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Abstract

This paper presents an approach for the steady state calculation of hydraulic power
systems. The Linear Theory Method with p-g-Equations is selected. It allows the
calculation of networks that may form general loops. A set of equations can be generated
automatically from the topology of the hydraulic system. Energy converting components
are calculated separately from the network. However, the energy converting components
show their influence on the network calculation by way of their boundary conditions. The
work presented led to the programming of a computer tool called ICaROS (Interactive
Calculations of Hydraulic Power Systems). This tool showed the feasibility of the
proposed methodology.
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1 Nomenclature

A reference area in component [m?]
C ; linearised conductance, Eq. (7), (10)

K bulk modulus [bar]
K. damping coefficient [-]

n exponent: Ap = R_- Q. (-]

P, p pressure in node [bar]
Ap corrective pressure at node [bar]
Ap, pressure loss in component [bar]
q. 4, external flow into node [1/min]
Q, 0, internal flow through component [l/min]
AQ corrective flow in loop or pseudo loop [/min]
R, resistance, Eq. (15)

R j linearised resistance, Eq. (9)

Re Reynolds number (-]

14 oil volume in component [m?]

p “density [kg/m?]
4 restistance coefficient [-]

\Y kinematic viscosity [m?/s]

2 Introduction

Some fluid power systems show already in the preliminary design phase a considerable
complexity. Easily, the designer can get lost in system details and an enormous amount of
data. Here, a steady state calculation can help to get quickly an understanding of the
dependence between main system parameters. The relationship between external
parameters (actuator loads, actuator speeds) and internal parameters (pressures in nodes,
flows through components and pressure losses in components) becomes quickly apparent
in a steady state calculation. Furthermore, less input data is required to perform the
calculation compared with a dynamic simulation. Obviously, even for small hydraulic
systems the numerical demand of a steady state calculation surpasses by far the
possibilities of a hand calculation. Consequently, a computer implementation is imperative
and led to the programming of a computer tool based on the theory presented. Calculations
with the computer tool helped to prove the feasibility of the proposed methodology. The
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chosen approach is a general one and the results can be used for any fluid power system
for which the assumption of internal, one dimensional, incompressible, single phase flow
is appropriate. The direct steady state calculation of hydraulic power systems is an
extension of methodologies already well established for the steady state calculation of
hydraulic distribution systems. Hydraulic distribution systems can be categorised in this
way as a subset of hydraulic power systems.

3 Network Fundamentals

3.1 Type of Networks

Hydraulic networks can be grouped into different categories:

® serial networks,

] branching networks,

° parallel-serial networks,
° general looped networks.

Serial networks consist simply of hydraulic elements connected one after the other.
Generally they have one source (node with known pressure), one sink (node with an
unknown pressure) and more intermediate nodes (nodes with no external flow).
Branching networks are tree-like networks without any loops. Usually they have one
source, intermediate nodes and more than one sink. Parallel-serial networks consist of
combinations of elements and subassemblies connected either in series or parallel. In
contrast to branching networks they can form loops but these loops can easily be solved by
combining parallel and serial elements. General looped networks can contain multiple
sources and bridge connections. The steady state calculation of serial, branching and
parallel-serial networks is usually straight forward [STREETER 85]. The steady state
calculation of general looped networks, however, requires special methods.

3.2 Network Equations

Direct steady state calculations of general looped networks for hydraulic power systems
are all based on nonlinear or linearised node equations

=0
2}; 0, (1)
and/or loop equations

Xx: Ap. =0 . @)
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These equations form the base for the network equation known as

® (O-Equations (based on flows in components / node and loop equations),

® p-Equations (based on the pressure in all sinks / node equations),

® AQ-Equations (based on corrective flows in basic and pseudo loops / loop equations),
® Ap-Equations (based on corrective pressures in each sink / node equations).

These equations have been presented in detail in [SCHOLZ 95].

3.3 Algorithms for Direct Hydraulic Steady State Calculations
A general hydraulic network is described by a set of nonlinear equations as named above.
This set of nonlinear equations can only be solved iteratively. Three approaches have been
used extensively:

e the Hardy-Cross-Method,

° the Newton-Raphson-Method,

° the Finite-Element-Method also known as Linear-Theory-Method.

The result of an investigation and comparison [BHAVE 91], [SCHOLZ 95] showed the
Linear Theory Method to be superior to the other methods.

3.4 Other Approaches to Obtain Hydraulic Steady State

Solutions
In principle, a steady state solution of a hydraulic system can also be obtained from a
dynamic simulation after simulating for such a long time that all transients have vanished.
Two different approaches to a dynamic simulation are commonly used:
] A dynamic simulation can be based on the continuity equation from which the
pressure build-up in each component is calculated:

p - % ) ( ZQin - EQ()M!) ) (3)

In order to obtain a steady state solution, the input signal has to be a low-gradient
ramp input or a sequence of small steps. [LI 93] reports that a high computational
effort is required by this approach to calculate a steady state solution compared to
the direct steady state calculation. [HOFFMANN 81] experienced continuous
oscillations with systems characterised by low damping which precluded the
dynamic simulation from reaching a steady state solution in due time.

. A dynamic simulation can be based on the momentum and continuity equation in
each tube of the system. This yields a pair of hyperbolic partial differential
equations that are transformed by the method of characteristics. The finite
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difference method is then applied to solve the characteristics [WYLIE 93]. The
speed of sound accounts for the propagation of the pressure waves in the tubes.
With selection of a smaller speed of sound, the steady state solution is not altered,
but convergence on the steady state can be achieved faster. Nevertheless,

[BHAVE 91] concludes
... it is inefficient to employ the unsteady flow approach for steady state problems
because the unsteady approach takes considerably more computational effort
and time and has convergence problems.

4 p-g-Equations Solved by the Linear-Theory-
Method

4.1 p-g-Equations

The so-called p-g-Equations are modified p-Equations. p-g-Equations solve for unknown
external flows g simultaneously with unknown nodal pressures p. In contrast, p-Equations
require unknown external flows g to be calculated separately from the nodal pressure p.
For that reason, applying p-g-Equations, nodes may exist with unknown external flow and
unknown nodal pressure as long as the whole network remains solvable [SCHOLZ 95].
Unfortunately, as a result p-g-Equations produce a larger system of equations. In contrast
to loop equations, node equations, like p-g-Equations, lend themselves much more readily
for modern computer applications with an interface allowing interactive graphic
manipulations of the network and automatic generation of the system of equations.

p-q-Equations are written for every node in the system. Detailing Equation (1):
k
E Qx + (]j. = 0, for all nodes j = 1, .,J . @

x=1

The J nonlinear equations are used to solve for N unknown pressures p and M unknown
external flows g. With

1
p,'_pj n
R

X

Q, = )

Equation (5) can be written as

1
Py ~ Py
Z (————ﬁj-) "oy qj =0, for al nodesj (6)

i connected with j by x R x
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Usually n = 2 is chosen. Introducing the linearised conductance
I

I Ip,' - P j| "

Cp = —— )

R"l

X

-1

converts the set of nonlinear equations into a set of linear equations

E C; (pl. - pj) + qj =0, for all nodesj =1, .. (8)

4.2 Initialisation of the Iteration

Since C ; depends on the unknown p, , the system of equations can only be solved
iteratively. The linearised conductance C ; has to be guessed for the first iteration step. The
Linear Theory Method converges no matter which start-up values were selected. A good
guess, however, speeds up convergence. With the linearised resistance

R, =R, |0 /" )

the linearised conductance can be obtained from

/ 1

C, = = ol ol | (10)

Initialisation of C ; with Equation (10) can be done by automatically specifying for each
component either

L an initial flow Q [ISSACs 80],
) an average flow velocity v [ISSACS 80] and hence O = v, - d? - 7w/ 4,
L a Reynolds number Re [COLLINS 75] and hence Q = 1/4 - Re - d - v

4.3 Damping of the Iteration

From the second iteration step onwards, the linearised conductance .,C x/ for the Iteration
step f + 1 is calculated form
1

ol )"
C, = lj . (11)

R
It has been observed [COLLINS 75] that the linearised conductance can oscillate about the
correct value during the iteration. By introducing a damping factor K. , convergence can

be reached faster. A linearised conductance (,q),,-,,Cx/ for entering iteration ¢ + 1 is then

-1
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calculated from a linearised conductance at the beginning ( ,_,-,,CX/ ) and at the end
( rowC x/ ) of iteration ¢

/ / / /
(I+I),ian = t.outcx + KC : (t,incx - t,outcx) . (12)

The damping factor is defined in the range 0 < K. < 1. [ISSACS 80] and [COLLINS 75]
propose K. = 0.5. Own calculations indicate that usually K. < 0.5 produces faster
convergence.

4.4 Automatic Generation of a Set of p-g-Equations

For generating a set of p-g-Equations, in Step 1 a system of equations is generated based
on Equation (8). In Step 2 the system of equations is sorted for known and unknown
values.

Step 1: Generation of the unsorted set of equations.

The unsorted set of equations has the form A, x, = b,. A, is called the system matrix and

is composed of the linearised conductances. X, includes the pressures andb, includes the

external flows of each node. Three rules can be formulated which allow the generation of
the unsorted set of equations:

] The elements on the main diagonal a;; with i = j are calculated as sum of the
conductances of those elements which meet in node i .

. The off-diagonal elements a;; with i # j are zero if node i and j are not connected.
Otherwise, the elements a; are equal to the negative value of the linearised
conductance connecting nodes i and j .

. The system matrix is symmetrical.

The set of equations can hardly be solved directly because a pressure p; has to be known

for at least one node in a hydraulic network and also an external flow ¢g; has to be unknown

for at least one node.

Step 2: Dividing known and unknown values.
The set of equations has to be sorted in such a way that know and unknown values are
properly divided. From A, x; = b, it is generated A, x, = b, . For the formalised
procedure of dividing known and unknown values, again a set of rules can be formulated
which allows the generation of the sorted set of equations A, x, = b, .
° Generation of vector x,:
X, includes the J unknown of the system. The first N lines of vector x, are
allocated to the N unknown pressures p in the same sequence as allocated in the
vectorx, . The remaining M lines of vector x, contain the M unknown external
flows g in the same sequence as allocated in vector b, .
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. Generation of matrix A, :

o The N columns of the system matrix A, which are allocated to the unknown
pressures are taken as columns 1 to N in matrix A, .

0 The remaining M columns N + 1 to J in matirx A, are allocated to the
unknown external flows according to the ordering in vector X, . Each of
these columns of matrix A, contains -1 in the line that was originally
occupied by the external flow ¢ in vector b, . The remaining lines of
column N + 1 toJ in matirx A, are set to zero.

° Generation of vector b, :

0 A vector b, with J lines is generated. If the line of the original vector b,
was occupied with a known external flow, then this external flow is also
carried over into vector b, . The remaining lines are set to zero.

0 Based on matrix A, a matrix A", is generated that only includes the columns
of known pressures and preserves the sequence of columns in A, .
0 The vector x, is converted into a vector X, with N lines that include the
known pressures.
o The vectorb, is calculated from
b, =b -A - X, - 13)

4.5 Solving the Set of Equations

The set of equations
2 14)

can now be solved. Gaussian elimination with scaling and partial pivoting is the fastest
method for systems with up to 100 equations. For bigger systems an iterative procedure
can be faster [HOFFMAN 92]. Relaxation methods require however a diagonal dominant
matrix. A diagonal dominant matrix can be generated if the nodes in the hydraulic system
are internally renumbered in a way that adjacent nodes 1 and j will be allocated numbers i,
Jjwith 17 - jlis as small as possible.

The linearised resistances R ; (Equation (9)) and conductances C; (Equation (10)) depend

on the flows Q through the components. Consequently, the linearised conductances have

to be recalculated after each step during the iteration:

. Constant resistances: C ; can simply be recalculated using Equation (11).

® Resistances with a variable resistance coefficient {: The Reynolds number is
calculated from the new internal flows Q . The resistance coefficient { is calculated

depending on the way the component is modelled (see below). R is calculated
from
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R,=¢ —F (15)

andR ; from Equation (9) and finally C; again from Equation (10).
] Components that are characterised by a Ap-Q relationship: C; is calculated from

cl=0/6p . (16)

The system matrix A, is provided with these new conductances and the set of equations is
solved again.

The iteration concludes if a minimum number of iterations have been performed and the
unknown pressures and external flows being calculated do not change significantly
anymore from one iteration to the next one:

(Mx]. - txl.)
i lmax

f+lx|>
i

<€ . 17)

5 Integration of Hydraulic Components

So far, in the method presented, components have only been considered as generic
components. In reality components have to be modelled individually depending on their
physical appearance and the amount of information being available to model the
components.

5.1 Resistance Components

Simple hydraulic resistances are tubes, bends, orifices, contractions and expansions. These
components are characterised by a resistance coefficient (. The Resistance R _is calculated
from Equation (15). The resistance coefficient depends only on the geometry of the
component and the Reynolds number. The empirical relationship between geometry,
Reynolds number and resistance coefficient can be taken from handbooks like
[IDEL’CHIK 94].

In practice many components exist which have a unique shape so that hydraulic
characteristics cannot be obtained from handbooks. Various models for the resistance of
these components can be applied to incorporate the measurements that often exist with
different level of detail:
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° Modelling a {-Re-relationship by

o a constant {-value,
o a spline { =f(Re) ,
0 calculating ¢ according to [WILL 95] from ¢ = k, / Re + k,.

Evaluation: R from Equation (15) and C; from Equation (11).
o Modelling a Ap-Q relationship by
0 a spline Ap =f(Q)
evaluation: CX/ =Q/ Ap
0 apair (Ap,... 5 Quom) )

evaluation: R_= Ap /1 Q. , Cx/ = const  from Equation (11).

5.2 Valves

Implementation of Check Valves, Pressure Relief Valves, and Priority Valves. The
steady state characteristics of the valves are entered into the program in form of Ap-Q-
diagrams. Additionally, the opening pressure is required. For a pressure differential
greater than opening pressure, the valve is treated like a normal hydraulic resistor. In the
other case, the modified conductance C ; is set to zero.

Implementation of Four-Way Servo Valves. A servo valve can be modelled from four
variable hydraulic resistors in bridge connection. These four variable hydraulic resistors
can automatically be generated by the computer according to the selected valve opening.
The required valve opening is either given or can be iteratively determined (if e.g.
hydraulic systems are tested by demanding certain motor speeds and actuator piston
velocities at given loads). In the latter case, the first iteration starts at maximum valve
opening. If the resulting actuator speed is less than required, no practical solution is
possible. Otherwise, the valve setting will automatically be reduced to achieve the
demanded actuator speed at given load.

5.3 Energy Converting Components

For fluid power systems, energy converting components can be modelled with a high
degree of flexibility if the energy converting components are calculated separately from
the rest of the network and merely the interface to these components with the remaining
system is managed. This will be demonstrated for some selected components:

Implementation of Pumps. Five different pump models are considered:
1.) pumps with constant overall efficiency;
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2.) pumps with variable overall efficiency depending on the pressure increase over
the pump, Ap, and pump speed n calculated from n = f(Ap, n) ;

3) pumps described by Ap-Q-diagrams;

4.) Bavendiek-modelled pumps [BAVENDIEK 87] with the efficiency depending
further on oil viscosity v and swashplate setting .: n = f(n, Ap, v, @) ;

5. pressure regulated pumps.

4 T ps = known T ps = known

2 Iil p2 =7
1 IL p; = known Jl p: = known
Q=7 q1 =7

Fikgure 1: Purhb CutOffa Simple Network for Sﬁepérat'e Calculation

Figure 1a shows a pump in a simple network. The pump is connected on both sides to a
pipe. Let us assume that node 1 and 4 are linked to a reservoir. Hence, the pressure in node
1 and node 4 are known, however, the external flows are unknown. The pump is now
taken off the system and considered separately. Two separate networks emerge with two
new boundary nodes. For pump models 1.) through 4.), these new nodes are taken as
having unknown pressure. Assuming no external leakages, effective outlet flow must equal
effective inlet flow: g, = - q, (Figure 1b). For each iterative step during network
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calculation, a procedure as follows is initiated:

1.) calculate a new pump efficiency n depending on the pump model (for the first
iteration an efficiency will be assumed);

2.) calculate an effective pump flow @, from pump efficiency, pump displacement,
and pump rotational speed;

3) set external flows on new boundary nodes: g; = @, and g, = -g;

4.) calculate Ap for the next calculation of pump efficiency; .

5.) perform the next iteration step of the network calculation.For pressure regulated
pumps, p, and g, in Figure 1b are considered to be known with ¢, = - Q.

Accordingly, the calculation procedure changes slightly. O, and pump outflow
pressure p, taken from the last two iterations are averaged. This introduces
damping to the iteration and ensures a stable solution.

Implementation of Hydraulic Motors. Three different motor models are considered:

1) motors with constant efficiency;

2.) motors with variable efficiency depending on pressure drop Ap and motor
speedn: 1 = f(Ap, n) ;

3) Bavendiek-modelled motors [BAVENDIEK 87] with efficiency depending further
on oil viscosity v and swashplate setting &.: 1 = f(n, Ap, v, o) .

Again, this component is calculated separately from the rest of the network. At motor

outlet, the external flow g, of boundary node 3 and at motor inlet pressure p, are

considered to be known. For each iterative step during network calculation, a procedure as
follows is initiated:

1.) calculate a new motor overall efficiency 1 depending on the motor model (for the
first iteration an efficiency will be assumed);

2.) calculate an average outlet pressure p; from the last two iterations; calculate motor
inlet pressure p, from outlet pressure and required differential pressure Ap due to
motor loading;

3) set ¢, = - g, and effective flow O, = ¢, ;

4.) calculate motor speed n from effective flow Q. , motor displacement, and
volumetric efficiency;

5.) calculate the required differential pressure Ap (used in Step 1) from
hydromechnical efficiency, effective torque, and geometric displacement;

6.) perform the next iteration step of the network calculation.

The calculation of linear actuators follows the same principles as given for the hydraulic

motor.
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6 The Program ICaROS

ICaROS stands for Interactive Calculations of Hydraulic Power Systems. ICaROS was
programmed to check the ideas presented in this paper. The program can be used in batch
operation with input files describing the hydraulic system and ist components in question.
A much more intuitive access to the program can be obtained by using the graphical user
interface that allows a graphical and direct manipulation of the hydraulic system being
considered. A screen shot of the ICaROS user interface is given in Figure 2.

L

31
[ VA
Vorrangventi Lextung 8lende ‘ B

Figure 2: ICaROS GraphlcaIUserInterface

7 Conclusions

This paper has presented an approach for the steady state calculation of hydraulic power
systems. A steady state calculation is useful to get a first overview of system parameters
with little input data requirements. The Linear Theory Method was selected for the
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calculation of networks forming general loops. A set of equations can be generated

automatically from the topology of the hydraulic system. Energy converting components

are calculated separately from the network calculation. However, the energy converting

components influence the network calculation by means of their boundary conditions. The

feasibility of the proposed approach has been tested with a computer program called

ICaROS.
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