Dieter Scholz:

Aircraft Systems

In: M.F. Platzer, B.N. Agrawal (Ed.): Standard Handbook for Aerospace Engineers.

Pages 13-112. McGraw-Hill and SAE International, New York, 2018

- ISBN: 978-1259585173
- Hardcover: 1392 pages
- 1500 illustrations
- Publisher: McGraw-Hill Education together with SAE International
- 2nd Edition (2018-02-26)
- Language: English

First Edition:

- Publication date: 2002-10-10
- Copyright: 2003
- M. Davies (Ed.)
- Title: The Standard Handbook for Aeronautical and Astronautical Engineers
- ISBN: 978-0071362290

Description

This resource presents theories and practices from more than 50 specialists in the many sub-disciplines of aeronautical and astronautical engineering. The book contains complete details on classic designs as well as the latest techniques, materials, and processes used in aviation, defense, and space systems.

Table of Contents: Futures of aerospace --- Aircraft systems (SCHOLZ, Dieter) ---Aerodynamics, aeroelasticity, and acoustics --- Aircraft performance --- Aircraft flight mechanics, stability, and control --- Avionics and air traffic management systems ---Aeronautical design --- Spacecraft design --- Astrodynamics --- Rockets and launch vehicles --- Earth's environment and space --- Attitude dynamics and control.

URLs

McGraw-Hill:

https://www.mheducation.ca/professional/products/9781259585173

SAE International:

https://www.sae.org/publications/books/content/jp-mgh-001/

Amazon (**preview**): <u>https://www.amazon.com/dp/1259585174</u> (Hardcover) <u>https://www.amazon.de/dp/1259585174</u> <u>https://www.amazon.com/dp/B079KMCWJC</u> (Kindle) <u>https://www.amazon.de/dp/B079KMCWJC</u>

WorldCat, the largest library catalog: http://www.worldcat.org/oclc/1048241673

Access for university subscribers: <u>https://www.accessengineeringlibrary.com/browse/standard-handbook-for-aerospace-engineers-second-edition</u>

Standard Handbook for Aerospace Engineers

Brij N. Agrawal Editor Max F. Platzer Editor

Second Edition

New York Chicago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto

Library of Congress Control Number: 2017957635

McGraw-Hill Education books are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Standard Handbook for Aerospace Engineers, Second Edition

Copyright © 2018, 2003 by McGraw-Hill Education. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 LCR 23 22 21 20 19 18

ISBN 978-1-259-58517-3 MHID 1-259-58517-4

The pages within this book were printed on acid-free paper.

The first edition of this book was titled *The Standard Handbook for Aeronautical and Astronautical Engineers*.

Sponsoring Editor	Project Managers	Proofreader
Robert Argentieri	Anubhav Singh and	Barnali Ojha,
Editing Supervisor	Sonam Arora, Cenveo [®] Publisher Services	Cenveo Publisher Services
Stephen M. Smith		Art Director, Cover
1	Copy Editor	Jeff Weeks
Production Supervisor	Surendra Shivam,	2
Pamela A. Pelton	Cenveo Publisher Services	Composition
Acquisitions Coordinator		Cenveo Publisher Services

Lauren Rogers

Information contained in this work has been obtained by McGraw-Hill Education from sources believed to be reliable. However, neither McGraw-Hill Education nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw-Hill Education nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill Education and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

Contributors

Brij N. Agrawal Distinguished Professor, Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, California (Secs. 7, 11, 12)

Sachin Agrawal Senior Control Engineer, formerly at Space System Loral and Lockheed Martin, Palo Alto, California (Sec. 11)

D. N. Baker Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado (Sec. 10)

Eranga Batuwangala Researcher, Aerospace Engineering and Aviation Discipline, RMIT University, Bundoora, Victoria, Australia (Sec. 5)

Suraj Bijjahalli Researcher, Aerospace Engineering and Aviation Discipline, RMIT University, Bundoora, Victoria, Australia (Sec. 5)

Frederic Boniol Research Engineer, ONERA, France (Sec. 5)

Dominique Brière Head of Flight Control and Automatic Flight Control Systems Department, Airbus, France (Sec. 5)

Dennis M. Bushnell Chief Scientist, NASA Langley Research Center, Hampton, Virginia (Sec. 1)

J. P. Catani Head of Department, Power Supply and Electromagnetic Compatibility, Centre National d'Etudes Spatiales, France (Sec. 5)

Muguru S. Chandrasekhara Research Professor, Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, California (Sec. 3)

Florent Christophe Deputy Head, Department of Electromagnetism and Radar, ONERA, France (Sec. 5)

Jonathan Cooper Professor of Engineering, School of Engineering, University of Manchester, United Kingdom (Sec. 3)

Alan R. Crocker Senior System Engineer, NASA Ames Research Center, Moffett Field, California (Sec. 12)

M. Crokaert Doctor in Atomic Physics–Engineer, Centre National d'Etudes Spatiales, France (Sec. 5)

Atri Dutta Assistant Professor, Aerospace Engineering, Wichita State University, Wichita, Kansas (Sec. 8)

Peter Eckart Division of Astronautics, Technical University of Munich, Germany (Sec. 10)

John A. Ekaterinaris Distinguished Professor, Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, Florida (Sec. 3)

Jack Foisseau Head of Modelling and Requirement Engineering, ONERA, France (Sec. 5)

Anthony J. Gannon Associate Professor, Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, California (Sec. 3)

xvi Contributors

Alessandro Gardi Research Officer, Aerospace Engineering and Aviation Discipline, RMIT University, Bundoora, Victoria, Australia (Sec. 5)

Guru P. Guruswamy Senior Scientist, NASA Ames Research Center, Moffett Field, California (Sec. 3)

Kenneth R. Hamm, Jr. NESC Chief Engineer, NASA Ames Research Center, Moffett Field, California (Sec. 11)

Thomas M. Hancock III *Private Consultant, Systems Engineering and Flight Software Safety, Huntsville, Alabama* (Sec. 11)

Rüdiger Jehn European Space Operation Center, Germany (Sec. 10)

Michael W. Jenkins Professor Emeritus of Aerospace Design, Georgia Institute of Technology, Atlanta, Georgia (Sec. 6)

Rohan Kapoor Researcher, Aerospace Engineering and Aviation Discipline, RMIT University, Bundoora, Victoria, Australia (Sec. 5)

Trevor Kistan Research and Technology Manager, THALES Australia, Melbourne, Victoria, Australia (Sec. 5)

Gary H. Kitmacher International Space Station Program, National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas (Sec. 7)

G. Komatsu International Research School of Planetary Sciences, Università d'Annunzio, Italy (Sec. 10)

Yixiang Lim Researcher, Aerospace Engineering and Aviation Discipline, RMIT University, Bundoora, Victoria, Australia (Sec. 5)

Gerald Lo Formerly at INTELSAT, Washington, D.C. (Sec. 11)

Louis L. Maack Fellow, Lockheed Martin Space Systems, Sunnyvale, California (Sec. 7)

Jean-Claude Mollier Head of Department, Systemes Electronics Photoniques, SUPAERO, France (Sec. 5)

Roy Y. Myose Professor of Aerospace Engineering, Wichita State University, Wichita, Kansas (Sec. 8)

Andrew J. Niven Senior Lecturer, Department of Mechanical and Aeronautical Engineering, University of Limerick, Ireland (Sec. 3)

Tina L. Panontin Chief Engineer, NASA Ames Research Center, Moffett Field, California (Sec. 12)

J. P. Parmantier Doctor/Engineer in Electromagnetism, ONERA, France (Sec. 5)

Marc Pélegrin Docteur ès Sciences Automatics, FEDESPACE, France (Sec. 5)

Joseph N. Pelton Former Dean, International Space University, and Executive Board, International Association for the Advancement of Space Safety (Sec. 7)

Max F. Platzer Distinguished Professor Emeritus, Department of Mechanical and Aerospace Engineering, Naval Postgraduate School, Monterey, California (Sec. 3)

Sylvain Prudhomme Head of Identification and Control Research Group, ONERA, France (Sec. 5)

Jeffery J. Puschell Principal Engineering Fellow, Raytheon Company, El Segundo, California (Sec. 11)

Subramanian Ramasamy Research Officer, Aerospace Engineering and Aviation Discipline, RMIT University, Bundoora, Victoria, Australia (Sec. 5)

Michael J. Rycroft *Cambridge Atmospheric, Environmental and Space Activities and Research, United Kingdom* (Sec. 10)

Roberto Sabatini Professor of Aerospace Engineering and Aviation, RMIT University, Bundoora, Victoria, Australia (Sec. 5)

Abbas A. Salim Engineering Fellow/Principal Engineer (Retired), Lockheed Martin Space Systems, Denver, Colorado (Sec. 11)

Nesrin Sarigul-Klijn Professor, Department of Mechanical and Aerospace Engineering, University of California, Davis, California (Sec. 3)

Dieter Scholz Professor, Aircraft Design and Systems, Hamburg University of Applied Sciences, Germany (Sec. 2)

Michael J. Sekerak Mission Systems Engineer, NASA Goddard Space Flight Center, Greenbelt, Maryland (Sec. 9)

Jerry Jon Sellers Senior Space Systems Engineer, Teaching Science and Technology, Inc., Manitou Springs, Colorado (Sec. 9)

Stevan M. Spremo Senior Systems Engineer, NASA Ames Research Center, Moffett Field, California (Sec. 12)

Constantinos Stavrinidis Former Head of Mechanical Engineering Department, ESTEC, European Space Agency, The Netherlands (Sec. 11)

Robert Stevens Director of Model-Based Systems Engineering Office, The Aerospace Corporation, El Segundo, California (Sec. 12)

Subchan Subchan Vice Rector of Academic Affairs, Kalimantan Institute of Technology, Malaysia (Sec. 4)

Douglas G. Thomson Chief Adviser of Studies, School of Engineering, University of Glasgow, United Kingdom (Sec. 4)

Trevor M. Young Associate Professor, Department of Mechanical and Aeronautical Engineering, University of Limerick, Ireland (Sec. 4)

Rafał Żbikowski Professor of Control Engineering, Cranfield University, Cranfield, United Kingdom (Sec. 4)

About the Editors

Dr. Brij N. Agrawal is a Distinguished Professor in the Department of Mechanical and Aerospace Engineering and Director of the Spacecraft Research and Design Center at the Naval Postgraduate School (NPS). Prior to joining NPS in 1989, he worked for 20 years in the research, design, and development of communications satellites at COMSAT and INTELSAT. Dr. Agrawal is the author of *Design of Geosynchronous Spacecraft*. He is a Fellow of the American Institute of Aeronautics and Astronautics and a Member of the International Academy of Astronautics.

Dr. Max F. Platzer is a Distinguished Professor Emeritus in the Department of Mechanical and Aerospace Engineering at the Naval Postgraduate School (NPS). Prior to joining NPS in 1970, he was a member of the Saturn space launch vehicle development team at the NASA Marshall Space Flight Center and head of the Aeromechanics Research Group at the Lockheed Georgia Research Center. He is a Fellow of both the American Institute of Aeronautics and Astronautics and the American Society of Mechanical Engineers.

About SAE International

SAE International (sae.org) is a global association committed to being the ultimate knowledge source for the engineering profession. By uniting over 127,000 engineers and technical experts, we drive knowledge and expertise across a broad spectrum of industries. We act on two priorities: encouraging a lifetime of learning for mobility engineering professionals and setting the standards for industry engineering. We strive for a better world through the work of our charitable arm, the SAE Foundation, which helps fund programs like A World in Motion[®] and the Collegiate Design SeriesTM.

Preface to the Second Edition

n the 15 years since the publication of the first edition of this handbook, many new developments have occurred, especially in the astronautics field. We have included them in this second edition, which is divided into three major areas.

In the first section the chief scientist of the NASA Langley Research Center presents his view of the likely aerospace developments in the coming years. The subsequent five sections provide the reader with an update of the major developments in aeronautics. These include major advances in predicting and measuring very complex flow phenomena due to the rapid increases in computing power in recent years. Therefore, parts on computational fluid dynamics, modern flow measuring techniques, computational aeroelasticity, and computational acoustics have been added to the coverage of classical aerodynamic analysis methods retained from the first edition. Similarly, a part on optimal control theory was added to the coverage of aircraft performance, stability, and control in order to draw attention to the progress achieved in this field. This is followed by a major revision of avionics coverage because, here again, major advances have occurred. Also, in this section new parts on air traffic management have been added. Two sections retained with only minor changes cover aircraft systems and aircraft design.

The subsequent six sections provide the reader with an update of the major developments in astronautics. The sections titled Astrodynamics, Rockets and Launch Vehicles, and Earth's Environment and Space have been retained from the first edition with an updating of the material. Three new sections titled Spacecraft Systems, Spacecraft Subsystems, and Spacecraft Design have been added. The Spacecraft Systems section covers satellite missions, test and product certification of space vehicles, space safety engineering and design, and spacecraft for human operation and habitation. The Spacecraft Subsystems section covers attitude dynamics and control, observation payloads, spacecraft structures, satellite electric power subsystems, systems engineering requirements, independent verification and validation, software safety for aerospace systems, thermal control, and communications. Spacecraft Design covers the spacecraft design process, a design example, concurrent engineering, and small spacecraft.

We would like to recognize the contributions of the editor of the first edition, Mark Davies. We are greatly indebted to the contributors of the new sections in the second edition for their efforts and cooperation and to the authors of the sections retained from the first edition for updating their work. Also, we express our special thanks to the Editorial Director—Engineering at McGraw-Hill, Robert Argentieri, and the Senior Project Manager at Cenveo Publisher Services, Sonam Arora, for their outstanding support during the preparation and production of this book. And then we are especially indebted to two wonderful ladies, our wives Shail Agrawal and Dorothea Platzer, who made it all possible through their love and understanding.

Brij N. Agrawal Max F. Platzer Editors

Preface to the First Edition

The Standard Handbook for Aeronautical and Astronautical Engineers represents the efforts of many people working toward the common goal of amalgamating aeronautical and astronautical engineering into a single handbook. This is the first publication of such a book. A handbook on only astronautical was published by the same publishers in the early 1960s, which now represents a fascinating insight into the minds of those early pioneers.

The challenge to put the aeronautical and astronautical together was considerable. Although they overlap in so many ways, they also have many differences that needed to be addressed. The publisher's brief was for a book that successfully brought about this combination and that would be of value to professional engineers and engineering students alike. It must, therefore, cover something of every aspect of the vast spectrum of knowledge and methods that is aerospace engineering. Working between the covers of a book that can be carried by an unaided individual, of average strength, has meant that much cannot be included.

At an early stage in the *Handbook*'s development, I decided that there would not be sufficient pages available to do justice to the military aspects of aerospace engineering. Consequently, the reader will not find many references to the military for the aeronautical and, similarly, for astronautical observation. Perhaps 75% of the book's contents would be on most engineers' list of essential engineering; the remaining 25% is there because of the section editors' and my opinions and prejudices.

The *Handbook* opens with a look at what the future may hold for the development of aeronautical and space systems. This sets the scene for what is to follow. Before addressing these issues directly, there are five sections on basic engineering science and mathematics that are the foundation of aerospace operations and design. Applications have been excluded, for the most part, from these sections to emphasize their generality. In the specialist section, wherever possible, aeronautical and space issues have been addressed in the same section, as in Aerospace Structures (Section 9) and Avionics and Astrionics (11); elsewhere, they have been divided, as in Aeronautical Propulsion (7) and Rockets and Launch Vehicles (8). Subsystems for aircraft are covered in a single section (12), whereas for spacecraft, they are part of Section 15. Because aircraft design is more standardized and mature, it occupies its own section (13). Astrodynamics (14) and Spacecraft (15) are unique to space, whereas the discussions on safety (17) and maintenance (18) are unique to aircraft.

Due to its limited size, the book cannot give a definitive account of any specific area. Thus, experienced aerodynamicists may not find everything of interest in the aerodynamics section; nevertheless, they will find much of interest, for example, in the structures sections—the very structures that interact with the aerodynamic forces.

In this, the first edition, I feel that only the first stage in the journey to provide a comprehensive handbook has been made. Lionel Marks' *Standard Handbook for Mechanical Engineers,* in print through many editions for almost a century, is a reference that has been invaluable to that discipline.

xxii Preface to the First Edition

It is my hope that one day I will have made a similar contribution to aeronautical and astronautical engineering.

For the present, I thank all of those who have helped in this endeavor, beginning with my commissioning editor, Shelley Carr, with whom at times I have been in daily correspondence; she never wavered in her confidence and support for me, or if she did, I never knew. Then, I thank all of the section editors, the contributors, all of their colleagues and students who have helped, all of the institutes and companies that employ them, and my own institution, the University of Limerick, and my family: Judith, Elisabeth, and Helena.

Mark Davies Editor

Contents

	Contributors Preface to the Second Edition Preface to the First Edition Preface to the First Edition	xv xix xxi
Section 1	Futures of Aerospace1.1Potential Impacts of Global Technology and Resultant Economic Context on Aerospace Going Forward1.2Civilian Aeronautical Futures1.3Military Aeronautics Futures1.4Futures of Space Access1.5Aerospace beyond LEOBibliography	1 2 4 7 9 12
Section 2	Aircraft Systems2.1Introduction2.2Air Conditioning (ATA 21)2.3Electrical Power (ATA 24)2.4Equipment/Furnishings (ATA 25)2.5Fire Protection (ATA 26)2.6Flight Controls (ATA 27)2.7Fuel (ATA 28)2.8Hydraulic Power (ATA 29)2.9Ice and Rain Protection (ATA 30)2.10Landing Gear (ATA 32)2.11Lights (ATA 33)2.12Oxygen (ATA 35)2.13Pneumatic (ATA 36)2.14Water/Waste (ATA 38)2.15Airborne Auxiliary Power (ATA 49)2.16Avionic SystemsAcknowledgment1References1Further Reading1	13 13 29 37 45 59 66 73 85 86 88 99 99 102 104 106 106
Section 3	Aerodynamics, Aeroelasticity, and Acoustics 1 3.1 Introduction	13 113
Part 1	The Physics of Drag and Lift Generation13.2Drag Generation13.3Lift Generation on Airfoils in Two-Dimensional Low-Speed Flow1	115

	3.4	Lift Generation on Finite-Span Wings in Low-Speed Flow	119
	3.5	Lift Generation on Slender Wings	120
	3.6	Lift Generation in Transonic and Supersonic Flight	120
	3.7	Lift Generation in Hypersonic Flight	120
	3.8	Summary	120
	Refere	ences	121
Part 2	Aerody	namic Analysis of Airfoils and Wings	122
	Notat	ion	122
	3.9	Airfoil Geometric and Aerodynamic Definitions	124
	3.10	Wing Geometric and Aerodynamic Definitions	130
	3.11	Fundamentals of Vector Fluid Dynamics	134
	3.12	Fundamentals of Potential Flow	140
	3.13	Elementary Boundary Layer Flow	149
	3.14	Incompressible Flow Over Airfoils	156
	3.15	Incompressible Flow Over Finite Wings	176
	3.16	Shock Wave Relationships	187
	3.17	Compressible Flow Over Airfoils	195
	3.18	Compressible Flow Over Finite Wings	204
	Refere	ences	213
Dort 2	Aaradu	namics of Low Aspect Datis Wings and Padias of Devolution	215
Fait J	3 19	Incompressible Inviscid Flow Over a Low-Aspect-Ratio	215
	5.19	Wing at Zoro Anglo of Attack	215
	3 20	Wayo Drag	215
	3.20	Faujualance Pule or Area Pule	210
	3.21	Bodios of Revolution at Small Angle of Attack	210
	2.22	Cross Elow A palvois for Slonder Bodies of Povolution	217
	5.25	cross-riow Analysis for Siender Doules of Revolution	010
	2.24	Lift on a Slonder Wing	210
	3.24 2.25	Lint on a Stender Wing	220
	5.25	Low-Aspeci-Kallo wing-body Combinations	221
	Defen		221
	Keiere	ences	
Part 4	Compu	tational Aerodynamics	224
	3.26	Governing Equations	224
	3.27	Grid Generation	226
	3.28	CFD Methods for the Compressible Navier-Stokes	
		Equations	229
	Refere	ences	242
Part 5	Aerona	utical Measurement Techniques	244
	3.29	General	244
	3.30	Major Components of a Wind Tunnel	244
	3.31	High-Speed Tunnels	245
	3.32	Specialized Wind Tunnels	246
	3.33	Flow Measurement Techniques	246
	3.34	Density-Based Optical Flow Field Measurement Methods	253
	3.35	Other Flow Field Measurement Methods	256
	Refere	enter now ment mediousement methods	256
	1.01010		200

Part 6	Fast Response Pressure Probes	258
	3.36 Probe Types and Ranges	258
	3.37 Probe Mounting	259
	3.38 Measuring Considerations	260
	3.39 Multisensor Probes	260
	3.40 Data Acquisition	261
	3.41 Postprocessing	262
	References	264
Part 7	Fundamentals of Aeroelasticity	266
	3.42 Aeroelasticity	266
	3.43 Aircraft Airworthiness Certification	270
	3.44 Aeroelastic Design	272
	Further Reading	272
D 1 0		
Part 8		273
	3.45 Beginning of Transonic Small Perturbation Theory	273
	3.46 Development of Euler and Navier–Stokes–Based	075
	Computational Aeroelasticity Iools	275
	3.47 Computational Aeroelasticity in Rotorcraft	278
	3.48 Impact of Parallel Computers and Development of	070
	1 hree-Level Parallel Solvers	279
	3.49 Conclusion	281
	3.50 Appendix: Domain Decomposition Approach	282
	References	282
Part 9	Acoustics in Aerospace: Predictions, Measurements, and Mitigations	
	of Aeroacoustics Noise	286
	3.51 Introduction	286
	3.52 Aeroacoustics Theoretical Background	286
	3.53 Computational Aeroacoustics and Future Directions	290
	3.54 Noise Measurements: Anechoic Chamber Experiments	292
	3.55 Applications	292
	Basic Terms	297
	References	297
Section 1	Aircraft Parformance, Stability and Control	200
Section 4		233
Part 1	Aircraft Performance	300
	Notation	300
	4.1 Standard Atmosphere and Height Measurement	302
	4.2 Airspeed and Airspeed Measurement	313
	4.3 Drag and Drag Power (Power Required)	316
	4.4 Engine (Powerplant) Performance	321
	4.5 Level Flight Performance	326
	4.6 Climbing and Descending Flight	330
	4.7 Turning Performance	337
	4.8 Stall and Spin	339
	4.9 Range and Endurance	340

	4.10 Takeoff and Landing Performance
	4.11 Airplane Operations
	References
Part 2	Aircraft Stability and Control
	Notation
	4.12 Mathematical Modeling and Simulation of
	Fixed-Wing Aircraft
	4.13 Development of the Linearized Equations of Motion
	4.14 Calculation of Aerodynamic Derivatives
	4.15 Aircraft Dynamic Stability
	4.16 Aircraft Response to Controls and Atmospheric
	Disturbances
	Further Reading
Part 3	Computational Optimal Control
	4.17 Optimal Control Problem
	4.18 Variational Approach to Optimal Control Problem
	Solution
	4.19 Numerical Solution of the Optimal Control Problem
	4.20 User Experience
	References
Section 5	Avionics and Air Traffic Management Systems
	Acronyms
Part 1	The Electromagnetic Spectrum
	5.1 Radio Waves in a Vacuum
	5.2 Antennas and Power Budget of a Radio Link
	5.3 Radio Wave Propagation in the Terrestrial
	Environment
	5.4 Electromagnetic Spectrum and Its Management
	References
Part 2	Aircraft Environment
i dit E	5.5 Typical Flight Profile for Commercial Airplanes
	5.6 The Atmosphere
	5.7 Other Atmospheric Hazards
	5.8 The Ionosphere
	References
Part 3	Electromagnetic Compatibility
	5.9 Introduction
	5.10 Background of EM Coupling
	5.11 EM Environment and EMC Standards
	5.12 EMC Tools
	5.13 Engineering Method
	5.14 Conclusion
	References

Part 4	Introdu	iction to Radar	452
	5.15	Historical Background	452
	5.16	Basic Principles	452
	5.17	Trends in Radar Technology	457
	5.18	Radar Applications to Aeronautics	459
	5.19	Overview of Military Requirements and	
		Specific Developments	461
Part 5	Avionic	s Electro-Optical Sensors	462
	5.20	Introduction	462
	5.21	Fundamental Physical Laws	462
	5.22	IR Sensors	464
	5.23	Passive Optoelectronic Systems	465
	5.24	NVIS Technology Overview	470
	5.25	NVIS Compatibility Issues	474
	5.26	Airborne Lasers	474
	Refere	Pinces	480
Davit C	Outlead		404
Part 6		Optical Fiber Theory and Applications	481
	0.27 Deferre		401
	Kefere	ences	488
Part 7	Aircraf	t Flight Control Systems	489
	5.28	Foreword	489
	5.29	Flight Control Objectives and Principles	489
	5.30	Flight Control Systems Design	498
	5.31	Airbus Fly-by-Wire: An Example of Modern	
		Flight Control	503
	5.32	Some Control Challenges	514
	5.33	Conclusion	516
	Refere	ences	516
Part 8	Moder	n Avionics Architectures	518
	5.34	Introduction to Avionics	518
	5.35	Requirements for Avionics	520
	5.36	Physical Architectures	520
	5 37	Avionics Logical Architecture	524
	5 38	Avionics Evample: The Airbus A320 Flight	021
	0.00	Control System	530
	Furthe	er Reading	532
Devt 0	A	utical Communication Sustance	522
Part 9	5 30	Introduction	533
	5.39	Funduations	533
	5.40 5.41	A propagation Padia Communication Times	555 E24
	5.41	Aeronautical Communication Creaters Design	534
	5.4Z	VUE Voice Communications	000 E44
	5.43 E 44	VIE Detalial Communications	544
	5.44	VITE Datalink Communications	545
	5.45	Getellite Communication System	547
	5.46	Satellite Communication System	549

	5.47	Military Aeronautical Communications	55
	5.48	Future Trends	55
	Refere	ences	553
Part 10	Ground	Radio Navigation Aids	554
	5.49	Introduction	554
	5.50	Line-of-Sight Positioning	554
	5.51	Calculation of Aircraft Position	555
	5.52	Air Navigation and Landing Aids	56
	Refere	ences	56
Part 11	Inertial	Navigation Systems	56
	5.53	Introduction	56
	5.54	Inertial Sensors	56
	Refere	ences	58
Part 12	Alterna	tive Sensors and Multisensor Navigation Systems	58
	5.55	Introduction	58
	5 56	Vision-Based Navigation	58
	5.57	Integrated Navigation Systems	59
	Refere	inces	59
Part 13	Global	Navigation Satellite Systems	59
	5 58	CNISS Segments	59
	5 59	CNSS Observables	50
	5.60	CPS Error Sources	60
	5.00	UEDE Voctor and DOD Easters	60
	5.01	CNCC Dev(conserver) Developments in Assisting	60
	5.62	GNSS Performance Requirements in Aviation	60
	5.63 Refere	GNSS Augmentation Strategies in Aviation	61 61
D 1 4 4	A'		01
Part 14	Airborn 5 64	Introduction	61
	5.65	Pulse of AIP	61
	5.05	Airproce Cohorenia and Classes	61
	5.00 E (7	All space Categories and Classes	(1
	5.67		01
	5.68	Collision Detection and Avoidance	61
	5.69	Conflict Detection and Resolution Approaches	62
	5.70	SA&CA Technologies	62
	5.71	Conflict Resolution Heuristics	62
	5.72	Automatic Dependent Surveillance	63
	5.73	Multilateration Systems	63
	Refere	ences	63
Part 15	Air Traf	fic Management Systems	63
	5.74	General Layout of ATM Systems	63
	5.75	Fundamental ATM System Design Drivers	63
	5.76	Airspace Structure	63
	5.77	ATM Telecommunications Infrastructure	64
			~ -

	5.78	ATM Surveillance Infrastructure
	5.79	Meteorological Services
	5.80	Trajectory Design
	5.81	CNS+A Evolutions
	Refere	ences
Part 16	Aerosp	ace Systems and Software Engineering
	5.82	Introduction
	5.83	Software Life-Cycle Process
	5.84	Software Requirements
	5.85	Software Design
	5.86	Aerospace Software Verification and Validation
	5.87	Tools for Safety and Reliability Assessment
	5.88	Certification Considerations for Aerospace Systems
	Refere	ences
Part 17	Aviatio	n Human Factors Engineering
	5.89	Human Performance Modeling
	5.90	Human Factors Engineering Program
	5.91	Techniques for Task Analysis
	5.92	Design Considerations
	5.93	Design Evaluation
	Refere	ences
	iterere	
Section 6	Aeron	autical Design
	6.1	Definitions
	6.2	Introduction
	6.3	Overall Approach
	6.4	Government Regulations
	6.5	Conceptual Design
	6.6	Military Aircraft Design
	6.7	Commercial and Civil Aircraft Design
	6.8	Life Cycle Cost (LCC)
	6.9	Commercial Aircraft Operating Costs
	6.10	Unmanned Air Vehicles
	6.11	Lighter-Than-Air Vehicles (LTA)
	6.12	V/STOL Air Vehicles
	6.13	Performance
	Refere	ences
	Furth	er Reading
	I UI UI	
Section 7	Space	ecraft Systems
Part 1	Space	Missions
	7.1	Introduction
	7.2	Orbits
	7.3	Satellite Missions
	1.0	

	7.4	Launch Vehicles	8
	7.5	Ground Segment	8
	Refere	ences	8
Part 2	Test an	d Product Certification of Space Vehicles	8
	7.6	Validation Basics	8
	7.7	Verification Basics	8
	7.8	Requirements Development Basics	8
	7.9	Certification Requirements and Test Plan	
		Development	1
	7.10	Verification Methods	1
	7.11	Test Basics	
	7.12	Compliance Documents	
	7.13	TLYF Overview	
Part 3	Space	Safety Engineering and Design	;
	7.14	Introduction	
	7.15	Unmanned Space Systems Design and Engineering	
	7.16	Crewed Space Systems Design and Engineering	
	7.17	Combustion and Materials Engineering and Safety	
	7.18	Suborbital Flight Systems, Spaceplanes, Hypersonic	
		Transport, and New Uses of the "Protozone" or	
		"Near Space"	
	7.19	Launch Site Design and Safety Standards	
	7.20	Licensing and Safety Controls and Management	
		for Various Types of Launcher Systems	
	7.21	Air and Space Traffic Control and Management	
	7.22	Atmospheric and Environmental Pollution	
	7.23	Orbital Debris Concerns and Tracking and	
		Sensor Systems	
	7.24	Cosmic Hazards and Planetary Defense and Safety	
	7.25	Systems Engineering and Space Safety	
	7.26	Future Trends in Space Safety Engineering.	
		Design, and Study	
	7.27	Conclusions	
	Refere	ences	
Part 4	Spaced	craft for Human Operation and Habitation	
	7.28	Introduction	
	7.29	Premium Placed on Mass and Volume	
	7.30	Common Attributes of Manned Spacecraft	
	7.31	Optimization of Humans with Machines	
	7.32	Human Spacecraft Configuration	
	7.33	Space Vehicle Architecture	
	7.34	ISS Crew Compartment Design	
	7.35	Systems	
	7.36	Summary	
	Roford		2

Section 8	Astrodynamics	881
	Notation	881
	8.1 Orbital Mechanics	882
	8.2 Orbital Maneuvers	893
	8.3 Earth Orbiting Satellites	903
	8.4 Interplanetary Missions	916
	References	928
Section 9	Rockets and Launch Vehicles	929
	9.1 Rocket Science	929
	9.2 Propulsion Systems	949
	9.3 Launch Vehicles	970
	References	976
Section 10	Earth's Environment and Space	977
Part 1	The Earth and Its Atmosphere	978
	10.1 The Earth in Space	978
	10.2 Properties of the Earth's Atmosphere	978
	10.3 How the Earth's Atmosphere Works	980
	10.4 Atmospheric Dynamics and Atmospheric	
	Models	983
	10.5 Electrical Phenomena in the Atmosphere	986
	References	987
Part 2	The Near-Earth Space Environment	988
	10.6 Background	988
	10.7 The Plasma Environment	989
	10.8 The Neutral Gas Environment	992
	10.9 The Vacuum Environment	993
	10.10 The Radiation Environment	993
	10.11 The Micrometeoroid and Space Debris	
	Environment	996
	References	996
Part 3	The Solar System	997
	10.12 Physical Properties of the Planets	997
	10.13 Space Age Discoveries	997
	References	1003
Part 4	The Moon	1004
	10.14 Origin of the Moon	1004
	10.15 Orbital Parameters	1005
	10.16 Lunar Geography	1006
	10.17 Lunar Geology	1007
	10.18 Physical Surface Properties	1010
	10.19 Lunar Surface Environment	1016
	Keterences	1020

Part 5	Mars10.20Orbital Characteristics10.21Solid Geophysical Properties and Interiors10.22Surface and Subsurface10.23Atmosphere10.24Satellites10.25Search for Life on Mars10.26ExplorationReferences	1021 1021 1023 1027 1029 1029 1030 1031
Part 6	The Sun-Earth Connection	1033
	10.27 Introduction	1033
	10.28 The Sun and the Heliosphere	1033
	10.29 Structure and Dynamics of the Magnetospheric	1026
	10.30 The Solar-Terrestrial Energy Chain	1036
	10.31 Dynamics of the Magnetosphere-Ionosphere-	1007
	Atmosphere System	1038
	10.32 Importance of Atmospheric Coupling	1042
	10.33 Sun–Earth Connections and Human Technology	1043
	10.34 Summary	1044
	Further Reading	1045
Part 7	Space Debris	1046
	10.35 Introduction	1046
	10.36 Spatial Distribution of Space Debris	1048
	10.37 The Collision Risk	1050
	10.38 The Geostationary Orbit	1052
	10.39 Long-Term Evolution of the Space Debris Environment	
	and Mitigation Measures	1052
	References	1054
	Further Reading	1054
Section 11	Spacecraft Subsystems	1055
Part 1	Attitude Dynamics and Control	1056
	11.1 Introduction	1056
	11.2 Rigid-Body Dynamics	1056
	11.3 Orientation Kinematics	1063
	11.4 Attitude Stabilization	1071
	11.5 Spin Stabilization of an Energy-Dissipating Spacecraft	1075
	11.6 Three-Axis Stabilization	1076
	11.7 Disturbance lorques	1077
	11.0 Spacecraft with a Fixed Womentum wheel and Infusters	1083
	11.7 Intee-Axis Reaction wheel System	1091
	11.11 Effects of Structural Flexibility	1093
		-070

	11.12 Refere	Attitude Determination	1100 1100
Part 2	Observ	vation Pavloads	110
	11 13	Overview	110
	11.14	Observational Pavload Types	110
	11.15	Observational Payload Performance Figures of Merit	1123
	Refere	ences	1120
Part 3	Space	craft Structures	1128
	11.16	Role of Spacecraft Structures and Various Interfaces	112
	11.17	Mechanical Requirements	113
	11.18	Space Mission Environment and Mechanical Loads	113
	11.19	Project Overview: Successive Designs and Iterative	
		Verification of Structural Requirements	1134
	11.20	Analytical Evaluations	1130
	11.21	Test Verification, Qualification, and Flight Acceptance	1132
	11.22	Satellite Qualification and Flight Acceptance	1138
	11.23	Materials and Processes	1139
	11.24	Manufacturing of Spacecraft Structures	114
	11.25	Composites	1142
	11.26	Composite Structures	1143
	Refere	ences	114
Part 4	Satelli	te Electrical Power Subsystem	114
	11.27	Introduction	1142
	11.28	Solar Arrays	1154
	11.29	Batteries	1166
	11.30	Power Control Electronics	1176
	11.31	Subsystem Design	1180
	Ackno	owledgments	1184
	Refere	ences	1184
Part 5	System	ns Engineering, Requirements, Independent Verification and	
	Validat	tion, and Software Safety for Aerospace Systems	118
	11.32	Developing Software for Aerospace Systems	1186
	11.33	Impact of Poorly Written Requirements	1188
	11.34	Benefit of Requirements Analysis	1189
	11.35	Application of Independent Verification and Validation	1189
	11.36	Consequences of Failure	1190
	11.37	Likelihood of Failure	119
	11.38	General IV&V Techniques	119
	11.39	Software Safety	1193
	11.40	Certification	119
Part 6	Therma	al Control	120
	11.41	Introduction	1200
	11.42	Heat Transfer	1202

	11.43	Thermal Analysis	1210
	11.44	Thermal Control Techniques	1215
	11.45	Spacecraft Thermal Design	1219
	Furthe	r Reading	1224
Part 7	Commu	nications	1226
	11.46	Introduction	1226
	11.47	Basic Units and Definitions in Communications	
		Engineering	1226
	11.48	Frequency Allocations and Some Aspects of the	
		Radio Regulations	1227
	11.49	Electromagnetic Waves, Frequency, and Polarization	1000
		Selection for Satellite Communications	1229
	11.50	Link Consideration	1233
	11.51	Communications Subsystem of a Communications	
		Satellite	1238
	11.52	Some Common Modulation and Access Techniques for	
		Satellite Communications	1244
	11.53	Satellite Capacity and the Sizing of Satellites	1254
	Furthe	r Reading	1256
Section 12	Space	craft Design	1257
Dout 1	Decign I	Draesse and Design Example	1950
Part 1	Design I	Process and Design Example	1258
Part 1	Design I 12.1	Process and Design Example	1258 1258
Part 1	Design I 12.1 12.2	Process and Design Example	1258 1258 1259
Part 1	Design I 12.1 12.2 Further	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading	1258 1258 1259 1284
Part 1 Part 2	Design I 12.1 12.2 Further Concurr	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering	 1258 1258 1259 1284 1285
Part 1 Part 2	Design I 12.1 12.2 Further Concurr 12.3	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction	 1258 1258 1259 1284 1285 1285
Part 1 Part 2	Design I 12.1 12.2 Further Concurr 12.3 12.4	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction Concurrent Engineering Methodology	1258 1258 1259 1284 1285 1285 1285 1288
Part 1 Part 2	Design I 12.1 12.2 Further Concurr 12.3 12.4 12.5	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction Concurrent Engineering Methodology Summary	1258 1258 1259 1284 1285 1285 1285 1288 1326
Part 1 Part 2	Design I 12.1 12.2 Further Concurr 12.3 12.4 12.5 Referen	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction Concurrent Engineering Methodology Summary nces	1258 1258 1259 1284 1285 1285 1288 1326 1326
Part 1 Part 2 Part 3	Design I 12.1 12.2 Further Concurr 12.3 12.4 12.5 Referen Small S	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction Concurrent Engineering Methodology Summary nces	1258 1259 1284 1285 1285 1285 1285 1288 1326 1326 1328
Part 1 Part 2 Part 3	Design I 12.1 12.2 Further Concurr 12.3 12.4 12.5 Referen Small S 12.6	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction Concurrent Engineering Methodology Summary nces pacecraft Overview Introduction	 1258 1259 1284 1285 1285 1288 1326 1326 1328 1328
Part 1 Part 2 Part 3	Design I 12.1 12.2 Further Concurr 12.3 12.4 12.5 Referen Small S 12.6 12.7	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction Concurrent Engineering Methodology Summary nces pacecraft Overview Introduction History and Evolution of Small Spacecraft	 1258 1259 1284 1285 1285 1288 1326 1326 1328 1328 1328 1329
Part 1 Part 2 Part 3	Design I 12.1 12.2 Further Concurr 12.3 12.4 12.5 Referen Small S 12.6 12.7 12.8	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction Concurrent Engineering Methodology Summary nces pacecraft Overview Introduction History and Evolution of Small Spacecraft Programmatic Considerations	1258 1258 1259 1284 1285 1285 1285 1326 1326 1328 1328 1328 1329 1333
Part 1 Part 2 Part 3	Design I 12.1 12.2 Further 12.3 12.4 12.5 Referen Small S 12.6 12.7 12.8 12.9	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction Concurrent Engineering Methodology Summary nces pacecraft Overview Introduction History and Evolution of Small Spacecraft Programmatic Considerations Life Cycle Considerations	1258 1258 1259 1284 1285 1285 1285 1326 1326 1328 1328 1329 1333 1337
Part 1 Part 2 Part 3	Design I 12.1 12.2 Further 12.3 12.4 12.5 Referen Small S 12.6 12.7 12.8 12.9 12.10	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction Concurrent Engineering Methodology Summary nces pacecraft Overview Introduction History and Evolution of Small Spacecraft Programmatic Considerations Life Cycle Considerations Small Spacecraft Technologies	1258 1258 1259 1284 1285 1285 1285 1326 1326 1326 1328 1328 1329 1333 1337 1340
Part 1 Part 2 Part 3	Design I 12.1 12.2 Further 2.3 12.4 12.5 Referen Small S 12.6 12.7 12.8 12.9 12.10 12.11	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction Concurrent Engineering Methodology Summary nces pacecraft Overview Introduction History and Evolution of Small Spacecraft Programmatic Considerations Life Cycle Considerations Small Spacecraft Technologies Case Studies	1258 1258 1259 1284 1285 1285 1285 1326 1326 1326 1328 1328 1329 1333 1337 1340 1343
Part 1 Part 2 Part 3	Design I 12.1 12.2 Further Concurr 12.3 12.4 12.5 Referen Small S 12.6 12.7 12.8 12.9 12.10 12.11 12.12	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction Concurrent Engineering Methodology Summary nces pacecraft Overview Introduction History and Evolution of Small Spacecraft Programmatic Considerations Life Cycle Considerations Small Spacecraft Technologies Case Studies Conclusion	1258 1259 1284 1285 1285 1285 1288 1326 1326 1328 1328 1329 1333 1337 1340 1343 1346
Part 1 Part 2 Part 3	Design I 12.1 12.2 Further Concurr 12.3 12.4 12.5 Referen Small S 12.6 12.7 12.8 12.9 12.10 12.11 12.12 Summa	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction Concurrent Engineering Methodology Summary nces pacecraft Overview Introduction History and Evolution of Small Spacecraft Programmatic Considerations Life Cycle Considerations Small Spacecraft Technologies Case Studies Conclusion ary	1258 1258 1259 1284 1285 1285 1285 1288 1326 1326 1328 1326 1328 1328 1329 1333 1337 1340 1343 1346 1346
Part 1 Part 2 Part 3	Design I 12.1 12.2 Further 2.3 12.4 12.5 Referen Small S 12.6 12.7 12.8 12.9 12.10 12.11 12.12 Summa Referen	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction Concurrent Engineering Methodology Summary nces pacecraft Overview Introduction History and Evolution of Small Spacecraft Programmatic Considerations Life Cycle Considerations Small Spacecraft Technologies Case Studies Conclusion ary nces	1258 1259 1284 1285 1285 1285 1285 1326 1326 1328 1328 1329 1333 1337 1340 1343 1346 1346 1346
Part 1 Part 2 Part 3	Design I 12.1 12.2 Further Concurr 12.3 12.4 12.5 Referen Small S 12.6 12.7 12.8 12.9 12.10 12.11 12.12 Summa Referen	Process and Design Example Spacecraft Design Process Spacecraft Design Example r Reading ent Engineering Introduction Concurrent Engineering Methodology Summary nees pacecraft Overview Introduction History and Evolution of Small Spacecraft Programmatic Considerations Life Cycle Considerations Small Spacecraft Technologies Case Studies Conclusion ary nees	1258 1259 1284 1285 1285 1285 1285 1326 1328 1326 1328 1326 1328 1329 1333 1337 1340 1343 1346 1346 1346

SECTION 2

Aircraft Systems

Dieter Scholz

2.1 Introduction

Aircraft Systems—General

What Are Aircraft Systems? Broadly speaking, an aircraft can be subdivided into three categories:

- 1. The airframe (the aircraft structure)
- 2. The power plant (the engines)
- 3. The aircraft systems (the equipment)

This Section deals with the last of these categories.

The airframe provides the aircraft with its (relative) rigidity. It also enables the generation of lift through its aerodynamic shape. A glider flies without a power plant, but in order to maintain weather-independent sustained level flight, a power plant is necessary to produce thrust to overcome the drag.

The airframe and power plant might seem to be all that is needed, but this is not so. Even the earliest aircraft needed more. Some means to steer the aircraft (flight controls) and to handle it on the ground (landing gear) were needed. These aircraft systems play a key role today and must be considered in the very early stages of aircraft design. A fuel system was also needed from the beginning of the history of powered flight. With aircraft flying longer distances, navigation and communication systems became important; with aircraft flying higher and taking passengers on board, cabin systems such as air conditioning and oxygen systems were introduced.

Above is given a general idea of what aircraft systems are. A more rigorous definition of the term is given further.

Significance of Aircraft Systems

Aircraft systems account for one-third of the aircraft's empty mass. Aircraft systems have a high economic impact: more than one-third of the development and production costs of a mediumrange civil transport craft can be allocated to aircraft systems, and this ratio can be even higher for military aircraft. The price of the aircraft is driven in the same proportion by aircraft systems. Aircraft systems account for roughly one-third of the direct operating costs (DOC) and direct maintenance costs (DMC).

Historical Trends

Aircraft silhouettes and general design concepts have been stable since the 1960s. Nevertheless, remarkable progress has been made since that time. Just as aerodynamics, structures, and power plants have been optimized, aircraft systems have been gradually improved in economics, reliability, and safety. This has been made possible by constant evolution and optimization through inservice experience, research, and development and by employment of new technologies.

Probably the most important factor in the changes has been made by digital data processing. Today computers are part of almost every aircraft system in larger aircraft. Computers also play a key role in the design and manufacturing process of aircraft systems. The evolution of aircraft systems has not come to an end yet. Modern achievements in computer technology will continue to make their way into aircraft.

Striving for improved safety, economics, and passenger comfort will demand even more sophisticated technologies and complexity. The airlines have been reluctant to accept the everincreasing complexity, since it does not make troubleshooting the aircraft any easier. The aviation industry has taken the approach that technology has to buy its way onto the aircraft—i.e., only if new technologies can prove their overall benefit will they be considered in new aircraft design.

The separate tasks of the structure, the engines, and the systems are being more and more integrated to handle the tasks together. Here are some examples:

- Electronic flight control systems stabilize a fighter aircraft with an unstable layout or stabilize aircraft structural or rigid body modes.
- A gust load alleviation system as part of the flight control systems helps reduce the design loads for the wing structure.
- A highly reliable yaw damper system enables the aircraft to be built with a fin smaller than would otherwise be required.
- Engine parameters are changed in accordance with air conditioning demands.

To achieve an overall optimum in aircraft design, it is no longer possible to look at the structure, the engines, and the aircraft systems separately. Today's challenge lies in optimizing the aircraft as a whole by means of multidisciplinary design optimization (MDO).

The Industry

Aircraft systems are defined by the aircraft manufacturer. This commonly takes place in joint teams with engineers from specialized subcontractors. The subcontractors work on the final design, manufacture the system or component, and deliver their parts to the aircraft manufacturer's final assembly line. The trend is for aircraft manufacturers to select major subcontractors who are made responsible for designing and manufacturing a complete aircraft system. These subcontractors may even become risk-sharing partners in the aircraft program. Aircrafts are maintained by dedicated maintenance organizations. Maintenance is done on and off aircraft. Off-aircraft maintenance is performed on aircraft components in specialized shops.

Scope of This Section

Section 2 provides background information and describes the general principles of transport category aircraft systems. The Airbus A321 (Figure 2.2) from the family of Airbus narrow-body aircraft is used to provide an example of the systems under discussion. *At no time should the information given be used for actual aircraft operation or maintenance. The information given is intended for familiarization and training purposes only.* Space in this handbook is too limited for all aircraft systems to be covered in depth. For some aircraft systems only the definition is given and the reader is referred to other parts of the handbook that also deal with the subject. For other aircraft systems the definition is given together with selected views on the Airbus A321. Emphasis is put on selected major mechanical aircraft systems. The References and Further Reading show the way to actual design work and detailed studies.

Definitions

The term *system* is frequently used in engineering sciences. In thermodynamics, for example, a system is characterized by its defined boundary. The definition of the term with respect to aircraft is more specific.

The World Airlines Technical Operations Glossary (WATOG) defines:

- System: A combination of inter-related items arranged to perform a specific function
- *Subsystem:* A major functional portion of a system, which contributes to operational completeness of the system

The WATOG also gives an example together with further subdivisions of the system and subsystem:

- *System:* auxiliary power unit
- *Subsystem:* power generator
- Component: fuel control unit
- Subassembly: valve
- *Part:* seal

Note that these definitions refer to civil aircraft. With respect to military aircraft, instead of *aircraft systems* the term is *aircraft subsystems*. In the example above, the auxiliary power unit hence would be considered a subsystem.

In dealing with aircraft systems, all categories of aircrafts need to be considered. ICAO defines:

- *Aircraft:* Any machine that can derive support in the atmosphere from the reaction of the air (ICAO Annex 2)
- *Aircraft category:* Classification of aircraft according to specified basic characteristics, e.g., aeroplane, glider, rotorcraft, free balloon (ICAO Annex 1)

Combining the above definitions, a definition for aircraft systems might be:

• *Aircraft system:* A combination of interrelated items arranged to perform a specific function on an aircraft

This section deals with aircraft systems in powered heavier-than-air aircraft. Although aircraft systems in gliders, rotorcrafts, and free balloons have to take into account the specifics of their respective categories, they are not fundamentally different from aircraft systems in aeroplanes.

Breakdown

Aircraft systems are distinguished by function. It is common practice in civil aviation to group aircraft systems according to Specification 100 of the Air Transport Association of America (ATA) (ATA 100), which thoroughly structures aircraft documentation. According to ATA 100,¹ aircraft

¹Recently ATA 100 became part of the new ATA 2200. ATA 2200 has introduced minor changes and updates to the definitions of aircraft systems. This text uses the well-established ATA 100 and presents differences to ATA 2200 in footnotes.

Identifier	Name of system
21	air conditioning
22	auto flight
23	communications
24	electrical power
25	equipment/furnishings
26	fire protection
27	flight controls
28	fuel
29	hydraulic power
30	ice and rain protection
31	indicating/recording systems
32	landing gear
33	lights
34	navigation
35	oxygen
36	pneumatic
38	water/waste
49	airborne auxiliary power

^aNot included in this table are Chapters 37, 41, 45, and 46 from ATA 100, which are not of relevance here. Also not included here are new Chapters 44 and 50 from ATA 2200.

FABLE 2.1	Aircraft Sy	stemsª (ATA	100)
------------------	-------------	-------------	------

equipment is identified by an equipment identifier consisting of three elements of two digits each. The identifier 29-31-03 points to system 29, subsystem 31, and unit 03. The aircraft systems— or, in ATA terms, *airframe systems*—are listed in Table 2.1 together with their system identifiers. It is common practice to refer to just the system identifier *ATA* 28, instead of to the "fuel system." Furthermore, *Chapter* 28 (from ATA 100) is often referred to, because that is the chapter allocated to the fuel system in any aircraft documentation showing ATA conformity.

Autopilot, communications, navigation, and indicating/recording systems (ATA 22, 23, 34, 31 [, 44, 45, 46]) are electronic systems, known in aviation as *avionic systems*, and are characterized by processing information (compare with SAE 1998).

Other systems provide fuel, power, and essential comfort to crew and passengers. These nonavionic systems are the *general* or *utility systems*. Today there is an increase in the number of electronic control units within the utility systems; nevertheless, the primary purpose of these systems remains some kind of energy transfer (Moir and Seabridge 2001).

Secondary power systems include the nonpropulsive power generation and transmission. They include electrical power, hydraulic power, pneumatic, and auxiliary power (SAE 1998) (ATA 24, 29, 36, 49). Secondary power systems provide power to other aircraft systems.

The *environmental control system* (ECS) is an engineering system that maintains the immediate environment of an organism within defined limits of temperature, pressure, and gaseous composition suitable for continuance of comfort and efficiency (AGARD 1980). The air conditioning system and oxygen system (ATA 21, 35) are assigned these tasks.

Other aircraft systems are grouped and assigned a specific name often without a formal definition.

Hydraulic systems comprise all systems that apply hydraulic power. In general, these are hydraulic power, flight controls, and landing gear (ATA 29, 27, 32).

Electric systems comprise all systems that apply electric power. In general, these are electric power (ATA 24) and all systems with major electrical consumers. Electrical systems are characterized by electrical power generation, distribution, and consumption and have to be distinguished from avionic systems.

Pneumatic systems comprise all systems that apply pneumatic power. In general, these are pneumatic and other systems with pneumatic components (ATA 36, 21, 30).

*Cabin systems*² comprise all systems with an impact on the cabin of the aircraft and hence with an influence on the passenger (ATA 21, 25, 35, 38, and partially 23, 26, 31, 33).

These groupings depend to a certain extent on the system technologies applied in the aircraft being considered.

Certification

After one or several prototype aircraft are designed and manufactured, they go through a series of *certification tests* in order to show compliance with the *certification requirements*. Compliance with the requirements may be shown by analysis, ground, or flight test, depending on the requirements or negotiations with the *aviation administration*. System tests are a substantial part of the certification program. In Europe, certification of large aeroplanes is based on the Joint Aviation Requirements (JAR-25), and in the United States it is based on the Airworthiness Standards: Transport Category Airplanes (FAR Part 25). Large aeroplanes are those aircraft with a maximum takeoff mass of more than 5,700 kg. JAR and FAR are very similar; the basic code for JAR-25 is FAR Part 25, and further harmonization of the requirements is in progress. The certification of one or several prototype aircraft leads to a *type certificate* being issued. Aircraft in series production have to show *airworthiness* and *conformity with the prototype aircraft*. In service the aircrafts have to be maintained according to an agreed maintenance schedule to prove continuous airworthiness.

JAR-25 and FAR Part 25 are grouped into several subparts (the following is based on JAR-25). Subpart F, "Equipment," contains many requirements for aircraft systems.

Subpart E, "Power plant," contains requirements for power plant-related systems.

Also Subpart D, "Design and Construction," contains requirements for aircraft systems.

Subpart J, "Gas Turbine Auxiliary Power Unit Installation," contains requirements for airborne auxiliary power—i.e., the auxiliary power unit (APU).

General information on aircraft systems can be found in section 1301 "Function and installation" and section 1309 "Equipment, systems and installations" of JAR-25 and FAR Part 25. Section 1309 provides information on safety requirements, loads, and environmental conditions. Table 2.2 provides access to the certification requirements for large airplanes when specific information related to a particular aircraft system is needed.

Interpretative material to most paragraphs is provided:

- FAR: Advisory Circulars (AC) (especially in AC 25-17 and AC 25-22)
- JAR: Advisory Circular Joint (ACJ) (ACJ-25) and Advisory Material Joint (AMJ) (AMJ-25)

²Following the new ATA 2200, "Cabin Systems (ATA 44)" are defined as "Those units and components which furnish means of entertaining the passengers and providing communication within the aircraft and between the aircraft cabin and ground stations. Includes voice, data, music and video transmissions."

Identifier name of system	Applicable sections		
21	831–833: Sections under the heading "Ventilation and heating"		
Air conditioning	841–843: Sections under the heading "Pressurisation"		
	1461: Equipment containing high energy rotors		
22	1329: Automatic pilot system		
Auto flight	1335: Flight director systems		
23	1307: Miscellaneous equipment (radio communication)		
Communications	1457: Cockpit voice recorders		
24	1351: General		
Electrical power	1353: Electrical equipment and installations		
	1355: Distribution system		
	1357: Circuit protective devices		
	1359: Electrical system fire and smoke protection		
	1363: Electrical system tests		
25	771–793: Sections under the heading "Personnel and cargo		
Equipment/furnishings	accommodations"		
	819: Lower deck service compartments (including galleys)		
	1411: General (under heading safety equipment)		
	1413: Safety belts		
	1415: Ditching equipment		
	1421: Megaphones		
26 Fina musta ati an	851–867: Sections under the heading "Fire protection"		
Fire protection	1181–1207: Sections under the heading "Powerplant fire protection"		
	1307: Miscellaneous equipment (portable fire extinguishers)		
	A1181–A1207: Sections related to APU fire protection		
27 Flight controlo	671–703: Sections under the heading "Control systems"		
	Q51 Q81: Soctions under the heading "Evel system"		
Fuel	901 1001: Sections under the heading "Fuel system"		
	AQ52 AQQ2: Sections related to the APU fuel system		
20	1425: Hydraulia systems		
Hvdraulic power	1455. Hyuraulic systems		
30	1307: Miscellaneous equipment (including windshield wiper)		
Ice & rain protection	1416: Pneumatic de-icer boot system		
	1419: Ice protection		
31	1303: Flight and navigation instruments		
Indicating/recording	1305: Powerplant instruments		
systems	1321: Arrangement and visibility		
	1331: Instruments using a power supply		
	1333: Instrument systems		
	1337: Powerplant instruments		
32	721–X745: Sections under the heading "Landing gear"		
Landing gear			

Identifier name of system	Applicable sections		
33	812: Emergency lighting		
Lights	1322: Warning, caution, and advisory lights		
	1381: Instrument lights		
	1383: Landing lights		
	1385, 1387, 1389, 1391, 1393, 1395, 1397: Position lights		
	1401: Anti-collision light system		
	1403: Wing icing detection lights		
34	1307: Miscellaneous equipment (radio navigation)		
Navigation	1323: Airspeed indicating system		
	1325: Static pressure system		
	1326: Pilot heat indication system		
	1327: Magnetic direction indicator		
	1459: Flight recorders		
35	1439: Protective breathing equipment		
Oxygen	1441: Oxygen equipment and supply		
	1443: Minimum mass flow of supplemental oxygen		
	1445: Equipment standards for the oxygen distributing system		
	1447: Equipment standards for oxygen dispensing units		
	1449: Means for determining use of oxygen		
	1450: Chemical oxygen generators		
	1451: Fire protection for oxygen equipment		
	1453: Protection of oxygen equipment from rupture		
36	X1436: Pneumatic systems—high pressure		
Pneumatic	1438: Pressurisation and low pressure pneumatic systems		
38	1455: Draining of fluids subject to freezing		
Water/waste	X799: Water systems		
49 Airborne auxiliary power	Paragraphs in Subpart J—Gas turbine auxiliary power unit installations		

 TABLE 2.2
 Selected Certification Requirements for Aircraft Systems Based on JAR-25 (Continued)

Safety and Reliability

Safety and reliability considerations of aircraft systems are an integral part of the safety and reliability considerations of the whole aircraft. Modern sophisticated aircraft depend very much on the proper functioning of their aircraft systems, so that safety and reliability considerations of aircraft systems have become highly important in their own right. For this reason an aircraft systems-specific approach to the topic is presented here.

Safety is a state in which the risk is lower than a permissible risk. The risk is defined by the probability of a failure and the expected effect.

The *effect* of failure describes the consequences of the failure (damage or injury).

The *probability of failure*, F(t), is equal to the number of failures within a given period of time divided by the total number of parts in a test.

The *safety requirements* for aircraft systems are stated in section 1309 of the certification requirements JAR-25 and FAR Part 25 and are listed in Table 2.3.

Effect on aircraft and occupants	Normal	Nuisance	Operating limitations Emergency procedures	Significant reduction in safety margins Difficult for crew to cope with adverse conditions Passenger injuries	Large reduction in safety margins Crew extended because of workload or environmental conditions Serious injury or death of small number of occupants	Multiple deaths, usually with loss of aircraft
Category of effect Probability of a failure according to JAR-25 (per flight hour)	Minor Frequent 10º–10 ⁻²	Minor Frequent 10 ⁻² –10 ⁻³	Minor Reasonably probable 10 ⁻³ –10 ⁻⁵	Major Remote 10 ⁻⁵ –10 ⁻⁷	Hazardous Extremely remote 10 ⁻⁷ –10 ⁻⁹	Catastrophe Extremely improbable < 10 ⁻⁹

Source: ACJ-25.

TABLE 2.3 Safety Requirements for Large Airplane's Systems

The probability of a failure in a system increases with the time period of operation and is specified for an operation time of one flight hour (FH). Obviously, the higher the effect of a failure is on aircraft operation, passengers, and the aircraft itself, the lower the permissible probability of such a failure has to be.

The *reliability* is the probability of survival, R(t). It is an item's ability to fulfill defined requirements for a specific period of time under specified conditions. A statement referring to the reliability of a system can only be made if the failure criteria are precisely defined.

The reliability or *probability of survival*, R(t), can also be defined as the number of parts surviving within a given period of time divided by the total number of parts in a test:

$$R(t) + F(t) = 1$$

Although referring to the reliability R(t), mostly the value of the probability of failure F(t) is given (10⁻⁷) because the reliability yields values more difficult to handle (0.9999999).

The *hazard rate function*, z(t), is a measure of the probability that a component will fail in the next time interval, given that it has survived up to the beginning of that time interval. If the hazard rate function is constant (which is often assumed), it is called the *failure rate*, λ Failure rates of mechanical components are listed in Rome (1985), and failure rates for electric and electronic equipment can be estimated using MIL-HDBK-217. The failure rate has units of one per flight hour (1/FH). The inverse of the failure rate, called the mean time between failures (MTBF), is often used in reliability and maintenance circles.

$$MTBF = 1/\lambda$$

The *failure to removal ratio* (FTRR) is a maintenance quantity. It shows the ratio of faults found in a component during a shop visit, divided by the number of component removals. Unfortunately, the FTRR is especially low in case of electrical components (0.6–0.7) and electronic components (0.3–0.4). Hydraulic components (0.8–0.9) and mechanical components (1.0) show better values. The product of MTBF and FTRR yields the maintenance cost driver, the *mean time between unscheduled removals* (MTBUR).

$MTBUR = MTBF \cdot FTTR$

The reliability and the probability of failure can be calculated from the failure rate:

$$R(t) = e^{-\lambda t}, F(t) = 1 - e^{-\lambda t}$$

For low failure rates, which are common in aviation, the probability of failure calculated for a period of one hour (F(t)/FH) equals almost exactly the failure rate, λ .

Systems are a combination of many components either in parallel, in series, or in a combination of both. The reliability of a *series system* is equal to the product of is component values.

$$R_{\rm s}(t) = R_1(t)R_2(t)R_3(t)..$$

The failure rate of a series system is approximately the sum of the failure rates of its (reliable) components.

$$\lambda_{\rm S} \approx \lambda_1 + \lambda_2 + \lambda_3 \ldots$$

The probability of failure of a *parallel system* is equal to the product of is component values.

$$F_{P}(t) = F_{1}(t)F_{2}(t)F_{3}(t)\dots$$

The failure rate of a parallel system is approximately the product of is (reliable) component values.

$$\lambda_P \approx \lambda_1 \lambda_2 \lambda_3 \ldots$$

Systems can be depicted by *reliability block diagrams* (RBDs). The analysis of large systems is carried out in successive stages. At each stage a small number of components connected either in parallel or in series is combined with equations as shown above. In this way the complexity of the system can be reduced step by step. The *fault tree analysis* (FTA) is an alternative method to deal with complex systems. Parallel systems are combined by an OR gate symbol. Series systems are combined by an AND gate symbol. Top events are shown in a rectangle and basic failure causes are shown in circles. Software tools exist that support a FTA or the analysis of a RBD. Systems might show cross-linkages so that some units are in more than one subsystem. One way of dealing with this problem is to use a theorem on conditional probability or to apply a truth table (Davidson 1988).

These approximate equations for series and parallel systems are quite useful in day-to-day business. The last equation also shows the ability of parallel systems to achieve low failure rates and thus high reliability. For example, three components combined in parallel with a failure rate of 10^{-3} 1/FH each, yield an overall failure rate of 10^{-9} 1/FH. This is a failure rate that could not have been achieved by a single component no matter how carefully this component was manufactured and tested. This thought leads us to the concept of redundancy, which is so typical in safety critical aircraft systems.

Redundancy is the existence of more means for accomplishing a given function than would simply be necessary. It is divided into

- · Homogeneous redundancy (the multiple means are identical) and
- Inhomogeneous redundancy (the multiple means are of different type)

22 Section 2: Aircraft Systems

Inhomogeneous redundancy is divided into:

- Dissimilar redundancy or
- Diversitary redundancy

Safety-critical aircraft systems often show *triplex* subsystems. The system architecture of safety-critical computers may be even of *quadruplex* or *duo duplex* type.

The subsystems of a system with built-in redundancy may all work together. If one subsystem fails, the others will just have to cope with a somewhat higher load. These systems are called *activeactive* systems. Other systems may be of the *activestandby* type and need to perform a changeover in case of a failure. If the standby subsystem is constantly waiting to be activated, it is on *hot standby;* otherwise it is on *cold standby.* The changeover should not be dependent on a changeover unit, because this unit with its own limited reliability might fail and prevent the changeover. If an active-standby concept is applied, the subsystems should take turns doing the job. This could be achieved with a planned changeover before every takeoff. If the same subsystem stays in standby all the time, it may show an (undetected) *dormant failure* and hence will not be able to take up the job in case of failure of the first subsystem. Systems with a potential of dormant failures need regular maintenance checks and should be avoided.

An assumption has been made in the calculation of parallel systems that the failures of individual subsystems are independent of each other, that is, that two or more subsystems do not fail simultaneously from precisely the same cause (except purely by chance). However, most systems have the potential of having more than one failure due to a common cause. These failures are called *common cause failures* (CCFs). They tend to arise from errors made during design, manufacture, maintenance, operation, or environmental effects. For example, loss of power supply could cause both a running and a standby pump to fail (design error), or an empty fuel tank could cause all engines to quit (error in operation). Because these failure modes may appear to be outside the system being assessed, they can easily be overlooked, leading to too-optimistic assessments. Methods to avoid common cause failures in the design stage are the application of

- Inhomogeneous redundancy (see above)
- Segregation in the rooting of redundant wires, pipes, and ducts
- Separation of redundant components
- Placement of safety-critical components in safe areas
- Design of redundant components or software programs by independent teams with different (software) tools

An aircraft should not only be safe to fly, it should also show very few errors that need the attention of maintenance personnel. In this respect we face a problem with high safety requirements. High safety requirements lead to the application of redundancy and hence more subsystems. The probability of a failure leading to the loss of the overall function can be reduced by redundancy, but the probability of occurrence of any failure anywhere in the system is increased. Two subsystems with a failure rate of 10^{-3} 1/FH each yield an overall probability of failure of about 10^{-6} and a probability of any failure of $2 \cdot 10^{-3}$ (based on a 1-hour operation). Three subsystems yield an overall probability of failure of 10^{-9} and a probability of any failure of 10^{-3} . The level of safety during flight can only be achieved if all subsystems work properly before takeoff, but, as we have seen, the probability for any failure increases with an increased number of subsystems. These thoughts lead to what is called availability and dispatch reliability.

The *steady state availability* is defined as the probability that a system will be available when required, or as the proportion of total time that the system is available for use. Therefore, the

availability of a system is a function of its failure rate λ and of its repair rate $\mu = 1 / MTTR$, where MTTR is the mean time to repair:

$$A_{\rm SS} = \frac{\rm MTBF}{\rm MTBF} + \rm MTTR} = \frac{\mu}{\lambda + \mu}$$

The *instantaneous availability*, or probability that the system will be available at time *t*, is

$$A_{I} = \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t}$$

Often it is more revealing to consider system unavailability, U = 1 - A. The instantaneous availability of an aircraft at the moment of dispatch from the gate is called *dispatch reliability*. Dispatch reliability, for technical reasons, primarily depends on the combined dispatch reliability of the aircraft systems. The airlines monitor their fleets' dispatch reliability very carefully because high *dispatch unreliability* leads to delays and cancellations of flights and incurs delay and cancellation costs (see below). Dispatch reliability depends on the maturity of an aircraft program and is on the order of 0.99. A method to increase dispatch reliability is the introduction of *built-in test equipment* (BITE) into electronic systems. Though this adds complexity and might result in spurious failure indications, it can greatly reduce maintenance times by providing an instantaneous indication of failure location. Another method is to provide *extra redundancy* above the level required for safety reasons. This would than allow to dispatch with one subsystem inoperative. Components that are not needed for takeoff may be known as *flying spares*. The pilot gets a clear indication about which subsystems or components need to be available at takeoff from the *minimum equipment list* (MEL), written by the airline on the basis of the master minimum equipment list (MMEL) provided by the manufacturer and approved by the authorities.

Reliability assurance during the aircraft system design applies a couple of different methods, including:

- Drawing a fault tree for a *fault tree analysis* (FTA) (see above) starts from consideration of system failure effects, referred to as top event. The analysis proceeds by determining how these can be caused by lower-level failures. In this way it is a top-down approach.
- The *reliability apportionment* breaks an overall system reliability requirement down into individual subsystem reliabilities. This is common in large systems when different design teams of subcontractors are involved. Clearly it follows a top-down approach.
- In contrast, the *failure mode, effects, and criticality analysis* (FMECA) (MILSTD-1629) follows a bottom-up approach. It considers each mode of failure of every component of a system to ascertain the effects on system operation and defines a *failure mode criticality number*.
- The *zonal safety analysis* (ZSA), rather than looking at an aircraft from a functional point of view, looks at the components' location. The ZSA checks installation rules and checks the effects of events originating within the zone, in other zones, or on the outside.

Software defies the above calculations and methods. However, information can be drawn from RTCA/DO-178B, which deals with *software considerations* in airborne systems and equipment. *Environmental conditions* for airborne equipment are presented in RTCA/DO-160D.

Mass

Mass estimation of aircraft systems is part of the mass (or weight) estimation of the whole aircraft.

The mass of all the aircraft systems $m_{_{SYS}}$ amounts to 23–40% of the aircraft's empty mass $m_{_{OE'}}$ where $m_{_{OE}}$ is the mass related to the operational empty weight (OEW). The figure 23% is true in

24 Section 2: Aircraft Systems

case of a modern long-range airliner, whereas 40% is about right for a smaller aircraft such as business jet. Hence, for civil jet transport we may write

$$\frac{m_{\rm SYS}}{m_{\rm OE}} \approx 0.23 - 0.4$$

On average this ratio comes to $\frac{1}{3}$, as stated above. Taking into account the ratio of the aircraft's empty mass m_{OE} and the maximum takeoff mass $m_{\text{MTO'}}$ the mass related to the maximum takeoff weight (MTOW).

$$\frac{m_{\rm SYS}}{m_{\rm MTO}} \approx 0.11 - 0.23$$

Figure 2.1 shows the mass of aircraft systems of selected civil jet aircraft as a function of their maximum takeoff mass. We follow a *top-down approach* and fit a curve to these data to obtain

$$m_{\rm SYS} = 0.92 \, m_{\rm MTO}^{0.85}$$
 for $m_{\rm SYS}$ and $m_{\rm MTO}$ in kg

This function is shown in Figure 2.1. The average relative mass of the individual systems of civil jet aircraft is given in Table 2.4.

Some aircraft systems, like the landing gear system (ATA 32) and the equipment and furnishings (ATA 25), account for a large percentage of the total aircraft system mass. The avionic system relative mass is 6% on average, but this figure depends on aircraft size because the amount of avionics needed in jet aircraft tends to be nearly constant. For this reason, the relative mass of avionic systems of business aircraft may be as high as 14% and as low as 5% in case of a large civil transport. As can be seen in Table 2.4, a number of systems are of minor importance for aircraft system mass predictions.

Alternatively, it is also possible to follow a *bottom-up approach*. This statistical technique uses system parameters to predict the mass of the system. Equations are given in Raymer (1992), Roskam (1989), and Torenbeek (1988). In addition, the knowledge gathered in papers from the Society of Allied Weight Engineers should be tapped (see SAWE 2002).

FIGURE 2.1 Mass of aircraft systems of selected civil jet aircraft plotted against their maximum takeoff mass.

FIGURE 2.2 The Airbus A321 is used throughout this section to provide aircraft system examples. One hundred eighty-six passengers in two-class layout, MTOW: 83,000 kg, $M_{MO} = 0.82$, maximum FL 390.

Identifier	Name of system	Average relative mass of system
21	Air conditioning	6%
22	Auto flight	1%
23	Communications	2%
24	Electrical power	10%
25	Equipment/furnishings	24%
26	Fire protection	1%
27	Flight controls	8%
28	Fuel	3%
29	Hydraulic power	7%
30	Ice and rain protection	<1%
31	Indicating/recording systems	<1%
32	Landing gear	27%
33	Lights	2%
34	Navigation	3%
35	Oxygen	1%
36	Pneumatic	2%
38	Water/waste	1%
49	Airborne auxiliary power	2%

TABLE 2.4 Average Relative Mass of Aircraft Systems of Civil Jets

Statistics of aircraft system mass have to take as many aircraft into account as possible in order to broaden the statistical base. This, however, is really possible only if mass data are based on comparable and detailed mass breakdowns. Unfortunately, there are many quite different breakdowns in use, and it is found that system boundaries overlap from one method to another or are not well defined in the first place. So in the present situation it is very difficult to use and compare mass data and mass equations based on one of these breakdowns in another setting. This situation adds to the difficulties that exist with statistical methods anyhow and explains why statistical mass equations for systems or subsystems do not provide particularly reliable data.

Boeing has used a *breakdown format* called Weight Research Data 1 (WRD1). In the literature, breakdowns very similar to WRD1 can be found. Airbus uses so-called Weight Chapters. Another approach is given with MIL-STD-1374. Above we have used a mass breakdown according to the ATA 100 chapter numbering. ATA 100 also includes a widely accepted mass breakdown for weight and balance manuals. This breakdown, however, provides only as much detail as needed in aircraft operation but not enough detail for aircraft system design.

Note that aircraft system *mass predictions* deteriorate in *accuracy* when the level of detail is increased. For its old class I weight prediction method, Boeing estimates the prediction of single systems to be off by as much as $\pm 90\%$. In contrast, the resultant mass of all systems combined is claimed to be off by not more than $\pm 16\%$ (Boeing 1968). This is because many inaccuracies combined fortunately cancel out to a certain extent.

Detailed system mass predictions are also necessary for *center of gravity* (CG) *calculation* for the aircraft. The main landing gear accounts for about 87% and the nose landing gear for the remaining 13% of the complete landing gear mass. With known positions of nose and main landing gear, this information can be fed into the CG calculation of the aircraft. The CG of the other systems can roughly be assumed at a point 40–50% of the fuselage length aft of the aircraft nose.

Practical mass predictions will look like this: In the early design stage, statistical methods are used. The aircraft manufacturer can also use the information contained in the mass database of older aircraft for the new design. In a later design stage a subcontractor will offer a system or an item of equipment. The subcontractor probably has quite a good idea what the item's mass will be from a comparison with similar items already built. If the required size of equipment is different from an older one, a mass estimate may be obtained from scaling. In the final development stage, mass accounting can be based on the actual mass of components that are already delivered to the manufacturer.

There is another virtue in mass predictions: the system mass has been used for rough *cost calculations*. This is possible when, from statistics, costs per unit mass are known and costs are assumed to be proportional with mass. Evidently, the concept of calculating costs from mass fails if expensive mass reduction programs are being applied. The concept also fails if highly sophisticated technologies are applied to reduce mass that are not considered in the established cost per unit mass.

Power

Gliders use the energy of up-currents, while solar-powered vehicles use the energy from the sun. Human-powered flight has also been demonstrated. Propulsive power for any other "down to earth" flying depends on fuel. This fuel is used in the aircraft main engines. *Secondary power* systems (hydraulic power, electrical power, pneumatic power) in turn draw on engine power to supply their client systems with *nonpropulsive power* in all those cases where functions are not directly actuated by the pilot's muscles. This is the simple picture of the aircraft power management. However, there is more to it, due to safety requirements and the need for autonomous operation of the aircraft on the ground with engines shut down.

Various secondary power sources are available in the air and on the ground. Secondary power loads may be grouped into two major categories. Power conversion transforms secondary power from one form into another. An *auxiliary power unit* (APU) (see above) is used to produce power from fuel independent of the main engines. An APU is a gas turbine engine. Most often it produces electrical power and pneumatic power. A *ram air turbine* (RAT) (see Subsection 2.8) is used to produce hydraulic or electrical power from the kinetic energy of the air passing by the aircraft. This is possible even without fuel and without the main engines running—at least as long as the aircraft soars down consuming its potential energy. Except for the pilot's own energy, the *aircraft batteries* are the last and very limited source of energy on board.

Ground power may be available on the apron or in the hangar. The aircraft may be supplied directly with electricity, high-pressure hydraulic fluid, pressurized air, and/or air conditioned air. Human power could work a hand pump in the hydraulic system. If only electrical ground power is available, the aircraft depends on its secondary power conversion capabilities to activate the hydraulic and pneumatic system. Without ground equipment and with engines shut down, the aircraft may operate autonomously if it is equipped with an auxiliary power unit (APU).

First of all, secondary power loads may be grouped into:

- Technical loads consumed by equipment required to operate the aircraft safely
- Commercial loads consumed by equipment required to increase passenger comfort and satisfaction, given the airline's need to provide these services

Power conversion among different³ secondary power systems is used to increase overall system reliability. If we consider electrical power, hydraulic power, and pneumatics:

- Six different unidirectional conversions are possible. Examples are:
 - Electrical to hydraulic power conversion: electric motor-driven pump
 - Pneumatic to hydraulic power conversion: air turbine motor-driven pump
 - Hydraulic to electrical power conversion: hydraulic motor-driven generator
- Three different bidirectional conversions are possibilities that allow a two-way power conversion among two different secondary power systems within one conversion unit.

For many years hydraulic, pneumatic, and electrical power supply in commercial aircraft had been sufficient to meet the demands from technical and commercial loads. System design emphasized reliable, lightweight solutions. From fuel input to system output, very low overall efficiencies were accepted in exchange.

In recent years it has been observed that aircraft face increasing technical loads. Also, market trends together with increasing flight durations have resulted in higher commercial loads, caused, for example, by today's standards in in-flight entertainment. Possibilities for power off-takes do not increase proportionally with aircraft size. Large modern civil aircraft are therefore likely to face limitations of cost effectiveness, geometry, or weight with present-day technologies in an attempt to meet these new power load levels. The aerospace industry has identified a potential deadlock, where power needs will exceed the maximum available power supply.

In the future a move toward electrical power as a single source to meet secondary power demands is expected to be a solution to the problem. The last aircraft generation brought steering by wire. The next generation of aircraft might bring power by wire.

³Power conversion is even applied within one type of secondary power system: the hydraulic system. Transport category aircraft apply several independent hydraulic systems. Among pairs of these hydraulic systems unidirectional or bidirectional hydraulic power transfer without the interchange of hydraulic fluid can be desirable. For this purpose, power transfer units (PTU) (ARP 1280) are used. They are built by coupling a hydraulic motor and a hydraulic pump via a connecting shaft.

Costs and Trade-Off Studies

Trade-off studies play an important roll in aircraft system design. Trade-off studies try to find the best among several system design proposals. Safety aspects allow no compromise because certification regulations have to be closely followed. Also, performance aspects leave little room because usually only as much performance as necessary to do the job will be allowed for. More powerful aircraft systems will unnecessarily produce costs that add to the overall costs of the aircraft. Clearly, costs need to be reduced as much as possible to come up with a viable product. Therefore, it is the costs aspect that is usually decisive in trade-off studies of which system design will get on board the aircraft.

At the aircraft system level, evaluations are done in the early design stage by looking separately at various aspects:

- Mass
- Maintainability
- Reliability
- System price
- Other specific criteria depending on the aircraft system in question

Based on these separate evaluations, the simplest way to come up with one single figure of merit for a proposal is to define subjectively a *weighted sum* of the results based on the individual criteria.

In contrast to the above approach, at the aircraft level an evaluation is traditionally based primarily on one single figure: the direct operating costs (DOC). DOCs take account of criteria such as mass, maintainability, and aircraft price, but combine these separate parameters unambiguously by calculating their economical implications. Subjective manipulations of the results are largely avoided in this way.

Unfortunately, aircraft DOC methods cannot be taken as is for applying this advantage to an aircraft system evaluation. In contrast to aircraft DOC methods, a DOC method on the systems level must incorporate many system-specific parameters. Therefore, a *DOC method for aircraft systems* called DOC_{sys} has been developed (Scholz 1998) which follows the principles of aircraft DOC methods as closely as possible while taking aircraft system peculiarities into account as much as necessary.

$$C_{\text{DOC,SYS}} = C_{\text{DEP}} + C_F + C_M + C_{\text{DEL}} + C_{\text{SH}}$$

where C_{DEP} = depreciation of the system (a function of system price)

 $C_{\rm E}$ = fuel costs caused by the system

 C_{M} = direct maintenance costs caused by the system

 C_{DEL} = delay and cancellation costs caused by the system

 $C_{\rm SH}$ = capital costs caused by necessary system spare parts on stock (spare holding)

The fuel costs, C_{F} , are due to:

- Transportation of the system's mass (fixed or variable during flight) (taking into account the lift-to-drag ratio of the aircraft and the specific fuel consumption of the engines)
- Power off-takes from the engines (by electrical generators or hydraulic pumps)
- Bleed air off-takes (for the pneumatic system)
- Ram air off-takes (e.g., for the air conditioning system)

• Additional drag caused by the presents of aircraft systems, subsystems, or single parts (e.g., due to drain masts)

In contrast to Scholz (1998), who combines various system aspects to U.S. dollars, Shustrov (1998) combines system mass effects and effects related to the system's energy consumption to a quantity called *starting mass*.

Proprietary methods for the evaluation of aircraft systems are in use at aircraft manufacturers and subcontractors.

2.2 Air Conditioning (ATA 21)

Air conditioning as defined by ATA 100:

Those units and components which furnish a means of pressurizing, heating, cooling, moisture controlling, filtering and treating the air used to ventilate the areas of the fuselage within the pressure seals. Includes cabin supercharger, equipment cooling, heater, heater fuel system, expansion turbine, valves, scoops, ducts, etc.

Fundamentals

Impact of Atmospheric Parameters

In the troposphere, the air temperature decreases with increasing altitude. In the stratosphere above 11,000 m (36,089 ft), the air temperature is at constant –56.5 °C. The air pressure also decreases with altitude. Although oxygen amounts to approximately 21% independent of altitude, the partial pressure⁴ of oxygen drops with increasing altitude. Our body is used to a partial oxygen pressure of about 0.21 times sea level pressure. If we want to survive at high altitudes, either (a) the oxygen fraction has to be increased (using an oxygen system), or (b) the total pressure has to be maintained close to sea level pressure (using a pressurization system). For civil aircraft generally option (b) is applied; flights in nonpressurized cabins⁵ without supplemental oxygen are limited to an altitude of 10,000 ft. Military aircraft use a combination of (a) and (b); cabin altitude⁶ does not exceed about 20,000 ft.

Purpose of Air Conditioning Systems

The purpose of the air conditioning system is to make the interior environment of the aircraft comfortable for human beings. Depending on the type of aircraft and altitude of operation, this may involve only *ventilation* of the cabin by supplying a flow of fresh air using air vents. If the temperature must be adjusted, some method of *heating* or *cooling* is required. At high altitudes the aircraft can fly above most of the weather conditions that contain turbulence and make flight uncomfortable. Additionally, the fuel efficiency of the aircraft is increased. *Pressurization* is necessary if the aircraft is operated at these high altitudes. In some parts of the world the relative humidity⁷ is quite high. Water extractors are therefore used for *dehumidification* of the cabin air. This is necessary to

⁴Partial pressure: "The pressure exerted by one gas in a mixture of gases; equal to the fraction ... of one gas times the total pressure" (AIR 171).

⁵Nonpressurized cabin: "An airplane cabin that is not designed ... for pressurizing and which will, therefore, have a cabin pressure equal to that of the surrounding atmosphere" (SAE 1998).

⁶Cabin altitude: "The standard altitude at which atmospheric pressure is equal to the cabin pressure" (SAE 1998).

⁷Relative humidity: "The ratio, expressed as percentage, of the amount of water vapor ... actually present in the air, to the amount of water vapor that would be present if the air were saturated with respect to water at the same temperature and pressure" (SAE 1998).