination of the
solar constant by integration of spectral measurements. Thus there remains
some uncertainty about the value of G, but the uncertainty is of the order of 1
percent. (As will be seen in Chapter 2, uncertainties in most terrestrial solar
radiation measurements are an order of magnitude larger than that.) In this
book we use the value of 1353 W/m?,

* Pyrheliometric scales are discussed in Section 2.2,

f

Spectral Distribution of Extraterrestrial Radiation 5

1.3 SPECTRAL DISTRIBUTION OF EXTRATERRESTRIAL RADIATION

In addition to the total energy in the solar spectrum (i.e., the solar constant)
it is useful to know the spectral distribution of the extraterrestrial radiation,
that is, the radiation that would be received in the absence of the atmosphere.
A standard spectral irradiance curve has been compiled, based on high altitude
and space measurements. This NASA/ASTM standard is shown in Figure 1.3.1.
The averaged energy G, , over small bandwidths centered at wavelength A
and the integrated fraction of the energy, f, _ ,;, at wavelengths less than A for the
standard curve are indicated in Table 1.3.1. This is a condensed table; more
detailed tables are available [e.g., see Thekaekara (1976)].

Example 1.3.1

Calculate the fraction of the extraterrestrial solar radiation and the amount
of that radiation in the ultraviolet (2 < 0.38 um), the visible (0.38 um < A < 0.78
um), and the infrared (4 > 0.78 um) portions of the spectrum.

Solution

From Table 1.3.1, the fractions f, _; corresponding to wavelengths of 0.38 and
0.78 um are 0.0700 and 0.5429 (interpolated). Thus, the fraction in the ultraviolet
is 0.0700, the fraction in the visible range is (0.5429 — 0.0700) = 0.4729, and
the fraction in the infrared is (1.0 — 0.5429) = 0.4571. Applying these fractions
to a solar constant of 1353 W/m? and tabulating the results, we have:

Wavelength range (um) 0-0.38 0.38-0.78 0.78-0

Fraction in range 0.0700 0.4729 0.4571
Energy in range (W/m?) 95 640 618 [ ]
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Figure 1.3.1 The NASA/ASTM standard spectral irradiance at the mean sun-earth distance and
a solar constant of 1353 W/m?2.
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Table 1.3.1 Extraterrestrial S(;lnr 7In'adiance (Solar Constant = 1353 W/m?)

i Gsc. a fo - lb A Gsc. la fo - },b A Gsc, Aa f;) - i.b
0.24 63.0 0.0014 0.47 2033 0.1817 1.0 748 0.6949
0.25 70.9 0.0019 0.48 2074 0.1968 12 485 0.7840
0.26 130 0.0027 0.49 1950 0.2115 14 337 0.8433
0.27 232 0.0041 0.50 1942 0.2260 1.6 245 0.8861
0.28 222 0.0056 0.51 1882 0.2401 1.8 159 0.9159
0.29 482 0.0081 0.52 1833 0.2538 2.0 103 0.9349
0.30 514 0.0121 0.53 1842 0.2674 22 79 0.9483
0.31 689 0.0166 0.54 1783 0.2808 2.4 62 0.9586
0.32 830 0.0222 0.55 1725 0.2938 2.6 48 0.9667
033 1059 0.0293 0.56 1695 0.3065 2.8 39 0.9731
034 1074 0.0372 0.57 1712 0.3191 30 31 0.9783
0.35 1093 0.0452 0.58 1715 0.3318 32 22,6 0.9822
0.36 1068 0.0532 0.59 1700 0.3444 34 16.6 0.9850
0.37 1181 0.0615 0.60 1666 0.3568 3.6 13.5 0.9872
038 1120 0.0700 0.62 1602 0.3810 38 1.1 0.9891
0.39 1098 0.0782 0.64 1544 0.4042 4.0 9.5 0.9906
040 1429 0.0873 0.66 1486 0.4266 4.5 59 09934
0.41 1751 0.0992 0.68 1427 0.4481 50 3.8 0.9951
042 1747 0.1122 0.70 1369 0.4688 6.0 L8 0.9972
043 1639 0.1247 0.72 1314 0.4886 7.0 1.0 0.9982
044 1810 0.1373 0.75 1235 0.5169 8.0 0.59 0.9988
045 2006 0.1514 0.80 1109 0.5602 10.0 0.24 0.9994
046 2066 0.1665 0.90 891 0.6337 500 39 x 107* 1.0000

* Gy, ; is the solar spectral irradiance in W/m? um averaged over a small bandwidth
centered at A.

® fo_ is the fraction of the solar constant associated with wavelengths shorter than A.
From Thekaekara (1974). '

1.4 VARIATION OF EXTRATERRESTRIAL RADIATION

Two sources of variation in extraterrestrial radiation must be considered. The
first is the variation in the radiation emitted by the sun. There are conflicting
reports in the literature on periodic variations of intrinsic solar radiation. It
has been suggested that there are small variations (less than + 1.5 percent) with
different periodicities and variation related to sunspot activities. Others con-
sider the measurements to be inconclusive or not indicative of regular variability.
Measurements from Nimbus and Mariner satellites over periods of several
months showed variations within limits of +0.2 percent over a time when sun-
spot activity was very low [Frohlich (1977)]. See Couison (1975) or Thekaekara
(1976) for further discussion of this topic. For engineering purposes, in view of

the uncertainties and variability of atmospheric transmission, and until reliable
f
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Figure 1.4.1 Variation of extraterrestrial solar radiation with time of year.

measurements indicate otherwise, the energy emitted by the sun can be con-
stdered to be fixed. -

Variation of the earth-sun distance, however, does lead to variation of extra-
terrestrial radiation flux in the range of +3 %,. The dependence of extraterrestrial
radiation on time of year is indicated by Equation 1.4.1 and Figure 1.4.1.

360n
365 |

where G,, is the extraterrestrial radiation, measured on the plane normal to the
radiation on the nth day of the year.

(1.4.1)

pamesmte i L o)

G,, = Gsc<1 + 0.033 cos

1.5 DEFINITIONS; SOLAR TIME
Several definitions will be useful in understanding the balance of this chapter.

Zenith Angle, 0, The angle subtended by a vertical line to the zenith (i.c., the
point directly overhead) and the line of sight to the sun.

Air Mass, m The ratio of the optical thickness of the atmosphere through
which beam radiation passes to the optical thickness if the sun were at the
zenith. Thus at sea level, m = | when the sun is at the zenith, and m = 2 for
a zenith angle 0,, of 60°. For zenith angles from 0° to 70° at sea level,

r m = (cos 0,)7!
For higher zenith angles, the effect of the earth’s curvature becomes significant

and must be taken into account. For a more complete discussion of air mass,
see Robinson (1966) or Kondratyev (1969).
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Beam Radiation The solar radiation received from the sun without having
been scattered by the atmosphere. (Beam radiation is often referred to as direct
solar radiation; to avoid confusion between subscripts for direct and diffuse,
we use the term beam radiation.)

Diffuse Radiation The solar radiation received from the sun after its direction
has been changed by scattering by the atmosphere. (Diffuse radiation is referred
to in some meteorological literature as sky radiation or solar sky radiation;
the definition used here will distinguish the diffuse solar radiation from radiation
emitted by the atmosphere.)

Total Solar Radiation The sum of the beam and the diffuse radiation on a
surface.* (The most common measurements of solar radiation are total radi-
ation on a horizontal surface, often referred to as global radiation).

Additional radiation terminology used in this book includes the following
terms:

Irradiance, W/m? The rate at which radiant energy is incident on a surface,
per unit area of surface. The symbol G is used, with appropriate subscripts,
for beam or diffuse radiation.

Irradiation or Radiant Exposure, J/m? The incident energy per unit area on a
surface, found by integration of irradiance over a specified time, usually an
hour or a day. (Insolation is a term applying specifically to solar energy irradi-
ation.) The symbol H is used for insolation for a day (or other period if specified).
The symbol [ is used for insolation for an hour. H and I can be beam, diffuse,
or total and can be on surfaces of any orientation.+

Radiosity or Radiant Exitance, W/m” The rate at which radiant energy leaves
a surface, per unit area, by combined emission, reflection, and transmission.

Emissive Power or Radiant Self Exitance, W/m? The rate at which radiant
energy leaves a surface per unit area, by emission only. The symbol E is used,
with appropriate subscripts.

Any of these terms, except insolation, can apply to any specified wavelength
range (such as the solar energy spectrum) or to monochromatic radiation.
Insolation refers only to irradiation in the solar energy spectrum.

* Total solar radiation is sometimes used to indicate quantities integrated over all wavelengths of
the solar spectrum.

t Subscripts on G, H, and I are as follows: o refers to radiation above the earth’s atmosphere, re-
ferred to as extraterrestrial radiation; b and d refer to beam and diffuse radiation; T and n refer to
radiation on tilted or normal planes. If neither T nor n appear, the radiation is on a horizontal plane.
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Figure 1.5.1 The equation of time, £, in minutes, as a function of time of year,

Solar Time Time based on the apparent angular motion of the sun across
the sky, with solar noon the time the sun crosses the meridian of the observer.

Solar time is the time specified in all of the sun angle relationships; it does not
coincide with local clock time. It is necessary to convert standard time to solar
time by applying two corrections. Firstg there is a constant correction for the
difference in longitude between the observer’s meridian location and the
meridian on which the local standard time is based*; the sun takes four minutes
to transverse 1° of longitude. The second correctiontis from the equation of time,
which takes into account the perturbations in the earth’s rate of rotation, which
affect the time the sun crosses the observer’s meridian.t Solar time is related to
standard time by

i
solar time = standard time +4 (L, ~ Lio) + E |

(1.5.1)

where E is the equation'of time from Figure 1.5.1 or Equatiéﬁ 1.5.2 [from
Whillier (1979)] in minutes, L, is the standard meridian for the local time zone,
and L, is the longitude of the location in question in degrees west.

E = 9.87sin 2B — 7.53 cos B — 1.5 sin B| (15.2)

* Standard meridians for continental U.S. time zones are Eastern, 75°W ; Central, 90°W ; Mountain,
105°W; and Pacific, 120°W.

t There may also be an additional 1 hr correction for daylight saving time.
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ﬁxample 1.5.1

At Madison, WI, what is the solar time corresponding to 10:30 AM. central
standard time on February 2?

Solution
In Madison, where the longitude is 89.4°, Equation 1.5.1 gives

solar time = standard time + 4(90 — 89.4) + E
standard time + 248 + E

]

On February 2, E is —13.5 min, so the correction to standard time is — 11 min.
Thus 10:30 A.M. central standard time is 10:19 A.M. solar time. B
Figure 1.6.1 Zenith angle, slope, surface azimuth angle and solar azimuth angle for a tilted surface.

In this book, all times are assumed to be solar times unless indication is given
otherwise.

s (g 1) 159 Lot coloe e LA
@ Hour angle, that is, the angular displacement of the sun east or west of
the local meridian due to rotation of the earth on its axis at 15° per hour,
morning negative, afternoon positive.
6 Angle of incidence, that is, the angle between the beam radiation on a
surface and the normal to that surface.

1.6 DIRECTION OF BEAM RADIATION

The geometric relationships between a plane of any particular orientation
relative to the earth at any time (whether that plane is fixed or moving relative
to the earth) and the incoming beam solar radiation, that is, the position of the
sun relative to that plane, can be described in terms of several angles (Benford
and Bock (1939)). These angles and the relationships between them are as
follows:

Zenith angle, slope, and surface azimuth angle are shown in Figure 1.6.1. The
declination, d, can be fognd from the equation of Cooper (1969):

284 + n)

(l6.1)

0 = 23.45 si _
sm(360 365

¢ Latitude, that is, the angular location north or south of the equator,
north positive. —90° < ¢ < 90°,

d Declination, that is, the angular position of the sun at solar noon with
respect to the plane of the equator, north positive. —23.45° < § < 23.45°.

f Slope, that is, the angle between the plane surface in question and the
horizontal. 0 < f < 180° (§ > 90° means that the surface has a down-
ward facing component).

y Surface azimuth angle, that is, the deviation of the projection on a
horizontal plane of the normal to the surface from the local meridian,
with zero due south, east negative, west positive.* —180° < y < 180°.

[ ——e—

I

3
where n is the day of the year; n can be conveniently obtained with the help of
Table 1.6.1 (or from Figure 1.6.3).

Thus at 2:30 p.M. solar time on October 15 at Madison (latitude 43°N) for a
surface tilted 45° from the horizontal and facing 20° west of south, ¢ = 43°,
n = 288, 6 = —9.60 (from Equation 1.6.1), B = 45°, y = 20°, and w = 37.5°.

The equation relating the angle of incidence of beam radiation, 6, and the
other angles is:

! . . . - i
| cos 0 = sin é sin ¢ cos B - sin J cos ¢ sin f cos y ‘
+ cos 6 cos ¢ cos ff cos w
+ cos d sin ¢ sin § cos y cos w

+ cos d sin B sin y sin w (1.6.2)

* The sign convention used here for y and w is the reverse of that in Solar Energy Thermal Processes.
This convention is consistent with Hottel and Woertz (1942) and other authors in the solar energy
literature. Either is correct; it is necessary to be consistent.
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Table 1.6.1 Recommended Average Day” for Each Month [from Klein (1976)]
and Values of » by Months '

For the Average Day of the Month

n for ith
Month Day of Month®  Date n, Day of Year® 6, Declination
January i 17 17 —-209
February 31+ 16 47 —130
March 59 +i 16 75 —-24
April 90 + i 15 105 94
May 120 + i 15 135 18.8
June 151 +i 11 162 23.1
July BERTI 17 198 212
August 212 + i 16 228 13.5
September 243 + i 15 258 22
October 273 + i 15 288 -9.6
November 304 + i 14 318 —189
December 334 + i 10 344 —-230

“ The average day is that day which has the extraterrestrial radiation closest to

the average for the month. See Section 1.8.
® These do not account for leap year; values of n from March onward for leap
years can be corrected by adding 1. Declination values will also shift slightly.

g—Example 1.6.1

Calculate the angle of incidence of beam radiation on a surface located at
Madison, WI at 10:30 (solar time) on February 13, if the surface is tilted 45°
from the horizontal and is pointed 15° west of south.

Solution
Under these conditions, the declination is — 14°, the hour angle is —22.5°,

and the surface azimuth angle is 15°. Using the slope of 45° and Madison’s
latitude of 43°N, Equation 1.6.2 is

cos 0 = sin(— 14)sin 43 cos 45
— sin{ — 14)cos 43 sin 45 cos 15
+ cos(— 14)cos 43 cos 45 cos(—22.5)
+ cos(— 14)sin 43 sin 45 cos 15 cos(—22.5)
+ cos(— 14)sin 45 sin 15 sin( —22.5)
cos 0 = —0.117 + 0.121 + 0.464 + 0418 — 0.068
cos § = 0.817

0 = 35° .
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- Additional angles are also defined. The solar azimuth angle y,, is the angular
displacement from south of the projection of the beam radlatho’n on the hori-
zontal plane, as shown in Figure 1.6.1. In architectural and illumination practice
other angles are defined, such as the profile angle and the solar altitude an le’
(90 — 8,). Care must be exercised in the use of any source of information on thegse
angles so that definitions and sign conventions are understood and followed

. Thf:re are several commonly occurring cases for which E uation 162'is
Slmghﬁed.‘.F or fixed surfaces sloped toward the south or north, that js x.vi'th
surface azimuth angle, y, of 0° or 180° (a very common situ;ltion f(;r ﬁxe;l

flat-plate collectors), the la
, st term drops out.”For vertical surf: = 90°
and the equation becomes = 'B"— 2

€08 8 = —sin & cos ¢ cos y + cos 6 sin é co;V ;;:‘;J L

+ cos J sin y sin @ (1.6.3)

he angle of incidence is the zenith angle

2)
For horizontal surfaces, f = 0°, and t
of the sun, 0,. Equation 1.6 becomes

cos 0, = cos & cos ® cos w + sin & sin ¢ : (1.6.4)

r Example 1.6.2

\ Calculate the zenith angle of the sun at Madison at9:30 on F ebruary 13,
Solution

For this date, declination is — 14°. From Equation 1.6.4

cos 8. = cos(— 14)cos 43 cos(—37.5) + sin(— 14)sin 43
cos §, = 0.398

0. = 66°
L E‘: Oo .

ces sloped to the north

. slope f to the north or
Ssl(:;lf;}::thatve the same angular relationship to beam radiatio”ﬁﬁas a horizontal
¢ at an artificial latitude of (¢ — B). The relationship is shown in F igure

1.6.2, for the northern hemisphere, Modifying Equation 1.6.4

s g

{ cos 0 = cos(((t) — B)cos § cos w + sin(¢ — B)sin § (1.6.5)

For the southern hemisphf:re the e ion i i
_ quation is modified b i -
(¢ + B), consistent with the sign conventions on ¢ and 5y replacing (¢ Pby

05 6 = cos(¢p + B)cos 6 cos w + sin(¢ + B)sin & (1.6.6)
Equation 1.6.4 can be solved for the sunset hour angle, w,, when 6. = 9(°
cos o, = — sin ¢ sin §
cos ¢ cos 6
| COS W, = — tan ¢ tan § (1.6.7)
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It also follows that the number of davlight hours is given by
. N =% cos™!(—tan ¢ tan 8) (1.6.8)

A convenient nomogram for determining day length has been devised by Whillier
(1965), and is shown in Figure 1.6.3. Information on latitude and declination
leads directly to times of sunrise and sunset and day length, for either hemi-
sphere.

. 8 9 10 11 12
Day length { winter -~
summer _a 16 15 14 13 12
Sunset hour winter  —= 4:00| 5:00 6:00
summer —s-MTTITIO T T T T T Y
8:00\
20 PN
10
: \
§ 0 / \ ‘Example
3 / \ Latitude 50°
3 / Declination 21°
\ Sunset 7:50 p.m. (summer)
—10 \ 4:10 p.m. {winter)
/ Day length 15.7 hr. (summer)
4 \ 8.3 hr. (winter)
—20
/ N \\
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Figure 1.6.3 Nomogram to determine time of sunset and day length. Adapted from Whillier,
Solar Energy 9, 164 (1965).

f

Direction of Beam Radiation 15

Solar azimuth and altitude angles are tabulated as functions of latitude,
declination, and hour angle by the U. S. Hydrographic Office (1940). Informa-
tion on the position of the sun in the sky is also available with less precision but
easier access in various types of charts. Examples of these are the Sun Angle
Calculator (1951) and diagrams in a paper by Hand (1948). (Care is necessary
in interpreting information from sources such as these, since definitions of
angles and sign conventions may vary from those used here.) Brooks and Miller
(1963) also present a discussion of these geometrical relationships.

Equation 1.6.2 is a generally applicable relationship for the angle of incidence
of beam radiation on a surface of any orientation, and reduces to simpler forms
for special cases such as horizontal surfaces (Equation 1.6.4) and vertical sur-
faces (Equation 1.6.3). By far the most common case is a surface tilted toward
the equator (Equations 1.6.5 and 1.6.6). There are other special cases of interest,
for example, the angle of incidence on planes which are moved in prescribed
ways. Some collectors are moved to track the beam radiation to varying
degrees.* In this section we show the forms of Equation 1.6.2 applicable to some
of the more common modes of tracking.

Tracking systems can be classified by the mode of their motion. Motion can be
about a single axis (which can be oriented east-west, north-south, or parallel
to the earth’s axis), or it can be about two axes. The following equations are
derivable from Equation 1.6.2, and apply to planes moved as indicated [see
Eibling et al. (1953)].

For a plane rotated about a horizontal east-west axis with a single daily
adjustment so that its surface-normal coincides with the solar beam at noon
each day,

cos § = sin? § + cos? & cos w (1.6.9)

For a plane rotated about a horizontal east-west axis with continuous adjust-
ment to minimize the angle of incidence,

cos § = (1 — cos? § sin? w)!/? (1.6.10)

For a plane rotated about a horizontal north-south axis with continuous
adjustment to minimize the angle of incidence

cos 6 = [(sin ¢ sin & + cos ¢ cos & cos w)? + cos? 8 sin? w]'?  (1.6.11)

For a plane rotated about a north-south axis parallel to the earth’s axis, with
continuous adjustment

cos 0 = cos § (1.6.12)

_ A two-axis tracking surface continuously oriented to face the sun will at all
times have

cosfl =1 (1.6.13)

* Tracking solar collectors are almost always of the concentrating type, which are discussed in
Chapter 8.
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of the two variables and found the best correlation to be with #/N, that is,
Equation 2.7.2. Cloud cover data are estimated visually, and there is not neces-
sarily a direct relationship between the presence of partial cloud cover and solar
radiation at any particular time. Thus there may not be as good a statistical
relationship between H/H, and C as there is between H/H, and 7i/N. Many
surveys of solar radiation data [e.g., Bennett (1965) and Lof et al. (1966)] have
been based on correlations of radiation with sunshine hour data. However,
Paltridge and Proctor (1976) have used cloud cover data to modify clear sky
data for Australia and derived therefrom monthly averages of H, which are in
good agreement with measured average data.

28 ESTIMATION OF CLEAR SKY RADIATION

The effects of the atmosphere in scattering and absorbing radiation are variable
with time, as atmospheric conditions and air mass change. It is useful to define
a standard “clear” sky, and calculate the hourly and daily radiation which
would be received on a horizontal surface under these standard conditions.
Hottel (1976) has presented a convenient method for estimating the beam
radiation transmitted through clear atmospheres which takes into account
zenith angle and altitude for a standard atmosphere and for four climate types.
The atmospheric transmittance for beam radiation, T, i Gpa/G, and is given
in the form

\ .
_ !
1, = a, + a;e % (2.8.1)

The constants a,, d,, and k for the standard atmosphere with 23 km visibility
are found from a*, af, and k*, which are given for altitudes less than 2.5 km by

e
13

i a¥ = 04237 — 0.00821 (6 — A)? (2.8.2)

‘ a* = 0.5055 + 0.00595 (6.5 — AP (28.3)
{

k* = 0.2711 + 0.01858 (2.5 — A)? j (2.84)

where A is the altitude of the observer in kilometers. Plots of these coefficients
are shown in Figure 2.8.1. (Hottel also gives equations for a¥, a%, and k* for a
standard atmosphere with 5 km visibility.)

Table 2.8.1 Correction Factors for Climate Types

Climate Type Fo ry A

Tropical 0.95 098 1.02
Mid-Latitude Summer 0.97 0.99 1.02
Subarctic Summer 0.99 0.99 1.01
Mid-Latitude Winter 1.03 1.01 1.00

¢ From Hottel (1976).
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Figure 2.8.1 Constants a¥, af, and k* for the 23 km visibility standard atmosphere. Adapted
from Hottel (1976).

Correction factors are applied to a¥, a¥, and k* to allow for changes in climate - a
types. The correction factors [ro = a,/a¥, ry = ay/at and r, = k/k*}are given 5 = q?
in Table 2.8.1. Thus, the transmittance of this standard atmosphere for beam K
radiation can be determined for any zenith angle and any altitude up to 2.5 km.

The clear sky beam normal radiation is then

Gcnb = Gon Tp (285)

where G,, is obtained from Equation 1.4.1. The clear sky horizontal beam
radiation is

Gy = G,,1,c08 0, | 286 (B
For periods of an hour, the clear sky horizontal beam radiation is
I,=1,7,cos8, (2.8.7)

r—Example 28.1

Calculate the transmittance for beam radiation of the standard clear atmosphere
at Madison (altitude 270 m) on August 22 at 11:30 a.m. solar time. Estimate the
intensity of beam radiation at that time and its component on a horizontal
surface.

.
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Solution

On August 22, n is 234, the declination is 11.4°, and from Equation 1.6.4 the
cosine of the zenith angle is 0.846.

The next step is to find the coefficients for Equation 2.8.1. First, the values
for the standard atmosphere are obtained from Equations 2.8.2-2.8.4 for an
altitude of 0.27 km:

a* = 0.4237 — 0.00821 (6 — 0.27)* = 0.154
a* = 0.5055 + 0.00595 (6.5 — 0.27)*> = 0.736
k* = 02711 + 0.01858 (2.5 — 0.27)* = 0.363
The climate-type correction factors are obtained from Table 2.8.1 for mid-
latitude summer. Equation 2.8.1 becomes
1, = 0.154(0.97) + 0.736(0.99)¢™ 0-363(1.02)/0.846
= 0.62

The extraterrestrial radiation is given by Equation 1.4.1. For the solar constant
of 1353 W/m? G, is 1325 W/m?. The beam radiation is then

G, = 1325 x 0.62 = 822 W/m>

The component on a horizontal plane is

! 822 x 0.846 = 695 W/m? [ |

It is also necessary to estimate the clear sky diffuse radiation on a horizontal
surface to get the total radiation. Liu and Jordan (1960) developed an empirical
relationship between the transmission coefficient for beam and diffuse radiation
for clear days: T

%
7, = 0.2710 — 0.29397, ! (2.8.7)

;
where 1, is G,/G, (or I,/I,) the ratio of diffuse radiation to the extraterrestrial
radiation on a horizontal plane. The equation is based on data for three stations.
The data used by Liu and Jordan predated that used by Hottel and may not be
entirely consistent with it; until better information becomes available, it is
suggested that Equation 2.8.7 be used to estimate diffuse clear sky radiation,
which can then be added to the beam radiation predicted by Hottel’s method
to obtain a clear day total. (For purposes of correlating radiation data, it is
necessary to have a well-defined standard (clear) day. This definition of a
standard clear sky radiation is used in later sections.)

These calculations can be repeated for each hour of the day, based on the
midpoints of the hours, to obtain the standard clear day’s radiation, H..

Example 2.8.2

Estimate the standard clear day radiation on a horizontal surface, for Madison,
on August 22.
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Solution

For each hour, based on the midpoints of the hour, the transmittances of the
atmosphere for beam and diffuse radiation are estimated. The calculation of 7,
is illustrated for the hour 11-12 (i.e., at 11:30) in Example 2.8.1, and the beam
radiation for a horizontal surface for the hour is 2.50 MJ/m?.

The calculation of 1, is based on Equation 2.8.7

73 = 0.2710 — 0.2939(0.62) = 0.089

The diffuse irradiance on the horizontal plane is obtained from G which on
August 22 is 1325 W/m?, and cos 6, for 11:30 is 0.846.

G4 = 1325 x 0.089 x 0846 = 100 W/m?

Gea = Gop® T » C0s Og E
Then the diffuse radlatlon for the hour 15 0.36 ]VI /m?, The total radiation on a
horizontal plane for the hour is 2.50 + 0.36 = 2.86 MJ/m?. These calculations
are repeated for each hour of the day. The result is shown in the tabulation.

1, MJ/m?
Hours T normal  horizontal 7, I.4MJ/m? I MJ/m?
11-12, 12-1 0.620 2.96 2.50 0.089 0.36 2.86
10-11, 1-2 0.608 2.90 2.31 0.092 0.35 2.66
9-10,2-3 0.580 277 195 0.101 0.34 229
8-9,3-4 0.531 2.53 1.44 0.115 0.31 1.75
7-8,4-5 0.445 2.12 0.87 0.140 0.27 1.14
6-7, 5-6 0.290 1.38 0.31 0.186 0.20 0.51
5-6, 6-7 0.150 0.72 0.03 0.227 0.04 0.07

The beam for the day, H,,, is twice the sum of column 4, giving 18.8 MJ/m?2. The
day’s total radiation, H_, is twice the sum of column 7, or 22.6 MJ/m?. [}

A simpler method for estimating clear sky radiation by hours is to use data
for the ASHRAE standard atmosphere. Farber and Morrison (1977) provide
tables of beam normal radiation and total radiation on a horizontal surface
as a function of zenith angle. These are plotted on Figure 2.8.2. For a given day,
hour-by-hour estimates of I can be made, based on midpoints of the hours.

Example 2.8.3

For August 22 for Madison, estimate the hour by hour insolation on a horizontal
surface for the ASHRAE clear sky.
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