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Orientation of gravity vector with X, 1, Z body-fixed axis system.
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X Axis

Fig. 4-1. Vehicle-fixed axis system and notation.

Applied forces

Velocities and moments Distances
Forward U X z
Side V Y y
Vertical w 7 z
Roll P L
Pitch Q M
Yaw R N
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1 Simulation of Aircraft Dynamics
Simulation of aircraft dynamics is based on the solution of the governing equations of motion.

Derivations of these equations are presented in standard textbooks on flight mechanics and air-
craft dynamics [1], [2],[3]. The equations have the general form

- - —d——o_ .—', — —)
F—mdtv—m (v+wxv)
M—dtH I o + o XH

H is the angular momentum, I is the inertia matrix. The aircraft is assumed to be a rigid body.
The forces F can be divided into steady state forces: lift, drag, thrust, aircraft weight and addi-
tional unsteady forces e.g. acrodynamic forces due to aircraft movements about the steady state
condition. The moments M can as well be divided into steady state moments and additional un-
steady moments which can again be aerodynamic moments due to aircraft movements about the
steady state condition. Furthermore, changes in thrust level or shifting of fuel or cargo in flight
can be a source of unsteady forces and moments.

2 Linear Simulation of Aircraft Dynamics

The linear simulation assumes small perturbations about an equilibrium or trimmed condition.
It can be shown that for this case, longitudinal and lateral motions are uncoupled [1], [2], {3].

21 Longitudinal Aircraft Dynamics
The State Equation

A linear system can be represented in state space notation. X is the state vector with perturbations
(deviation from the steady state or equilibrium condition) of the state variables. u is the control
vector. The control vector consists of control inputs from elevator and flaps. In this case also
disturbances from gust inputs are built into the control vector.! A is called system matrix or state
coefficient matrix and B is called control matrix. For a detailed query of the notation please refer
to the List of Symbols.

X = Ax + B u

Uu -6ET

w dF

X = q u = ug
[C] Wg

qs

1. EASYS5 allows only for the standard state space notation, therefore no extra disturbance term can be used.
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X, X» 0 —¢ Xse X3, ~Xu —Xw 0]
4 Z, Z, UO 0 B ZaE Zép —Zy —2Zy _Uo
= i, i1, 11, o = ity #,, — B, - i1, - A
00 10 00 0 0 —1]

The matrices A and B consist mainly of stability and control derivatives. The American notation
is applied here which uses dimensional stability derivative parameters. These stability deriva-

tive parameters lead to very compact equations. Uy is the steady state forward speed of the air-
craft. The “tilde”-stability derivatives are defined as follows:

M, = M, + M, Z,

M, = M, + M, Z,

~

My, = My, + Uy M,

MaE = M,

E

+ M, Z,,

The Output Equation

If other values than the state variables are of interest, they can be calculated by use of the output
equation. Values considered here are the angle of attack a, the flight path angle vy, the accelera-
tion in z-direction at the center of gravity a,cg and the corresponding load factor ngg .

w _ .
a=U—0 y =6 — a a, = w = Uy q
a,
Mew =

The output equation can be written as

y = Cx + Du

oh
a (SF
y = |7 u = U
a
Zeg Wy
9
[0 -1 0 0] -
U, 0 O 0 0 0
Cc = 141 p=]00 0 0 o0
0 UOO ZéE Zél«‘ _Zu Zw _UO
Z, 7,00
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A change in aircraft height can be obtained from an integration of c.g.—acceleration in the z—
direction.

ho= —a, h=jiidt h=J}idt

2.2 Lateral Aircraft Dynamics
Lateral aircraft dynamics follow the same mathematical approach as described for longitudinal

aircraft dynamics. Refer to the List of Symbols for queries related to the notation. Again, the
American notation using dimensional stability derivative parameters is used.

The State Equation

Aileron and rudder control the lateral dynamics of the aircraft. Gust inputs are again built into
the control vector.

X = Ax + Bu [0 ,,]
o
8 %
P u = 16
x =
r Pg
@ "¢
YV O - 1 g/UO -Y‘SA* Yék* - YV O 1 1
_ Lﬁ' Lp’ Lr, O _ LéA’ LéR' - Lﬁ' - Lp’ - Lr'
A - ! N 4 N' O B - ' ' ' ’ '
01 0 0 0o 0 0o -1 o |

The ‘primed‘ and ‘stared‘ stability derivatives are defined as follows:

L, = L, + L N N, = N, + !-’55 L

P P I, P P P 1, ™

’ -— IXZ ' IXZ
Lr = L,- + '1—- N, Nr = N, + 'I— Lr

X z

L' =L, + =N N =N, + 2
G4 84 I, "4 64 T T4 I, 04

’ — [XZ ’ - IXZ
SO R ) Noy = Nop + 77 Ly,
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Y; Ys
* = R * = .4
Yse T, Yss 7,
The Output Equation

Further values that could be of interest are the sideslip velocity v and the side-acceleration at
the centre of gravity ayce. They can be calculated by use of the output equation. The yaw angle
W and the load factor in y—direction can be calculated from yaw rate and side-acceleration as
given below.

g

y = Cx + D u

= dt = Da
L M = g
2.3 Linear Aircraft Simulation with EASYS

Fig. 1 shows the linear aircraft simulation as programmed with the Engineering Analysis Sys-
tem EASYS5. The left set of blocks is the simulation of longitudinal aircraft dynamics; the right
set of blocks is the simulation of lateral aircraft dynamics. Each set of blocks has a similar archi-
tecture. The left side of each set of blocks consists of the control and gust inputs to the aircraft.
FORTRAN code merely serves as a connector to the state equation. The states of the system as
defined in the x-vector can be obtained from this block. The control vector is multiplied with
the matrix D in the EASYS5 blocks MZ01/MZ02 to D*U. The state vector x and the vector D*U
are fed into the output equation. The output variables as defined in the vector y above can be
obtained from the EASYS5 blocks LINEAR SYSTEM OUTPUT. Further calculations are per-

formed in additional blocks. Table 1 provides a summary of inputs and outputs into and out of
the system.
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Table 1: Location of input and output in EASY5 simulation of linear aircraft simulation

EASYS block input
LINEAR SYSTEM system matrix A, control matrix B
LINEAR SYSTEM OUTPUT output matrix C
MZ01/MZ02 direct matrix D
GNO1 earth acceleration g
GNO2 earth acceleration g
EASYS block output
LINEAR SYSTEM state vector x
LINEAR SYSTEM OUTPUT output vector y
INO1 vertical speed (positive up)
INO2 height (change against steady state)
GNO1 normal load factor neg
INO3 yaw angle
GNO2 load factor nycg
24 Results from Linear Aircraft Simulation

Reference 1 provides many sample calculations for a conventional jet-propelled aircraft with
straight wings. The EASYS simulation was checked against the results givenin [1] for this ‘test
aircraft. The EASYS5 results virtually agreed exactly with the published results. This should not
come as a surprise since the linear aircraft simulation as programmed here uses the same math-
ematical approach. The eigenvalues are given in Table 2. The other simulation results are given
in Fig. 2 through 20.

Table 2: Eigenvalues calculated by EASY5 for ‘test‘ aircraft from Ref. 1

mode natural frequency ® damping ratio ¢
short period 427 0.493
phugoid 0.0629 0.0717
dutch roll 1.88 0.0247
spiral mode 1T = -0.00136
roll subsidence yr = 178
3 Nonlinear Simulation of Aircraft Dynamics

This nonlinear approach followed here is only nonlinear in so far as the equations of motions
are concerned. In contrast, the aecrodynamic forces and moments are still linearized using stabil-
ity and control derivatives which are only valid for a selected operating point. From [3]:
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m-[U + QW — RV + g sin@]
m'[V + RU — PW — g cos@® sin(b]

= m'[W + PV — QU - g cos@ cos<P]

NN~ X
I

=PI, - I, (R + PQ) + (I, — I,) QR
M = QI + I, (P> — R} + (Ix — L) PR
N

=R, — I P+ PQ (I, — L,) + I, QR

These equations of motion have to be solved for the highest derivative of the state variables:
U, V., W, P, Q, R to enable integration by EASYS. With respect to the aerodynamic
forces, only the linearized and perturbed forces and moments x, y, z, 1, mj, n are considered.
Note, the steady state lift force —m g. This aerodynamic force in the negative z-direction in an
aircraft fixed reference system has to be taken into account in addition to the perturbed force
to counter gravity.

U =2% - QW + RV - gsin®
V = -,% — RU + PW + gcosO - sin®
W =% — PV + QU + gcos® -cosd — g
I,

Pom =t (Bl - re -1 - LooR] ¢ Lore - (-1 0R)
Q = I_Iy"(ml = Iy (P2 - R2) - (Ix - Iz) PR)
R=——1————-(n+l—"’[1+1 PQQ(I—I)QJQ]—pQ(I - 1) - 1 QR)

I:—IZz/x Ix = g y y * i

Furthermore, from the angular orientation of the gravity vector in the aircraft’s fixed reference
system, equations for the aircraft’s pitch and roll attitude can be derived [3]:

©® = Q cos® — R sind

& = P + R tan® cos® + Q tan® sind

There is no difference between derivatives from perturbed and unperturbed variables;
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u = U v =V w =W 6 = 6
p =P g = 0 F = R ¢ = @

Therefore the perturbed or unperturbed derivatives of the state variables can be used for integra-
tion to yield the perturbed state variables. The unperturbed state variables are obtained by ad-
ding the initial conditions:

( (
U=(L'ldt+Uic V=J1"dt+Vic W=JWdt+Wic
([ ( (
J J
6=Jédt+6w ¢=J‘¢dt+d>,.c

The perturbed forces and moments x, y, z, 1, m1, n are calculated from stability and control de-
rivatives:

(Xuw + Xow + X, 85 + X, 0)
y =m(va+YaA‘sA+YaR6R)

2= m(Zou + Zyw + Z, 0 + 2, 6
D= L (Lov + Lyp + Lo+ Ly 8, + Ly o)

m, = I (Mu u + M, w + M, [% — PV + QU + gcos@cosd - g]
+ Mg q + My 85 + M o)

n=12(va+Npp+N,r+N(,A6A+N(,R6R)

31 Nonlinear Aircraft Simulation with EASYS

Fig. 21 shows the nonlinear aircraft simulation as programmed with the Engineering Analysis
System EASYS. The left set of blocks generates inputs from elevator, flaps, rudder and ailerons.
Gust inputs are omitted for sake of simplicity. The simulation itself is written in FORTRAN,
split up into two EASY5 blocks for clarity. The first block calculates the aircraft aerodynamic
forces and moments from stability and control derivatives as given above. The second block
calculates the rate of change of the state variables. The state variables are defined as such in the
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FORTRAN block and are automatically integrated by the chosen EASY5 integration algorithm
by use of the corresponding rates. The DERIVATIVE OF statement is used in EASYS5 to define
the states:

DERIVATIVE OF, U =X/M - Q*W + R*V - G*SIN(TH)

32 Results from Nonlinear Aircraft Simulation

The nonlinear simulation was checked against the results obtained from a linear simulation of
the same aircraft. The aircraft used for this check was the DC3. DC3-data was taken from [1].
No differences to three significant digits were observed in the eigenvalues calculated by
EASYS5.2 Results are listed in Table 3. It can be concluded, that under normal circumstances
(small angles) there are no benefits in using the nonlinear approach. DC3-response to an elev-
ator input is shown in Fig. 22 and 23. The simulation was done using the nonlinear approach.

Table 3: Eigenvalues calculated by EASY5 for DC3 with data from Ref. 1

Linear Simulation and Nonlinear Simulation

mode natural frequency o damping ratio ¢
phugoid 0.201 0.201

dutch roll 1.10 0.323

short period 1/Ty=1.25 1/T=331

spiral mode /T = -0.043

roll subsidence T = 657

Note: The DC3 short period mode has two real roots

4 Example of Closed Loop Simulation of Aircraft Dynamics

Fig. 24 shows an example of an EASYS5 simulation applying the linear model for longitudinal
aircraft dynamics in conjunction with a controller and a hydraulic actuator. The simulation bene-
fits from the many EASYS5 features for system analysis. These are mainly:

2. EASYS5 calculates the eigenvalues of a nonlinear system from the system matrix A. The state variables are
at their steady state condition when the A-matrix is obtained by linearization.
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Linear Model Generation Analysis,

Transfer Function Analysis (Bode, Nichols, Nyquist),
Root Locus Analysis,

Eigenvalue Sensitivity Analysis,

Stability Margin Analysis.
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APPENDIX: HOW TO FIND STABILITY AND CONTROL DERIVATIVES

If stability and control calculations have to be done for an
aircraft (the prototype) for which no stability and control
derivatives exist, two general approaches are possible:

Approach 1 Calculate derivatives from the "Aerodynamic Data
Base" (for MPC75 the Aero Data Base has the
Reference Number EF-T-0/014) by use of the
definition of the stability and control
derivatives (e.g. from Ref. 1).

Approach 2 Estimate derivatives from the known geometry of
the aircraft using empirical data presented in
form of figures and equations.

Approach 2 Use an aircraft (model) for which derivatives are
known and estimate the desired derivatives of the
prototype.

Approach 2 is explained in

1.) Roskam, J.: Methods for Estimating Stability and Control
Derivatives of Conventional Subsonic Airplanes, Roskam
Aviation and Eng. Corp., 1971.

2.) Roskam, J.: Airplane Flight Dynamics and Automatic
Controls, Part I and II, Roskam Aviation and Eng. Corp.,
1982.

3.) Roskam, J.: Airplane Design, Part IV, Roskam Aviation and
Eng. Corp., 1989.

Here basic nondimensional stability and control derivatives are
calculated (C, Ca, -..) which can be wused to calculate
dimensional stability and control derivative parameters (L,, M.,
...) from their definition as given in Ref.1l Table 4-3 and 4-4.
This approach is rather cumbersome. The program AAA (Advanced
Airplane Analysis, by: Design, Analysis and Research Corporation,
DARCorp, 120 East Ninth (Suite2), Lawrence, Kansas 66044, USA)
helps to speed up this process (which is still not easy).

If therefore stability and control derivatives are known for an
aircraft with similar geometry approach 3 might lead faster to
results.

Approach 3 assumes strictly speaking geometric similarity (model
and prototype differ just by a constant scale factor) and dynamic
similarity of the flow. For an aircraft this means that first of
all the Reynolds number (Re) and the Mach number (M) must be
identical for model and prototype. As known from model studies,
it is only seldom possible to match all requirements. E.g. to
deduce the behaviour of a larger prototype from a smaller model
in the same medium, the model would need to fly at higher speed
which would at the same time change the Mach number.




In the following, constant Reynolds and Mach numbers are assumed,
although it is clear that these assumptions can generally not be
nmet.

Nomenclature
model: subscript: ,
prototype: subscript: ,

scale factor: r = lengthy/length,

mass: m
air density: p
A/C speed: U
(Jo/ ( at ratio of derivatives, prototype / model

e.g. (Xy)p / (Xi)nm

kl = Eﬂ'ﬁg'_lji rz
mp Pm Um

3 = Ma. P ..
mp Pm
k4 = ﬂ"O&'& 1‘3
m, Pn U,
K5 - Tn.Pp. U,
mp Pm Um
x6 = M. Pp.
m, p,



(o / () factor (J)o/ ( )m factor

Xy k1l Yy k1
X, k1 Y. k3
X4 k2 Y, k3
Zu k1 Yy k1
Z. k1 Ny k7
Zy k3 N, k1
Zq k4 N, k1
24 k2 Ny k7
M, k5 Ly k7
M, k5 Le k1
M, k6 L, k1
M, k1 Ly k7
My k7
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