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1 Introduction 
In mathematical terms, the aircraft design problem can be stated as a general constrained multi-
objective optimisation task. The problem is to minimise one or more objective functions1 

( 1 ) f k qk ( )z = 1 to , the number of objectives . 

Fig. 1 provides some insight into optimisation goals in aircraft design. Optimisation goals can be 
summarised by: "maximise manufacturer's profit at committed Direct Operating Costs (DOC's)". 
  
Evidently, certain constraints have to be met: 

( 2 ) ( )g j pj z ≤ =0 1 to the number of constraints, . 

The design variables have to stay within certain limits. These limits are nothing more than addi-
tional constraints which are specifically expressed as lower and upper bounds: 

(3) i
l

i i
uz   z   z i =    o ,     ≤ ≤ 1 to the number of design variables.  

It is convenient to distinguish between given (known, independent or input) design variables - de-
noted here as x - and those (unknown, dependent or output) design variables which are determined 
during the design process  - denoted here as y . Both types - independent and dependent - design 
variables are elements of the vector z that includes all parameters: 

( 4 ) [ ]z = y y y x x xn m
T

1 2 1 2, , ..., , , , ..., . 

m design variables are considered known (or independent), whereas n design variables are consid-
ered unknown (or dependent): o m n= +  . 
 
 
1.1 The Traditional Iterative Approach to Aircraft Design 
The traditional approach to aircraft design follows a "manual" iterative procedure (see e.g. [TOREN-

BEEK 82], [ROSKAM 89] and [RAYMER 92]). This traditional approach to aircraft design is illustrated 
in Fig. 2. Fig. 2 was inspired by the general design procedure as proposed by [TORENBEEK 82] (Fig. 
5-18). Note, that Fig. 2 takes a very rough view on the aircraft design process. Therefore, only the 
outer iteration loops are shown. The traditional iterative design procedure is also a hierarchic design 
procedure because each main tasks can be broken down into several smaller sub-tasks. Tradition-
ally, main tasks are taken care of one after the other. Fig. 2 lists the input parameters x to aircraft 
design, output parameters y follow from subsequent calculations. 
 
The independent design variables x can be grouped into 
• requirements, 
• technology dependent parameters and physical parameters, 
• freely chosen parameters. 

                                                           
1 Notation: Matrices are indicated by upper-case bold letters, vectors by lower-case bold letters and scalars by 

plain lower-case letters. 
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The most fundamental requirements are payload and range. Technology dependent parameters 
(e.g. from aerodynamics, propulsion and materials) and physical parameters (e.g. air density) are 
input values to almost all calculations. They can only be influenced within a very limited interval. 
The designer has to make decisions as e.g. for or against a canard configuration versus a conven-
tional tail aft configuration. These design decisions outside the iteration loops of the traditional de-
sign process are characterised by freely chosen parameters. 
 
Still in the 1960th, [CORNING 64] considered it impossible to succeed any different in aircraft design 
than by iterative procedures: 

In the design of the airplane, it would be convenient and simple if an exact solution could be reached 
with the first estimate. However, due to the interrelation of different components of the airplane to 
each other and to the airplane as a unit, this is impossible. 

 
With the advent of the computer, the traditional iterative aircraft design approach was strongly sup-
ported by computer tools. Examples of commercial  tools of this sort are AAA [DARCORP] and PI-
ANO [SIMOS 96]. However, these tools were written for aircraft design departments as potential 
users and not for a fully multidisciplinary design environment. 
 
 
1.2 Other Approaches to Aircraft Design 
Furthermore, expectations had been high to automate the aircraft design process with extended 
computer usage. There are two main approaches to automated aircraft design: 
• Formal optimisation procedures have been applied to solve aircraft design problems (see e.g. 

[DOVI 90], [VAN DER VELDEN 94]). Optimisation procedures aim at finding a minimum to a sin-
gle objective function or to a weighted sum of objective functions. A single objective function 
could e.g. calculate Direct Operation Costs (DOC). The optimisation procedure will then aim at 
minimising the calculated Direct Operation Costs. 

• Also expert systems have been applied to generate an aircraft design. ADROIT (Aircraft Design 
by Regulation of Independent Tasks) is an example of an expert system which concentrates on 
wing design and works with a mixture of ordinary procedural calculations and rule based reason-
ing [ALSINA 87]. 

 
Both computerised approaches show certain deficiencies: 
• Formal optimisation - used on its own - does not sufficiently recognise the role of the human 

mind as the leading force in the design process. 
• Expert systems, as generally implemented with current techniques, have very limited means of 

knowledge representation, and therefore cannot achieve the requirements of the aircraft design 
process. 
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The main problem with most automated aircraft design methods is, however, that they have a 
"monolithic" structure. They assume all aircraft design knowledge to be gathered in form of source 
code in one program. This assumption is unrealistic in an industrial environment, where the multid-
isciplinary and distributed nature of the aircraft design process has to be acknowledged. 
 
 
1.3 Multidisciplinary Design Optimisation (MDO) 
This paper favours an approach known as Multidisciplinary Design Optimisation (MDO). MDO co-
ordinates the couplings between specialised disciplines during the aircraft design process in a very 
systematic way. The specialised disciplines have a very detailed view on their subject and maintain 
locally their own specialised computer tools. At the same time the specialised disciplines provide 
that bit of information to the MDO which is relevant in a general aircraft design context. The in-
formation provided, is backed up by the entire disciplinary knowledge including experience from 
other aircraft projects and proven computing capabilities. 
 
The theoretical background of MDO is promoted by a Technical Committee (TC) of the American 
Institute of Aeronautics and Astronautics (AIAA) [AIAA 91]. The MDO methodology was origi-
nally developed and published in several papers by J. Sobieski, working at NASA Langley (see e.g. 
[SOBIESKI 90a]).   J. Sobieski is also chairman of the AIAA TC on MDO. An industrialised version 
of the MDO-approach is presently being developed at Daimler-Benz Aerospace Airbus.  The indus-
trialised MDO-approach is called MAEFISTO: Multidisciplinary Aeroelastics Flight Dynamics & 
Industrialised Structural Dynamics Optimisation. 
 
 
 

2 Fundamentals of MDO 
 
Aircraft design is based on answering "what if" questions. Mathematically, a variation ∆x  of one 
specific independent design variable x is fed into the design process. After re-evaluating the entire 
design - traditionally with all its iterative loops - the consequences of the design change (given as 
∆y ) on dependent design variables y can be found. This approach requires an enormous computa-
tional effort - especially if the aircraft design is highly coupled. MDO helps to reduce the computa-
tional effort of a series of "what if" questions by introducing the global sensitivity equation for the 
system under discussion. 
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2.1 Deriving the Global Sensitivity Equation for a Set of Three Independent 
Design Variables 

For the sake of simplicity we will (for the moment) only consider a small system with one inde-
pendent design variable x and with three dependent design variables 1y , 2y  and 3y . Independent 
design variables x follow directly from design requirements, technology dependent parameters or 
freely chosen aircraft design parameters. Dependent design variables y follow rigidly from calcu-
lations based on independent design variables x. Dependent design variables specify further aircraft 
parameters that do not allow for any deviation from their calculated value, if the aircraft shall per-
form as intended. Due to the fact that we treat systems in this context as being coupled, we assume 

1y  to be a function of all the other independent and dependent design variables. The same is as-

sumed for 2y  and 3y .   Hence  

( )1 1 2 3y  =  f x , y , y  

( 5 )  ( )2 2 1 3y  =  f x , y , y  

( )3 3 1 2y  =  f x , y , y  . 

1f , 2f  and 3f  can be equations of any form (nonlinear, transcendental, ...). These functions may 

be linearised in the neighbourhood (denoted by x , 1y , 2y , 3y ) of the solution for a possible system 
design (denoted by 0 x , 0 1y , 0 2y , 0 3y ). Using a Taylor series abridged to its linear part yields 

( ) ( ) ( )1 0 1
1

0
1

2
2 20

1

3
3 30y  = y  -  

f
x

x - x  -  
f
y

y - y  -  
f
y

y - y
∂
∂

∂
∂

∂
∂  

( 6 )  
( ) ( ) ( )2 0 2

2
0

2

1
1 10

2

3
3 30y  = y  -  

f
x

x - x  -  
f
y

y - y  -  
f
y

y - y∂
∂

∂
∂

∂
∂  

( ) ( ) ( )3 30
3

0
3

1
1 10

3

2
2 20y  =  y  -  

f
x

x - x  -  
f
y

y - y  -  
f
y

y - y∂
∂

∂
∂

∂
∂ . 

To write equation (6) more compact, we define 

( 7 )  ∆ x x x= −0  

and 

∆ y y y1 1 0 1= −  

( 8 )  ∆ y y y2 2 0 2= −  

  ∆ y y y3 3 0 3= −  . 

Substituting equations (7) and (8) into (6) and rearranging the results leads to 
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∆ ∆ ∆ ∆y
f
y

y
f
y

y
f
x

x1
1

2
2

1

3
3

1− − =
∂
∂

∂
∂

∂
∂

 

( 9 )  − + − =
∂
∂

∂
∂

∂
∂

f
y

y y
f
y

y
f
x

x2

1
1 2

2

3
3

2∆ ∆ ∆ ∆  

− − + =
∂
∂

∂
∂

∂
∂

f
y

y
f
y

y y
f
x

x3

1
1

3

2
2 3

3∆ ∆ ∆ ∆  

 
This divided by ∆ x  and written in matrix form is 

 ( 10 )  

1

1

1

1

2

1

3

2

1

2

3

3

1

3

2

1

2

3

1

2

3

− −

− −

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋅

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

f
y

f
y

f
y

f
y

f
y

f
y

y
x

y
x

y
x

f
x

f
x

f
x

∆
∆

∆
∆

∆
∆

 .

 
Equation (10) is called global sensitivity equation and is of the form A x b⋅ =  . Matrix A is a Jaco-
bian matrix and depends only on the coupling of the original equations (5) and contains the sensitiv-
ity derivatives. The sensitivity derivatives are partial derivatives. Each of them requires only know-
ledge of one system function 1f , 2f  or 3f  for its calculation.  
 
The terms ∆ ∆iy  x/  in vector x are called system sensitivity derivatives. Each of them accounts 
fully for all of the couplings in the system. The system sensitivity derivatives answer the "what if" 
questions. 
 
The expressions ∂ ∂if / x  in vector b show the sensitivity of a single dependent variable iy  with 
respect to the independent variable x . 
 
If equations 1f , 2f  and 3f  were uncoupled, all the partial derivatives in A were zero and the sys-
tem sensitivity derivatives would be equal to the sensitivity derivatives in b. The virtue of equation 
(10) lies in the fact that with only the knowledge of system functions 1f , 2f  and 3f  separately 
(and the use of partial derivatives), the total change of dependent system parameters ( y ) with 
changes of the independent parameter ( x ) can be determined - no matter how complex and coupled 
the considered system might be. 
The specialised disciplines in the aircraft design process are expected to provide "their" sensitivity 
derivatives − ∂ ∂f yi j/  in the Jacobian together with "their" sensitivity derivatives ∂ ∂if / x  in vec-

tor b. 
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A solver for sets of linear equations has to be applied to solve for x in equation (10). If the sensitivi-
ties due to changes of another independent variable are of interest, only vector b has to be re-
evaluated and the global sensitivity equation (10) has to be solved again for x. 
 
 
2.2 Deriving the Global Sensitivity Equation for n Independent Design Vari-

ables 
Systems which can be described by three equations would not be considered "complex". The fore-
going simplification was chosen for the sake of clarity but can now - without further discussion - be 
extended to any number of dependent variables y . Each dependency is established by one equa-
tion. Constraints as well as upper and lower limits to design variables are treated separately by each 
discipline. In general, the sensitivity matrix A is a square matrix of dimension n x n. 
 

Fig. 3 relates the aircraft design parameters from Fig. 2 to the parameters as given in the global 
sensitivity equation (11). 
 
 
2.3 Obtaining Consistent Design Variables by Newton's Method 
Before it is possible to look at sensitivities and design optimisation, consistent design variables 
have to be found. All dependent and independent design variables have to meet the system equa-
tions (as e.g. given with equations (5)). Any method capable of solving sets of general nonlinear 
equations may be applied. Newton’s Method [HOFFMAN 92] can e.g. be applied to calculate de-
pendent variables from given independent variables as proposed by [GROSSMAN 90]. For the appli-
cation of Newton’s Method, equations (5) are rewritten in the form: 
 

( 11 )  

1

1

1

1

2

1

2

1

2

1 2

1

2

1

2

-  
f
y -  

f
y

-  
f
y -  

f
y

-  
f
y -  

f
y

y
x

y
x

y
x

=

f
x

f
x

f
x

n

n

n n n n

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

⎡

⎣

⎢
⎢
⎢
⎢
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⎢
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⎥

⋅
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∂
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∂
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( )1 1 2 3 0f x, y y , y, =  

( 12 )  ( )2 1 2 3 0f x, y , y y, =  

( )3 1 2 3 0f x, y , y y, =  . 

Newton’s Method states that starting from an initial guess of 0 0
1

0
2

0
3y =[ ], ,y y y T , the dependent de-

sign variables can be found by repetitively solving for ∆y  in A y f⋅ =∆  and calculating values for 
iteration steep t+1 from the previous iteration step t with 

( 13 )  t t ty∆ = ⋅−A f1      and 

( 14 )  t t t+ = +1y y y∆   . 

Combining equations (13) and (14) gives 

( 15 )  t t t t+ −= + ⋅1 1y y A f . 

Convergence is reached if t
iy∆ ≤ ε  and/or t

i
t

if f+ − ≤1 δ . A y f⋅ =∆  expands e.g. for three de-

pendent design variables to 

( 16 )  

1

1

1

1

2

1
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2

1

2

3

3
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1
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⎥

∆

∆

∆

  . 

 
Newton's Method as described above, is considered to be the standard approach for solving sets of 
general nonlinear equations. Other methods exist however, and might be beneficial in certain cir-
cumstances. Fig. 4 shows, how the traditional hierarchic and iterative design process (compare with 
Fig. 2) has now become a non-hierarchic design process: All design tasks are taken care of at the 
same time. 
 
 
2.4 Using Newton's Method and the Global Sensitivity Equation for Multidisci-

plinary Aircraft Design Optimisation 
A systematic aircraft design procedure may use Newton's Method and the global sensitivity equa-
tion. The computerised, but human driven design procedure may be organised in the following steps 
as proposed by [SOBIESKI 90a]: 
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STEP 1 Use Newton's Method to obtain a set of consistent dependent design variables y from 
the independent design variables x . 

STEP 2 Assemble and solve the global sensitivity equation to obtain the system sensitivity de-

rivatives ∆
∆

y
x

i

j
 

STEP 3 Use the system sensitivity derivatives to decide how x has to be changed in order 
• to take care of constraints ( )g j z ≤ 0  that might still be violated at this stage, 

• to improve system behaviour by minimising the objective function f k ( )z . 
STEP 4 Repeat from STEP 1 with another change to the same or a different jx  and continue in 

this way until satisfactory system behaviour is attained. 
 
Fig. 5 (adapted from [SOBIESKI 90b], Fig.9) shows how the design procedure given above translates 
into every day engineering life: The disciplinary specialists provide an input to overall aircraft op-
timisation in form of "their" sensitivity derivatives to the Jacobean matrix A in equations (10), (11) 
and (16) and to vector b in equation (10) and (11). After calculating consistent design variables 
with Newton's Method, the system sensitivity derivatives are calculated. They can be used as princi-
pal means of communication among the disciplinary specialists regarding the improvement of the 
design. [SOBIESKI 90b] describes the communication process based on system sensitivity deriva-
tives: 

The specialists are called upon to generate information in their disciplines and to augment it with the 
partial sensitivity derivatives of their outputs with respect to inputs and to the design variables. After 
the partial sensitivity derivatives are used in the global sensitivity equation to calculate the system 
sensitivity derivatives, the specialists are being called upon again to decide on the design modifica-
tions, using system sensitivity derivatives with the aid of formal optimization, and/or judgementally 
including due consideration to the nonquantitative aspects of design. 

 
 
 

3 Numerical Examples to MDO 
 
The approach to multidisciplinary aircraft design as presented above will now be demonstrated with 
two simple numerical examples. 
 
3.1 Getting Started with MDO 
A first insight into the mathematics presented above can most easily be obtained with a very simple 
example. We consider two coupled equations 

( 17 )  y x y1 1 2
2= ⋅  

( 18 )  y x y2 2 1= ⋅  . 
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This is a set of coupled nonlinear equations (because one equation is nonlinear).  This set of equa-
tions can be solved quite readily which allows us to check our further calculations based on the 
derivations above:  We obtain a trivial solution y y1 20 0= =;  and a nontrivial solution 

y
x x1

1 2
2

1
=

⋅
 and y

x x2
1 2

1
=

⋅
. 

 
STEP 1: For the application of Newton's Method we write 

( 19 )  f x x y y x y y1 1 2 1 2 1 2
2

1 0( , , ), = ⋅ − =  

( 20 )  f x x y y x y y2 1 2 1 2 2 1 2 0( , , ), = ⋅ − =  

( 21 )  -  
f
y x y

∂
∂

= − ⋅ ⋅1

2
1 22  

( 22 )  -  
f
y x

∂
∂

= −2

1
2  

Equations (19) through (22) can now be combined to A y f⋅ =∆  which is 
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and from equations (15)  

( 25 )  t t t t+ −= + ⋅1 1y y A f    . 

 
For given independent variables x x1 2 2= =  and an initial guess y = [1; 1]T the iteration yields re-
sults presented in Table 1. 
 
Table 1: Solving Equations (17) and (18) 

by Newton's Method with x x1 2 2= =  
t y1  y2  
0 1,0000 1,0000 
1 0,2857 0,5714 
2 0,1828 0,3657 
... ... ... 
5 0,1250 0,2500 

The results form Table 1 are in agreement with the nontrivial solution calculated above. 
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Lets now assume an objective function f f x x y y y y= = +( , , ),1 2 1 2 1 2 . The question is in which 
direction do we have to change x1  and x2  in order to minimise our objective function. 
 
One way to obtain this answer would be to apply Newton's Method again with a different input to 
x1  and x2 . Let's choose ∆ x1 0 1= + ,  and ∆ x2 0 1= + ,  (one modification at a time). Following the 
iteration, new values for y1  and y2 are obtained. In addition, exact values of the system sensitivity 
derivatives  ∆ ∆y x j1 /  and ∆ ∆y x j2 /  can be calculated. The results of such an approach are given 
in Table 2. 
 
SOBIESKI proposes another more direct procedure to calculate system sensitivity derivatives. Fol-
lowing STEP 2 from Chapter 2.4 we need - in addition to the Jacobean A - the partial sensitivity 
derivatives of functions f with respect to an independent parameter x . For a variation of x1  we need 

( 26 )  
∂
∂

f
x

y1

1
2
2=  and 

∂
∂

f
x

2

1
0=  which yields b1

2
2

0
=
⎡

⎣
⎢

⎤

⎦
⎥

y
. 

For a variation of x2  we need 

( 27 )  
∂
∂

f
x

1

2
0=  and 

∂
∂

f
x

y2

2
1=  which yields b2

1

0
=
⎡

⎣
⎢

⎤

⎦
⎥y

. 

In comparison to Newton's Method, the additional effort to calculate these derivatives is probably 
more than compensated by not having to iterate towards a solution: Following SOBIESKI, we get an 
approximation of∆ ∆y xi j/  from a single step 

( 28 )  
∆
∆

y
A b

x1

1
1= ⋅−  respectively  

∆
∆

y
A b

x2

1
2= ⋅− . 

If required, also approximations to ∆ y  and y may be calculated. This was done for comparison 
with Newton's Method and is presented in Table 2. 
 
 
Table 2: SOBIESKI'S Sensitivity Calculation Compared with Newton's Method 

 x1 2 1= ,       x2 2 0= ,       ∆ x1 0 1= + ,  
 y1  y2  ∆ y1  ∆ y2  ∆ ∆y x1 1/  ∆ ∆y x2 1/  

Newton's Method (exact) 0,11905 0,23810 -0,00595 -0,01190 -0,0595 -0,1190 
SOBIESKI'S Method  0,11875 0,23750 -0,00625 -0,01250 -0,0625 -0,1250 

relative error -0,25 % -0,25 %     
 x1 2 0= ,       x2 2 1= ,       ∆ x2 0 1= + ,  
 y1  y2  ∆ y1  ∆ y2  ∆ ∆y x1 2/

 
∆ ∆y x2 2/

Newton's Method (exact) 0,11338 0,23810 -0,01162 -0,01190 -0,1162 -0,1190 
SOBIESKI'S Method 0,11250 0,23750 -0,01250 -0,01250 -0,1250 -0,1250 

relative error -0,77 % -0,25 %     
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Table 2 shows that we have to use positive ∆x to obtain negative ∆y which minimise our objective 
function. Changes to x1  and x2  have the same impact on y2 . Changes to x2  have a higher impact 
on y1  than equal changes to x1 . Therefore, striving for a minimisation of the objective function, it 
will be "less expensive" to change x2  than x1 . This discussion shows in which way sensitivities 
can be used in decision making related to aircraft design. 
 
The application of Newton's Method for sensitivities, has the advantage of better accuracy at the 
cost of higher computational effort. Sensitivities are only correct within small step sizes of the 
independent variables. In our example for a step size ∆ x2 0 5= + , , the relative error on y1  would 
already be as high as -21%. 
 
Fig. 6 shows the two simple example function. The functions intersect at two points. The intersec-
tion at the origin [0; 0] is the trivial solution. The other intersection is the nontrivial solution. With 
increasing x1  and x2  both y1  and y2  decrease. The partial derivatives with respect to y1  , y2   and 
x are indicated. They are used to determine the global sensitivities ∆ ∆y / x j . 
 
 
3.2 MDO Applied to the Breguet Range Equation 
The independent parameters consist of  requirements 
• to carry a payload  PL = 33000 kg 
• over a distance  R = 13500 km , 
 
technology related parameters (valid for cruising flight): 
• lift coefficient CL = 0 5. , 
• drag coefficient CD = 0 0277. , 
• thrust specific fuel consumption  SFC = 17 mg / N / s  , 
• ratio: operating weight empty, OWE to MTOW: OWE MTOW/ .= 0 497  , 
and physical parameters experienced in the chosen cruising altitude: 
• earth acceleration g = 9 80. m / s2 , 

• air density ρ = 0 3. kg / m3 , 
as well as "freely chosen" parameters: 
• wing loading  W S/ = 700 kg / m2 . 
 
Fuel reserves are considered to be included in the payload. The task is to find three dependent pa-
rameters: 
• maximum take-off weight, MTOW, 
• landing weight, LW, 
• wing area, S. 
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The problem will be solved based on a form of the Breguet Range Equation as presented e.g. in 
[ANDERSON 89]. This equation assumes constant lift and drag coefficients and decreasing airspeed 
as fuel is being burned during flight: 

( 29 )  R
g S

C
C SFC

MTOW
LW

MTOW
L

D
= ⋅ ⋅ ⋅ ⋅ −

⎛

⎝
⎜

⎞

⎠
⎟2

2 1
1

ρ
. 

Three equations are needed (compare to equations (5) ) to calculate the three dependent parameters: 

( 30 )  ( )y MTOW k S LWR1

2
= = ⋅ +    , 

( 31 )  y LW k MTOW PLW2 = = ⋅ +    , 

( 32 )  y S k MTOWS3 = = ⋅   . 
 
These equations include also the independent parameters which are combined to four parameters 
named 

( 33 )  x k R g
C
C

SFCR
D

L
1 0125= = ⋅ ⋅ ⋅ ⋅. ρ    , 

( 34 )  x k OWE MTOWW2 = = /    , 

( 35 )  x k
W SS3

1
= =

/
   , 

( 36 )  x PL4 =    . 

For the application of Newton’s Method, equations (12) are rewritten: 

( 37 )  ( )f k S LW MTOWR1

2
0= ⋅ + − =   , 

( 38 )  f k MTOW PL LWW2 0= ⋅ + − =   , 

( 39 )  f k MTOW SS3 0= ⋅ − =    . 

and differentiated 

( 40 )  − = − ⋅
∂
∂

f
y

k
S

LWR
1

2
1    , 

( 41 )  − = − +
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   , 

( 42 )  − = −
∂
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f
y

kW
2

1

   , 
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( 43 )  − =
∂
∂

f
y

2

3

0    , 

( 44 )  − = −
∂
∂

f
y

kS
3

1

   , 

( 45 )  − =
∂
∂

f
y

3

2

0    . 

 
These partial derivatives are entered into equation (16) which then reads 

( 46 ) 
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Table 3 shows the iterative solution of y1 , y2  and y3  with Newton's Method. 40 iterations were 
necessary to solve for MTOW and LW with an accuracy of a few kg. 
 
Table 3: Iterative Solution with Newton’s Method 

t MTOW [kg] LW [kg] S [m²] 
0 125000  80000 270 
1 118298 91794 168 
2 136983 101080 195 
3 153018 109050 218 

10 216552 140626 309 
20 242134 153340 345 
40 248699 156603 355 

 
System sensitivity derivatives could now be calculated as shown in Chapter 3.1. 
 
 
 

4 The Coupling-Matrix of Disciplines 
 
Aircraft design activities consist of various contributing analysis (CA) usually associated with a 
particular specialised engineering discipline, or a distinct physical part (a subsystem) of the system, 
or both. Partitioning of the system analysis into separate but coupled CA's amounts to a system 
decomposition. In aircraft design, like in most engineering problems, both types of decomposition 
are used simultaneously to break the large task into smaller ones. The mathematics presented here 
applies equally to both types of decomposition. 
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4.1 Deriving the Coupling-Matrix of Disciplines 
The coupling-matrix of disciplines - also called N-square Matrix - can be derived from the global 
sensitivity equation (10). For this purpose, the global sensitivity equation is divided into various 
subsets. The principle of the decomposition and composition can be shown conveniently with two 
partitions called α  and β . The principle can then easily be generalised to arbitrarily large numbers 
of partitions. 
 
We now assume, as example, a system having four independent variables 1y , 2y , 3y , 4y . Addi-
tionally, we recognise that there exists more than just one independent design variable x , but rather 
a vector x including all the independent design variables. From the independent design variables in 

[ ]x = x x x xk m
T

1 1, ,..., ,..., may only one at a time (denoted by kx ) be taken for a sensitivity analysis. 

Introducing kx  into equation (11) yields 

Furthermore, we assume 1y  and 2y  to belong to the first subset (or contributing analysis, CA) "α " 

and  3y  and 4y  to belong to the second subset "β ". For a composition step, subsets are treated as 
black boxes with abbreviations like 

used for sensitivity derivatives on the main diagonal of A and abbreviations like 
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used for sensitivity derivatives belonging to off-diagonal elements. 
 

is an example of an abbreviated element of x and 

an example for an abbreviated element of b. Introducing these abbreviations into equation (45) re-
duces that very equation to 

Equations (48) through (51) only show abbreviations. A calculation with these abbreviations is not 
possible. Before starting a calculation, the original matrix has to be regenerated by decomposition 
and back-substitution and of the original terms. In contrast to Fig. 3 which shows the Jacobean ma-
trix with indications of preliminary aircraft design parameters, Fig. 7 shows a much more detailed 
Jacobean taking care of the industrial dimensions of the multidisciplinary aircraft design problem. 
Named are the various subsets (i.e. disciplines and contributing analysis activities) as relevant to 
MAEFISTO. The disciplines of interest for the multidisciplinary aircraft design process are: aero-
elastics, aerodynamics, loads, handling qualities, landing and ground loads, control systems, struc-
tures. 
 
 
4.2 Organising the Design Process with the Coupling-Matrix of Disciplines 
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In addition to the mathematical backbone of Newtons's Method and sensitivity calculations, the Ja-
cobean matrix in equations (10), (11) and (16), know as N-square Matrix or Coupling-Matrix of 
Disciplines, helps to organise the design process. Each contributing analysis (or: module) covers a 
block of space on the main diagonal of the N-square Matrix. Each block is capable of accepting 
input horizontally from the right and from the left and of transmitting output vertically up and 
down (Fig. 7). The data flow from one module to the other is represented by a dot at the intersection 
of rows and columns of the two blocks considered. The absence of a dot means that no data is being 
transmitted. A dot indicates only that data transmission occurs in form of partial derivatives. How-
ever, the dot does not define precisely what partial derivatives are of interest. To see that, we would 
need to zoom in and decompose the N-square Matrix again. It is possible that the same output data 
items are being sent form one module to several others. On the contrary, an input datum for a mod-
ule must be coming from only one, and no more than one, source module. 
 
To establish an N-square Matrix, one begins with the modules placed on the diagonal in the best 
guess order. The data flow among each pair of modules is systematically investigated. If more than 
one source was found for any data item required, a choice must be made. If data is missing, it must 
come from outside - or another module needs to be added. 
 
In a traditional design environment, after defining the data flow, attention shifts to determining the 
best sequence of execution for the modules. In the convention that assumes execution order along 
the diagonal from the upper left corner, each dot in the lower left half of the matrix marks an in-
stance of the data passed forward (feedforward). Conversely, a dot in the upper right half marks 
the instance of a feedback. Each instance of a feedback implies an iteration in the traditional design 
process. The number of feedback instances and the number of associated iterations may be reduced 
by reordering the modules on the main diagonal. If the N-square Matrix is stored on the computer, a 
program like DeMAID [ROGERS 92] can search for an iteration-minimising pattern. 
 
Note: The interpretation of elements in the Jacobean matrix as providing "feedforward" or "feed-
back" information relates back to the traditional iterative design process. When a system is solved 
by Newton's Method, all equations in the set are tackled simultaneously. Hence no flow of  infor-
mation can be addressed as being "feedforward" or "feedback". 
 
 
 

5 A Note on Formal Optimisation 
 
If the design process shall be further automated, formal optimisation may be applied. Taking the 
human experience further out of the optimisation loop requires the application of global optimisa-
tion algorithms. Global optimisation, however, allows only a limited number (50 ... 100) of inde-
pendent design variables that may be considered simultaneously. This limits the use of global opti-
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misation to preliminary aircraft design. For local optimisation, on the other hand, many well proven 
algorithms exist. They could be used if it becomes possible to keep the human expert in the optimi-
sation loop. The human expert will then guide the local optimisation to the global optimum. 
 
Due to the coupling of equations in aircraft design, a simple straight forward automated optimisa-
tion is not possible. During a first step, a consistent set of dependent design parameters has to be 
found as explained in Chapter 2.4 and 3.1. Only then, obtained parameters can be formally opti-
mised. Hence, the automated design takes the form of continuous switching between consolidation 
and optimisation.  
 
 
 

6 Conclusions 
 
Two paths have been taken in aircraft design in the past. 
1. The traditional aircraft design process is a tedious, predominantly manual and iterative procedure 

with many feedback loops. 
2. The computerised approach has been either dealt with formal optimisation or expert systems. 
 
A certain danger has been experienced with taking the designer out of the loop, as might be case 
with computer approaches. Multidisciplinary Aircraft Design Optimisation, MDO, takes an ap-
proach intermediate to 1. and 2.: 
• The design is structured formally by use of the Coupling-Matrix of Disciplines also known as 

N-square Matrix. Input- and output data is checked and recorded properly. Feedback loops will 
be reduced as much as possible which simplifies the traditional design process. 

• Consistent design variables are found using Newton's Method. 
• The design is optimised "manually" by the introduction of the system sensitivity derivatives. 

They allow a qualitative, judgmental change of independent design variables. In addition also 
quantitative improvements can be made according to information from the system sensitivity de-
rivatives. These step by step improvements will finally guide the design to a practical optimum. 
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Appendix 
Breguet’s Range Equation 
 
List of Symbols 
 
SFC  thrust specific fuel consumption, [kg/N/s] 
T  thrust, [N] 
m  mass, [kg] 
g  earth acceleration, [m/s²] 
L/D  lift over drag, [-] 
MTOW maximum take-off weight, [kg] 
LW  landing weight, [kg] 
Wf  fuel weight, [kg] 
v  true air speed, [m/s] 
R  range, [m] 
CL  lift coefficient, [-] 
ρ   air density, [kg/m³] 
S  wing area, [m²] 
 
 
Derivation 
 
Standard Derivation 
( 1 )  dm SFC T d= − ⋅ ⋅ τ  

( 2 )  d
SFC T

dmτ = −
⋅

1
 

( 3 )  T
m g
L D

=
⋅
/

 

( 4 )  d
L D

SFC g m
dmτ = −

⋅
⋅

/ 1
 

with dR v d= ⋅ τ  

( 5 )  dR
L D v
SFC g m

dm= −
⋅
⋅

⋅
/ 1

 

 

( 6 )  R ds
L D v
SFC g m

dm
R

m

m

= = −
⋅
⋅∫ ∫

0 0

1 1/
 

( 7 )  [ ]R
L D v
SFC g

m m= −
⋅
⋅

−
/

ln ln1 0  
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with m LW1 =  and m MTOW0 =  

( 8 )  R
L D v
SFC g

MTOW
LW

=
⋅
⋅

/
ln  

( 9 )  W MTOW LWf = −  

 
 
Derivation as in [ANDERSON 89] 

( 10 )  dR
L D v
SFC g m

dm= −
⋅
⋅

⋅
/ 1

 

with v
m g
S CL

=
⋅ ⋅
⋅ ⋅

2
ρ

 and 
C
C

L DL

D
= /  

( 11 )  dR
g S

C
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m dmL

D
= −

⋅ ⋅
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−2 1 1
2

ρ
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g S
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D m
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−
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2 1 1
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0

1
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( 13 )  R
g S
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⋅ ⋅

⋅ ⋅ ⋅ ⋅ −
⎛

⎝
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⎞

⎠
⎟2

2 1
1
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Application and Comparison 

Both range equations show that the ratio LW/MTOW  determines the characteristics of the 
range formula. For a comparison some data has been chosen and considered to be fixed: 
 
SFC   = 17 mg/N/s 
g   =  9.80 m/s² 
CL  = 0.5 
CD  = 0.025 
ρ   = 0.3 kg/m³ 
S  = 362 m² 
v  = 260 m/s 
 
With this data, range versus LW/MTOW has been plotted in Fig. A-1. 
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Fig.  A-1: Comparison of Two Different Derivations of Breguet’s Range Equation 
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