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Preface

The book

MclLean, Donald: "Automatic Flight Control Systems"”. New York :
Prentice Hall, 1990.

has more errors than acceptable. | offered the publisher my
corrections in 1992, but the publisher had no money for a second
edition. This is apparently the same situation 30 years later.

Long ago, | also met MclLean at a conference and discussed the
matter with him. Subsequently, | also sent him my corrections,
knowing that this would not change the situation either.

Books are published without peer review process. This can be
problematic as we see in this case. In order to set the scientific record
straight (as much as | can contribute to it), | offered my stundents the
corretions already in 2003. For all other readers with an interest the
corrections are now offered in one archived PDF file.

Except form the many errors, the book by Professor Donald McLean
is very valuable and it would be a loss not to have it.

Dieter Scholz, 2022
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Aircraft Flight Control

1.1 INTRODUCTION

Whatever form a vehicle may take, its value to its user depends on how effectively
it can be made to proceed in the time allowed on a precisely controllable path
between its point of departure and its intended destination. That is why, for
instance, kites and balloons find only limited application in modern warfare.
When the motion of any type of vehicle is being studied it is possible to generalize
so that the vehicle can be regarded as being fully characterized by its velocity
vector. The time integral of that vector is the path of the vehicle through space
(McRuer er al., 1973). The velocity vector, which may be denoted as %, is affected
by the position, x, of the vehicle in space by whatever kind of control, u, can be
used, by any disturbance, &, and by time, 7. Thus, the motion of the vehicle
can be represented in the most general way by the vector differential equation:

% = f(x, u, £ 1) (1.1)

where f is some vector function. The means by which the path of any vehicle can
be controlled vary widely, depending chiefly on the physical constraints which
obtain. For example, everyone knows that a locomotive moves along the rails of
the permanent way. It can be controlled only in its velocity; it cannot be steered,
because its lateral direction is constrained by the contact of its wheel rims on the
rails. Automobiles move over the surface of the earth, but with both speed and
direction being controlled. Aircraft differ from locomotives and automobiles
because they have six degrees of freedom: three associated with angular motion
about the aircraft’s centre of gravity and three associated with the translation of
the centre of gravity.! Because of this greater freedom of motion, aircraft control
problems are usually more complicated than those of other vehicles.

Those qualities of an aircraft which tend to make it resist any change of
its velocity vector, either in its direction or its magnitude, or in both, are what
constitutes its stability. The ease with which the velocity vector may be changed is
related to the aircraft’s quality of control. It is stability which makes possible the
maintenance of a steady, unaccelerated flight path; aircraft manoeuvres are
effected by conerol.

Of itself, the path of any aircraft is never stable; aircraft have only neutral
stability in heading. Without control, aircraft tend to fly in a constant turn. In
order to fly a straight and level course continuously-controlling corrections must
be made, either through the agency of a human pilot, or by means of an automatic
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flight control system (AFCS). In aircraft, such AFCSs employ feedback control to
achieve the following benefits:

1. The speed of response is better than from the aircraft without closed loop
control.

2. The accuracy in following commands is better.

3. The system is capable of suppressing, to some degree, unwanted effects

which have arisen as a result of disturbances affecting the aircraft’s flight.

However. under certain conditions such feedback control systems have a tendency
to oscillate; the AFCS then has poor stability. Although the use of high values of
gain in the feedback loops can assist in the achievement of fast and accurate
dynamic response, their use is invariably inimical to good stability. Hence,
designers of AFCSs are obliged to strike an acceptable, but delicate, balance
between the requirements for stability and for control.

The early aeronautical experimenters hoped to make flying easier by
providing ‘inherent’ stability in their flying machines. What they tried to provide
was a basic, self-restoring property of the airframe without the active use of any
feedback. A number of them, such as Cayley. Langley and Lilienthal, discovered
how to achieve longitudinal static stability with respect to the relative wind, e.g.
by setting the incidence of the tailplane at some appropriate value. Those
expenimenters also discovered how to use wing dihedral to achieve lateral static
stability. However, as aviation has developed, it has become increasingly evident
that the motion of an aircraft designed to be inherently very stable, is particularly
susceptible to being affected by atmospheric turbulence. This characteristic is less
acceptable to pilots than poor static stability.

It was the great achievement of the Wright brothers that they ignored the
attainment of inherent stability in their aircraft, but concentrated instead on
making it controllable in moderate weather conditions with average flying skill. So
far in this introduction, the terms dynamic and static stability have been used
without definition, their imprecise sense being left to the reader to determine
from the text. There is, however, only one dynamic property — stability — which
can be established by any of the theories of stability appropriate to the differential
equations being considered. However, in acronautical engineering, the two terms
are still commonly used; they are given separate specifications for the flying
qualities to be attained by any particular aircraft. When the term static stability is
used, what is meant is that if a disturbance to an aircraft causes the resulting
forces and moments acting on the aircraft to tend initially to return the aircraft to
the kind of flight path for which its controls are set, the aircraft can be said to be
statically stable. Some modern aircraft are not capable of stable equilibrium -
they are statically unstable. Essentially, the function of static stability is to recover
the original speed of equilibrium flight. This does not mean that the initial flight
path is resumed, nor is the new direction of motion necessarily the same as the
old. If, as a result of a disturbance, the resulting forces and moments do not tend
mitially to restore the aircraft to its former equilibrium flight path, but leave it in
its disturbed state, the aircraft is neutrally stable. If it tends initially to deviate
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further from its equilibrium flight path, it is statically unstable. When an aircraft is
put in a state of equilibrium by the action of the pilot adjusting the controls, it is
said to be trimmed. If, as a result of a disturbance, the aircraft tends o return
eventually to its equilibrium flight path, and remains at that position, for some
time, the aircraft is said to be dynamically stable. Thus, dynamic stability governs
how an aircraft recovers its equilibrium after a disturbance. It will be seen later
how some aircraft may be statically stable, but are dynamically unstable, although
aircraft which are statically unstable will be dynamically unstable.

1.2 CONTROL SURFACES

Every acronautical student knows that if a body is to be changed from its present
state of motion then external forces, or moments, or both, must be applied to the
body, and the resulting acceleration vector can be determined by applying
Mewton’s Second Law of Motion. Every aircraft has control surfaces or other
means which are used to generate the forces and moments required to produce
the accelerations which cause the aircraft to be steered along its three-dimensional
flight path to its specified destination.

A conventional aircraft is represented in Figure 1.1, It is shown with the
usual control surfaces, namely elevator, ailerons, and rudder. Such conventional
aircraft have a fourth control, the change in thrust, which can be obtained from
the engines. Many modern aircraft, particularly combat aircraft, have consider-
ably more control surfaces, which produce additional control forces or moments.
Some of these additional surfaces and motivators include horizontal and vertical
canards, spoilers, variable cambered wings, reaction jets, differentially operating
horizontal tails and movable fins, One characteristic of flight control is that the
required motion often needs a number of control surfaces to be used
simultaneously. It is shown later in this book that the use of a single control
surface always produces other motion as well as the intended motion. When more
than one control surface is deployved simultaneously, there often  results

Rudder .

Elevator .

Figure 1.1 Conventional aircraft.
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Figure 1.2 A proposed control configured vehicle.

considerable coupling and interaction between motion variables. It is this physical
situation which makes AFCS design both fascinating and difficult. When these
extra surfaces are added to the aircraft configuration to achieve particular flight
control functions, the aircraft is described as a ‘control configured vehicle' (CCV).
A sketch of a proposed CCV is illustrated in Figure 1.2 in which there are shown
a number of extra and unconventional control surfaces. When such extra controls
are provided it is not to be supposed that the pilot in the cockpit will have an
equal number of extra levers, wheels, pedals, or whatever, to provide the
appropriate commands, In a CCV such commands are obtained directly from an
AFCS and the pilot has no direct control over the deployment of each individual
surface. The AFCS involved in this activity are said to be active control technology
systems. The surfaces are moved by actuators which are signalled electrically (fly-
by-wire) or by means of fibre optic paths (fly-by-light). But, in a conventional
aircraft, the pilot has direct mechanical links to the surfaces, and how he
commands the deflections, or changes, he requires from the controls is by means
of what are called the primary flying controls.

1.3 PRIMARY FLYING CONTROLS

In the UK, it is considered that what constitutes a flight control system is an
arrangment of all those control elements which enable controlling forces and
moments to be applied to the aircraft. These elements are considered to belong to
three groups: pilot input elements, system output elements and intervening
linkages and elements.

The primary flying controls are part of the flight control system and are
defined as the input elements moved directly by a human pilot to cause an
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operation of the control surfaces. The main primary flving controls are pitch
control, roil control and yaw control. The use of these flight controls affects
motion principally about the transverse, the longitudinal, and the normal axes
respectively, although each may affect motion about the other axes. The use of
thrust control via the throttle levers is also effective, but its use is primarily
governed by considerations of engine management. Figure 1.3 represents the
cockpit layout of a typical, twin engined, general aviation aircraft. The yoke is the
primary flying control used for pitch and roll control. When the voke is pulled
towards, or pushed away from, the pilot the elevator is moved correspondingly.
When the yoke is rotated to the left or the right, the ailerons of the aircraft are
moved. Yaw control is effected by means of the pedals, which a pilot pushes left
or right with his feet to move the rudder. In the kind of aircraft with the kind of
cockpit illustrated here, the link between these primary flying controls and the
control surfaces is by means of cables and pulleys. This means that the
aerodynamic forces acting on the control surfaces have to be countered directly by
the pilot. To maintain a control surface at a fixed position for any period of time
means that the pilot must maintain the required counterforce, which can be very
difficult and fatiguing to sustain. Consequently, all aircraft have trim wheels (sec
Figure 1.3) which the pilot adjusts until the command, which he has set initially
on his primary flying control, is set on the control surface and the pilot is then
relieved of the need to sustain the force. There are trim wheels for pitch, roll and
vaw (which is sometimes referred to as ‘nose trim’).
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In large transport aircraft, or fast military aircraft, the aerodynamic forces
acting on the control surfaces are so large that it is impossible for any human pilot
to supply or sustain the force required. Powered flying controls are then used.
Usually the control surfaces are moved by means of mechanical linkages driven by
electrohydraulic actuators. A number of aircraft use electrical actuators, but there
are not many such types. The command signals to these electrohydraulic actuators
are electrical voltages supplied from the controller of an AFCS, or directly from a
suitable transducer on the primary flving control itself. By providing the pilot with
power assistance, so that the only force he needs to produce is a tiny force,
sufficient to move the transducer, it has been found necessary to provide artificial
feel so that some force, representing what the aircraft is doing, is produced on the
primary flying control. Such forces are cues to a pilot and are essential to his
flying the aircraft successfully. The conventions adopted for the control surfacc
deflections are shown in Figure 1.4,

In the event of an electrical or hydraulic failure such a powered flying
control system ceases to function, which would mean that the control surface
could not be moved: the aireraft would therefore be out of control. To prevent
this occurring, most civilian and military aircraft retain a direct. but parallel,
mechanical connection from the primary flying control to the control surface
which can be used in an emergency. When this is done the control system is said
to have ‘manual reversion’. Fly-by-wire {(and fly-by-light) aircraft have essentially
the same kind of flight control system, but are distinguished from conventional
aireraft by having no manual reversion. To meet the emergency situation, when
failures occur in the system, fly-by-wire (FBW) aircraft have flight control systems
which are triplicated, sometimes quadruplicated, to meet this stringent reliability
requirement.

With FBW aircraft and CCVs it has been realized that there is no longer
a direct relationship between the pilot’s command and the deflection, or even the
use, of a particular control surface. What the pilot of such aircraft is commanding
from the AFCS is a particular manoeuvre. When this was understood, and when

P —
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Fromt

Figure 1.5 Side arm controller.

the increased complexity of flying was taken into account, it was found that the
provision of a yoke or a stick to introduce commands was unnecessary and
inconvenient. Modern aircraft are being provided with side arm controllers (see
Figure 1.5) which provide signals corresponding to the forces applied by the pﬂ.m.
Generally, these controllers do not move a great deal, but respond to applied
force. }3‘5; using such controllers a great deal of cockpit area is made available for
the growing number of avionics displays which modern aircraft require.

1.4 FLIGHT CONTROL SYSTEMS

In addition to the control surfaces which are used for steering, every aircraft
contains motion sensors which provide measures of changes in motion variables
which occur as the aircraft responds to the pilot’s commands or as it encounters
some disturbance. The signals from these sensors can be used to provide the pilot
with a visual display, or they can be used as feedback signals for the AFCS, Thus,
the general structure of an AFCS can be represented as the block schematic of
Figure 1.6. The purpose of the controller is to compare the commanded motion
with the measured motion and, if any discrepancy exists, w0 generale, in
accordance with the required control law, the command signals to the actuator to
produce the control surface deflections which will result in the correct control
force or moment being applied. This, in turn, cavses the aircraft to respond
appropriately so that the measured motion and commanded motion are finally in
correspondence. How the required control law can be determined is one of the
principal topics of this hook,

Whenever either the physical or abstract attributes of an aircraft, and its
motion sensing and controlling elements, are considered in detail, their effects are
so interrelated as almost to preclude discussion of any single aspect of the system,
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Figure 1.6 General structure of an AFCS.

without having to treat most of the other aspects at the same time. It 1s helpful,
therefore, to define here, albeit somewhat broadly, the area of study upon which
this book will concentrate.

1.

w1

The development of forces and moments for the purpose of establishing
an equilibrium state of motion (operating point) for an aircraft, and for
the purpose of restoring a disturbed aircraft to its equilibrium state, and
regulating within specific limits the departure of the aircraft’s response
from the operating point, are regarded here as constituting flight control.
Regulating the aircraft’s response is frequently referred to as stabilization,
Guidance is taken to mean the action of determining the course and
speed to be followed by the aircraft, relative to some reference system.,
Flight control systems act as interfaces between the guidance systems and
the aircraft being guided in that the flight control system receives, as
inputs from the guidance systems, correction commands, and provides, as
outputs, appropriate deflections of the necessary control surfaces to cause
the required change in the motion of the aireraft (Draper, 1981). For this
control action to be effective, the flight control system must ensure that
the whole system has adequate stability.

If an aircraft is to execute commands properly, in relation to
earth coordinates, it must be provided with information about the
aircraft’s orientation so that right turn, left turn, up, down, roll left, roll
right, for example, are related to the airborne geometrical reference. For
about sixty years, it has been common practice to provide aircraft with
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reference coordinates for control and stabilization by means of gyroscopic
instruments. The bank and climb indicator, for example, effectively
provides a horizontal reference plane, with an accuracy of a few degrees,
and is as satisfactory today for the purposes of control as when it was first
introduced. Similarly, the turn indicator, which shows the aircraft's
turning left or right, to about the same accuracy, is also a gyroscopic
instrument and the use of signals from both these devices, as feedback
signals for an AFCS, is still effective and valid. However, the use of
conventional gyroscopic instruments in aircraft has fundamental limita-
tions which lie in the inherent accuracy of indication, which is to within a
few degrees only, and also in the inherent drift rates, of about ten degrees
per hour. Such instruments are unsuitable for present-day navigation,
which requires that the accumulated error in distance for each hour ot
operation, after an inertial fix, be not greater than 1.5km. An angle of
one degree between local gravitational directions corresponds to a
distance on the earth’s surface of approximately 95 km. Consequently,
special motion sensors, such as ring laser gyros, NMR gyros, strap-down,
force-balance accelerometers, must be used in modern flight control
systems.

Because this book is concerned with control, rather than
guidance, it is more convenient to represent the motion of aircraft in a
system of coordinates which is fixed in the aircraft and moves with it. By
doing this, the coordinate transformations generally required to obtain
the aircraft’s motion in some other coordinate system, such as a system
fixed in the earth, can be avoided, When the origin of such a body-fixed
system of coordinates is fixed at the centre of gravity of the aircraft,
which is in an equilibrium (or trimmed) state of motion along a nominal
flight path, then, when only small perturbations of the aireraft’s motion
about this equilibrium state are considered, the corresponding equations
of motion can be linearized. Since many flight control problems are of
very short duration (5-20 seconds), the coefficients of these equations of
motion can be regarded as constant, so that transfer functions can
sometimes be conveniently used to describe the dynamics of the aircraft.
However, it must be temembered that a notable feature of an aircraft’s
dynamic response is how it changes markedly with forward speed, height,
and the aircraft’s mass. Some of the most difficult problems of flight
control occurred with the introduction of jet propulsion, the consequent
expansion of the flight envelope of such aircraft, and the resulting
changes in configuration, most notable of which were the use of swept
wings, of very short span and greatly increased wing loading, and the
concentrated mass of the aircraft being distributed in a long and slender
fuselage. In aircraft of about 1956 these changes led to marked
deficiences in the damping of the classical modes of aircraft motion,
namely the short period mode of the aircraft’s longitudinal motion, and
the Dutch roll mode of its lateral motion. Other unknown, coupled
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modes also appeared, such as fuel sloshing and roll instability; the use of
thinner wings and more slender fuselages meant greater flexibility of the
aircraft structure, and the modes associated with this structural flexibility
coupled with the rigid-body modes of the aircraft’s motion, caused further
problems.

One of the first solutions to these problems was the use of a
stability augmentation system (SAS), which is simply a feedback control
system designed to increase the relative damping of a particular mode of
the motion of the aircraft. Such an increase in damping is achieved by
augmenting one or more of the coefficients of the equations of motion by
imposing on the aircraft appropriate forces or moments as a result of
actuating the control surfaces in response to feedback signals derived
from appropriate motion variables. After SAS, the following AFCS
modes were developed: sideslip suppression SAS, pitch attitude hold,
autothrottle (speed control system), mach hold, height hold, and turn
coordination systems.

An integrated flight control system is a collection of such AFCS
modes in a single comprehensive system, with particular modes being
selected by the pilot to suit the task required for any particular phase of
flight. In the past such functions were loosely referred to as an awtopilol,
but that name was a trademark registered by the German company
Siemens in 1928, Today. AFCS not only augment the stability of an
aircraft, but they can follow path and manoeuvre commands, thereby
providing the means of automatic tracking and navigation; they can
perform automatic take-off and landing; they can provide structural mode
control, gust load alleviation, and active ride control,

1.5 BRIEF HISTORY OF FLIGHT CONTROL SYSTEMS

The heavier-than-air machine designed and built by Hiram Maxim in 1891 was
colossal for its time: it was 34 m long and weighed 3 600 kg. Even now, the largest
propeller to be seen in the aviation collection of the Science Museum in London is
one of the pair used by Maxim. It was obvious to Maxim, if to no-one else at the
time, that when his aircraft flew, its longitudinal stability would be inadequate, for
he installed in the machine a flight control system which used an actuator to
deflect the elevator and employed a gyroscope to provide a feedback signal. It
was identical, except in inconsequential detail, to a present-day pitch attitude
contral system. Two of the minor details were the system's weight, over 130 kg,
and its power source, steam. The concept remains unigue.

Between 1910 and 1912 the American father-and-son team, the Sperrys,
developed a two-axis stabilizer system in which the actuators were powered by
compressed air and the gyroscopes were also air-driven. The system could
maintain both pitch and bank angles simultaneously and, from a photographic
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record of a celebrated demonstration flight, in which Sperry Snr is seen in the
open cockpit, with his arms stretched up above his head, and a mechanic is
standing on the upper surface of the upper wing at the starboard wing tip,
maintaining level flight automatically was easily within its capacity.

During World War I, aircraft design improved sufficiently to provide, by
the sound choice of size, shape and location of the aerodynamic control surfaces,
adequate stability for pilots’ needs. Many aircraft were still unstable, but not
dangerously so, or, to express that properly, the degree of damage was acceptable
in terms of the loss rates of pilots and machines,

In the 1920s, however, it was found that, although the early commercial
airliners were quite easy to fly, it was difficult to hold heading in poor visibility.
Frequently, in such conditions, a pilot and his co-pilot had to divide the flying task
between them. The pilot held the course by monitoring both the compass and the
turn indicator and by using the rudder; the co-pilot held the speed and the
attitude constant by monitoring both the airspeed and the pitch attitude indicator
and by controlling the airspeed via the engine throttles and the pitch attitude by
using the elevator. From the need to alleviate this workload grew the need to
control aircraft automatically,

The most extensive period of development of early flight control systems
took place between 1922 and 1937: in Great Britain, at the Royal Aircraft
Establishment (RAE) at Farnborough; in Germany, in the industrial firms of
Askania and Siemens; and in the USA, in Sperrys and at NACA (National
Advisory Committee for Aeronautics — now NASA). Like all other flight control
systems up to 1922, the RAE’s Mk I system was two-axis, controlling pitch
attitude and heading. It was a pneumatic system, but its superior performance
over its predecessors and competitors was due to the fact that it had been
designed scientifically by applying the methods of dynamic stability analysis which
had been developed in Great Britain by some very distinguished applied
mathematicians and aerodynamicists (see McRuer er al., 1973; Draper, 1981;
Hopkin and Dunn, 1947; McRuer and Graham, 1981; Oppelt, 1976). Such
comprehensive theoretical analysis, in association with extensive experimental
flight tests and trials carried out by the RAF, led to a clear understanding of
which particular motion variables were most effective for use as feedback signals
in flight control systems.

In 1927, in Germany, the firm of Askania developed a pneumatic system
which controlled heading by means of the aircraft’s rudder. It used an air-driven
gyroscope, designed and manufactured by Sperrys of the USA. The first unit was
flight tested on the Graf Zeppelin-LZ127; the system merits mention only because
of its registered trade name, Autopilot. However, the Germans soon decided that
as a drive medium, air, which is very compressible, gave inferior performance
compared to oil, which was considered to be very nearly incompressible. Thus, in
its two-axis ‘autopilot’” of 1935, the Siemens company successfully used hydraulic
actuators and thereby established the trend, still followed today, of using
hydraulic oil in preference to air, which in turn was used in preference to Maxim's
steam. In 1950, the Bristol Aeroplane Company built a four-engined, turbo-prop
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transport aircraft which used electric actuators, but it was not copied by other
manufacturers. At present, NASA and the USAF are actively pursuing a
programme of reasearch designed to lead to ‘an all-electric airplane’ by 1990.

The reader should not infer from earlier statements that the RAE solved
every flight control problem on the basis of having adequate theories. In 1934, the
Mk IV system, which was a three-axis pneumatic system, was designed for
installation in the Hawker Hart, a biplane in service with the RAF. In flight, a
considerable number of stability problems were experienced and these were never
solved. However, when the same system was subsequently fitted to the heavy
bombers then entering RAF service (the Hampdens, Whitleys and Wellingtons)
all the stability problems vanished and no satisfactory reasons for this
improvement were ever adduced. (McRuer and Graham (1981) suggest that the
increased inertia and the consequently slower response of the heavier aircraft
were the major improving factors.)

In 1940, the RAE had developed a new AFCS, the Mk VII, which was
again two-axis and pneumatic, but, in the longitudinal axis, used both airspeed
and its rate of change as feedback signals, and, in the lateral axis. moved the
ailerons in response to a combination of roll and yaw angles. At cruising speed in
calm weather the system was adjudged by pilots to give the best automatic control
yet devised. But, in some aircraft at low speeds, and in all aircraft in turbulence,
the elevator motion caused such violent changes in the pitch attitude that the
resultant vertical acceleration so affected the fuel supply that the engines stopped.
It was only in 1943 that the problem was eventually solved by Neumark (sce
MNeumark, 1943) who conducted an analysis of the problem entirely by time-
domain methods. He used a formulation of the aircraft dynamics that control
engineers now refer to as the state equation.

German work did not keep pace with British efforts, since, until very late
in World War 11, they concentrated on directional and lateral motion AFCSs,
only providing a three-axis AFCS in 1944, The American developments had been
essentially derived from the Sperry Automatic Pilot used in the Curtiss ‘Condors’
operated by Eastern Airlines in 1931. Subsequently, electric, three-axis autopilots
were developed in the USA by firms such as Bendix, Honeywell and Sperry. The
Minneapolis Honeywell C1 was developed from the Norden Stabilized Bomb-
sight and was much used in World War II by both the American Air Forces and
the Royal Air Force.

The development of automatic landing was due principally to the Blind
Landing Experimental Unit of RAE, although in 1943 at the Flight Development
Establishment at Rechlin in Germany, at least one aircraft had been landed
automatically, The German efforts on flight control at this time were devoted to
the systems required for the V1 and V2 missiles. On 23 September 1947 an
American Douglas C-54 flew across the Atlantic completely under automatic
control, from take-off at Stephenville, in Newfoundland, Canada, to landing at
Brize Norton, in England. A considerable effort has been given to developing
AFCSs since that time to become the ultra-reliable integrated flight control
systems which form the subject of this book. The interested reader is referred to
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Hopkin and Dunn (1947), McRuer and Graham (1981), Oppelt (1976) and
Howard (1973) for further discussions of the history of flight control systems.

=


(info)
Chapter 1.6 not included in these notes.


1.7 CONCLUSIONS

In considering the design of an AFCS an engineer will succeed only if he is able
both to establish an adequate model representing the appropriate dynamical
behaviour of the aircraft to be controlled and to recognize how an effective
control system design can be realized.

Consequently, the control engineer working with AFCSs must completely
understand the equations of the aircraft’s motion, be familiar with their methods
of solution, understand the characteristic responses associated with them, know
what influence they have on the aircraft’s flying qualities, appreciate how
atmospheric disturbances can be charactenized and know how such disturbances
affect performance. Additionally, it is important to understand how primary
flying controls can be improved, or their worst effects reduced, so that the match
between a human pilot and the aircraft is optimized.

In addition, the theory of control, with its attendant design techniques,
must be thoroughly mastered so that it, and they, can be used to produce an
AFCS based upon control surface actuators and motion sensors which are
available, and whose dynamic behaviour is thoroughly known.
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The alternative methods of carrying out the reguired computation to
produce the appropriate control laws have also to be completely understood, and
the engineer is expected to be sound in his appreciation of the limitations of
whatever particular method was chosen to perform the control design.

Detailed engineering considerations of installing and testing such AFCSs,
particularly in regard to certification procedures for airworthiness requirements,
and the special reliability considerations of the effect of subsystem failure upon
the integrity of the overall system, are special studies beyond this book. The
influence of these topics on the final form of the AFCS is profound and represents
one of the most difficult aspects of flight control work. Any flight control engineer
will be obliged to master both subjects early in his professional career.

1.8 NOTE

1. Sometimes ‘centre of mass’ and ‘centre of gravity’ are used interchangeably. For
any group of particles in a uniform gravitational field these centres coincide. For
spacecraft, their separation is distinctive and this separation resulls in an
appreciable moment due to gravity being exerted on the spacecraft. For aircraft
flying in the atmosphere the centres are identically located.

1.9 REFERENCES

DRAPER. C.5. 1981, Control, navigation and puidance. JEEE Control Systems Magazine.
1{4): 4-17.

HOPKIN, H.R. and R.W, DUNN, 1947, Theory and development of automatic pilots 1937-1947,
RAE report. 1AP 1459, August.

HOWARD, R.W. 1973, Automatic flight controls in fixed wing aircraft — the first hundred
years, Aero. J. T7(11): 553-62.

McRUER, DT, 1L, ASHKENAS and D.C. GRAHAM. 1973, Aircraft Dynamics and Awomalic
Conirol. Princeton University Press.

MeRUER. D.T. and D.C. GRAHAM. 1981, Eighty years of flight control: triumphs and pitfalls of
the systems approach., J. Guid. and Cont. 4(4): 353-62.

NEUMARK, & 1943 The disturhed longitudinal motion of an uncontrolled aeroplane and of
an aeroplane with automatic control. ARC R&M 2078, January.

OPPELT. W. 1976, An historical review of Autopilot development, research and theory in
Germany. J. Dyn. Sys., Meas. and Cont. 98(3): 215-23.



2

The Equations of Motion of
an Aircraft

2.1 INTRODUCTION

If the problems associated with designing an AFCS were solely concerned with
large area navigation then an appropriate frame of reference, in which to express
the equations of motion of an aircraft, would be inertial, with its centre in the
fixed stars, But problems involving AFCSs are generally related to events which
do not persist: the dynamic situation being considered rarely lasts for more than a
few minutes. Consequently, a more convenient inertial reference frame is a
tropocentric coordinate system, i.e. one whose origin is regarded as being fixed at
the centre of the Earth: the Earth axis system. It is used primarily as a reference
system to express gravitational effects, altitude, horizontal distance, and the
orientation of the aircraft. A set of axes commonly used with the Earth axis
system is shown in Figure 2.1; the axis, X, is chosen to point north, the axis, Y.
then pointing east with the orthogonal triad being completed when the axis, Zg,
points down. If the Earth axis system is used as a basic frame of reference, to
which any other axis frames employed in the study are referred, the aircraft itselt

Y
Ae

e S .
{Morth)

Y
{East)

Z

Figure 2.1 Earth axis system.
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Dirag
(positive rearwirds)

*Lif[ (positive upwards)

Al |.11Iyums shown are positive \FG?H“L
L, W, Mare the forward, side and sevdsg velocities
L. M. N are roll, pitch and vaw moments
P, 2, R are the angular velocities,
rell, pitch and yaw
@, @, ¥ are roll, piich and vaw angles

r Thrust
{positive forwards)

Figure 2.2 Body axis system.

must then have a suitable axis system. Several are available which all find use, to
a greater or lesser extent, in AFCS work. The choice of axis system governs the
form taken by the equations of motion. However, only body-fixed axis systems,
i.e. only systems whose origins are located identically at an aircraft’s centre of
gravity, are considered in this book. For such a system, the axis, Xg. points
forward out of the nose of the aircraft; the axis, Yy, points out through the
starboard (right) wing, and the axis, Zg, points down (see Figure 2.2). Axes Xg.
Ygp and Zp emphasize that it is a body-fixed axis system which is being used,
Forces, moments and velocities are also defined. By using a system of axes fixed
in the aircraft the inertia terms, which appear in the equations of motion, may be
considered to be constant. Furthermore, the aerodynamic forces and moments
depend only upon the angles, « and B, which orient the total velocity vector,
Vr, in relation to the axis, Xg. The angular orientation of the body axis system
with respect to the Earth axis system depends strictly upon the orientation
sequence. This sequence of rotations is customarily taken as follows (see
Thelander, 1965): EE

1. Rotate the Earth axegl X, Ye. and Zg, through some azimuthal angle,
¥, about the axis, &, to reach some intermediate axes X,, Y, and Z,.

2. Mext, rotate these axes X, Y, and Z, through some angle of elevation,
@, about the axis Y, to reach a second, intermediate set of axes, Xz, Yz,
and Z..

3 Finally, the axes X,, Y; and Z; are rotated through an angle of bank, &,

about the axis, X;, to reach the body axes Xg, Y and Zp.

Three other special axis systems are considered here, because they can be found
to have been used sufficiently often in AFCS studies. They are: the stability axis
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system; the principal axis system; and the wind axis system. In AFCS work, the
most commonly used system is the stability axis system.

2.2 AXIS (COORDINATE]) SYSTEMS
2.2.1 The Stability Axis System

The axis X, is chosen to coincide with the velocity vector, ¥, at the start of the
motion, Therefore, between the X-axis of the stability axis system and the X-axis
of the body axis system, there is a trimmed angle of attack, w«,. The equations of
motion derived by using this axis system are a special subset of the set derived by
using the body axis system.

2.2.2 The Principal Axisz System

This set of body axes is specially chosen to coincide with the principal axes of the
aircraft. The convenience of this system resides in the fact that in the equations of
motion, all the product of inertia terms are zero, which greatly simplifies the
equations,

2.2.3 The Wind Axis System

Because this system is oriented with respect to the aircraft’s flight path, time-
varying terms which correspond to the moments and cross-products of inertia
appear in the equations of motion. Such terms considerably complicate the
analysis of aircraft motion and, consequently, wind axes are not used in this text.
They have appeared frequently, however, in American papers on the subject.

2.2.4 Sensor Signals

Because an AFCS uses feedback signals from motion sensors, it is important to
remember that such signals are relative to the axis system of the sensor and not to
the body-fixed axis system of the aircraft. This simple fact can sometimes cause
the performance obtained from an AFCS to be modified and, in certain flight
tasks, may have to be taken into account. However, in straight and level flight at
cruise it is insignificant.
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2.3 THE EQUATIONS OF MOTION OF A RIGID BODY AIRCRAFT
2.3.1  Introduction

The treatment given here closely follows that of McRuer et al. (1953).

It is assumed, first, that the aircraft is rigid-body; the distance between
any points on the aircraft do not change in flight. Special methods to take into
account the flexible motion of the airframe are treated in Chapter 4. When the
aircraft can be assumed to be a rigid body moving in space, its motion can be
considered to have six degrees of freedom. By applying Newton’s Second Law to
that rigid body the equations of motion can be established in terms of the
translational and angular accelerations which occur as a consequence of some
forces and moments being applied to the aircraft.

In the introduction to this chapter it was stated that the form of the
equations of motion depends upon the choice of axis system, and a few of the
advantages of using a body-fixed axis system were indicated there. In the
development which follows, a body axis system is used with the change to the
stability axis system being made at an appropriate point later in the text. In order
to be specific about the atmosphere in which the aircraft is moving, it is also
assumed that the inertial frame of reference does not itself accelerate, in other
words, the Earth is taken to be fixed in space,

2.3.2 Translational Motion

From Newton's Second Law it can be deduced that:

_d .
F = (mVe) . (2.1)
d
M= {H} (2.2)

where F represents the sum of all externally applied forces, M represents the sum
of all applied torques. and H is the angular momentum.

The sum of the external forces has three components: aerodynamic,
gravitational and propulsive In every aircraft some part of the propulsive (throst)
force is produced by expending some of the vehicle’s mass. But it can easily be
shown' that if the mass, m, of an aircraft is assumed to be constant, the thrust,
which is a force equal to the relative velocity between the exhausted mass and the
aircraft and the change of the aircraft’s mass/unit time, can be treated as an
external force without impairing the accuracy of the equations of motion. If it is
assumed, for the present, that there will be no change in the propulsive force,
changes in the aircraft’s state of motion from its equilibrium state can occur if and
only if there are changes in either the acrodynamic or gravitational forces (or
both). If it becomes necessary in a problem to include the changes of thrust (as it
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will be when dealing with airspeed control systems, for example) only a small
extension of the method being outlined here is required. Details in relation to the
stability axis system are given in section 2.2, For the present, however, the thrust
force can be considered to be contained in the general applied force, F.

When carrying out an analysis of an AFCS it is convenient to regard the
sums of applied torque and force as consisting of an equilibrium and a
perturbational component, namely:

-

m % (V) (2.3)?

F= F;, + AF

M = M, + AM =%1{H} (2.4)
The subscript 0 denotes the equilibrium component, & the component of
perturbation. Since the axis system being used as an inertial reference system is

the Earth axis system, eqs (2.3) and (2.4) can be re-expressed as:

d
AF = —{Vyie 3
m d.r{ e (2.5)

AM

d 3
E {H}I-_' (2.6)

By definition, equilibrium flight must be unaccelerated flight along a straight

patfl; dur;ng tflils ﬂl'ght tf‘u: finear vu[ﬂc;ly vector relative to fixed space s
invariant, and the angular velocity is zero. Thus, both F; and M, are zero.
The rate of change of V relative to the Earth axis system is given by:
d d .
o Vol = 5 Vol 4w X Vo (2.7
I f H L l I t | - -
where w is the angular velocity of the aircraft with respect to the fixed axis
system. Wnen the vectors are expressed in coordinates in relation to the body-
fixed axis system, both velocities may be written as the sum of their corresponding
components, with respect to Xg, Yg and Zg, as follows:

Vi = iU + jV + kW (2.8)
w=iP + jO + kR (2.9)
%v.,. ) =ill + jV + kW (2.10)
and the cross-product, w X Vo, is given by:
ijk
wxVr=|PQR
1 Uvw

bold
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=i(QW = VR) + j(LUR = PW) + k(PV = UQ) (2.11)
In a similar fashion, the components of the perturbation force can be expressed as
AF = i1AF, + jAF, + KAF, (2.12)

Hence,

AF = m{itU + QW — VR) + j(V + UR — PW)

) (2.13)
+ k(W + PV - UQ)}
From which it can be inferred that:
AF, = m(U + QW — VR) (2.14)
AF, = m(V + UR # PW) (2.15)
AF, =m(W + VP — UQ) (2.16)

Rather than continue the development using the cumbersome notation, AF;, to
denote the ith component of the perturbational force, it is proposed to follow the
American custom and use the following notation:

AXAAF, AYAAF, AZAAF, (2.17)

It must be remembered that now X, ¥ and Z denote forces. With these
substitutions in eqgs (2.14)-(2.16), the equations of translational motion can be
expressed as:

AX = m(U + QW — VR) (2.18)
AY = m(V + UR - PW) (2.19)
AZ = m(W + VP - UQ) (2.20)

2.3.3 Rotational Motion

For a rigid body, angular momentum may be defined as:

H=1Iw (2.21)
A bhelel
The inertia matrix, I, is defined as:
I.u: - !ry P
I=f-15 L,—1.: (2.22)
- frz - fy': !,_,_

where [; denotes a moment of inertia, and [;; a product of inertia j # I.

'M=%H+mxn (2.23)
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Transforming from body axes to the Earth axis system (see Gaines and Hoffman,
1972) allows eq. (2.23) to be re-expressed as:

M=."{Edr-m+m><m}+w><ﬂ (2.24)
However,
w ¥ wdl (2.25)
% w = iP + jO + kR (2.26)
and
i jk
wxH=| POR (2.27)
h h, b,

where h,, h, and h. are the components of H obtained from expanding eq. (2.21)
thus:

h.l' = IzzP - Iny - f'r:'-R {2.25}
hy = — 1P + 1,,0 — 1,.R (2.29)
h, = - I P = “z}'Q + I..R [23{}}

In general, aircraft are symmetrical about the plane XZ, and consequently it is
generally the case that:

Ly =1,.=0 (2.31)
Therefore:

h, = 1P — I.R (2.32)

hy, = 1,,0 (2.33)

h.=— I,P+ I.R (2.34)
and

AM, = I.P = I.(R + PQ) + QR(I — I) (2.35)

AM, = 1,0 + L.(P* = R*) + PR(L. = I3:) (2.36)

AM, = I.R = I.P + PQ(l,, — I,) + [.;OR (2.37)

Again, following American usage:
AM, = AL AM, =AM  AM. = AN (2.38)

where L, M and N are moments about the rolling, pitching and yawing axes
respectively.

— T
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AL = I, P - I.(R+ PQ)+ (l., - 1,,)OR (2.39)
AM = 1,Q + 1.(P* — R®) + (I = I..)PR (2.40)
AN = I..R — I.P + PO(I,, = 1.,) + 1,.OR (2.41)

2.3.4 Some Points Arising from the Derivation of the Equations

It is worth emphasizing here that the form of equations arrived at, having used a
body axis system, is not entirely convenient for flight simulation work (Fogarty
and Howe, 1969). For example, suppose a fighter aircraft has a maximum velocity
of 600 m s~ und a maximum angular velocity Qy of 2.0 rad s™'. The term, UQ,
in eq. (2.20) can have a value as large as 1200 m s 2 i.e. 120 g, whereas the
term, AZ, the normal acceleration due to the external forces (primarily
aerodynamic and gravitational) may have a maximum value in the range 10.0 to
20.0m s 2 (i.e. 1-2 g). It can be seen, therefore, how a (dynamic) acceleration of
very large value, perhaps fifty times greater than the physical accelerations, can
occur in the equations merely as a result of the high rate of rotation experienced
by the body axis system. Furthermore, it can be seen from inspection of egs
{(2.18)-(2.20) how angular motion has been coupled into translational motion.
Moreover, on the right-hand side of egs (2.39)-(2.41) the third term is a non-
linear, inertial coupling term. For large aircraft, such as transports, which cannot
generate large angular rates, these terms are frequently neglected so that the
moment equations become:

AL = [P = I.(R + PQ) (2.42)
AM = 1,,0 + 1.(P* — R?) (2.43)
AN =I..R — I..(P = QR) (2.44)

A number of other assumptions are frequently invoked in relation to these
equations:

1. Sometimes, for a particular aircraft, the product of inertia, [.., is
sufficiently small to allow of its being neglected. This often happens when
the body axes, Xg, Yg, and Z have been chosen to almost coincide with
the principal axes.

2. For aircraft whose maximum values of angular velocity are low, the terms
PQ, OR, and P* — R? can be neglected. )
3 Since R? is frequently very much smaller than P2 it is often neglected.

It is emphasized, however, that the neglect of such terms can only be practised
after very careful consideration of both the aircraft’s characteristics and the AFCS
problem being considered. Modern fighter aircraft, for example, may lose control
as a result of roll/pitch inertial coupling. In such aircraft, pitch-up is sensed when
a roll manoeuvre is being carried out. When an AFCS is fitted, such a sensor
signal would cause an elevator deflection to be commanded to provide a
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nose-down attitude until the elevator can be deflected no further and the
aircraft cannot be controlled. Such a situation can happen whenever the term
(f,, — I..}PR is large enough to cause an uncontrollable pitching movement.

2.3.5 Contributions to the Equations of Motion of the Forces Due
to Gravity

The forces due to gravity are always present in an aircraft; however, by neglecting
any consideration of gradients in the gravity field, which are important only in
extra-atmospheric flight if all other external forces are essentially non-existent, it
can be properly assumed that gravity acts at the centre of gravity (c.g.) of the
aircraft. Hence, since the centres of mass and gravity coincide in an aircraft, there
is no external moment produced by gravity about the c.g. Hence, for the body
axis system, gravity contributes only to the external force vector, F.

The gravitational force acting upon an aircraft is most obviously
expressed in terms of the Earth axes. With respect to these axes the gravity
vector, mg, is directed along the Zg axis. Figure 2.3 shows the alignment of the
gravity vector with respect to the body-fixed axes. In Figure 2.3 @ represents the
angle between the gravity vector and the YgZp plane; the angle is positive when
the nose of the aircraft goes up. @ represents the bank angle between the axis 7
and the projection of the gravity vector on the YgZy plane; the angle is positive
when the right wing is down. Direct resolution of the vector mg, into X, ¥ and Z
components produces:

BX = mgsin[— ®] = — mg sin®

8Y = mg cos[— O] sind = mg cos B sin P

a7z

mg cos [~ O] cosd = mg cos © cos P

=
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Figure 2.3 Orientation of gravity vector with body axis systems.
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In gencral, the angles 8 and @ are not simply the integrals of the angular velocity
P and (; in effect, two new motion variables have been introduced and it
is necessary to relate them and their derivatives to the angular velocities, P,
and R. How this is done depends upon whether the gravitational vertical seen
from the aircraft is fixed or whether it rotates relative to inertial space. Aircraft
speeds being very low compared to orbital velocities, the vertical may be regarded
as fixed, In very high speed flight the vertical will be seen as rotating and the
treatment which is being presented here will then require some minor
amendments,

The manner in which the angular orientation and velocity of the body axis
system with respect to the gravity vector i1s expressed depends upon the angular
velocity of the body axes about the vector mg. This angular velocity is the
azimuth rate, ¥; it is not normal to either & or ©, but its projection in the YuZ
plane is normal to both (see Figure 2.4). By resolution, it is seen that:

P=d -V sine

Q=0 cos® + ¥ cos @ sind (2.46)
R= —®sin® + ¥ cos® cos P
Also,

b =P+ ¥sin®
O cosd - R sind

R cos @ + Q sind
cos 6 cos 8

E.
li

(2.47)

Using substitution, it is easy to show that:

v~

¥ sin (@)~

Figure2.4 Angularorientation and velocities of gravity vector, g, relative to body axis.
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d =P+ R tan ® cos® + O tan © sind (2.48)

@, & and ¥ are referred to as the Euler angles,

2.3.6 Axis Transformations

The physical relationships established so far depend upon two frames of
reference: the Earth axis system and the body axis system. To orient these
systems one to another requires the use of axis transformations. Any set of axes
can be obtained from any other set by a sequence of three rotations. For each
rotation a transformation matrix is applied to the variables. The total
transformation array is obtained simply by taking the product of the three
matrices, multiplied in the order of the rotations. In aircraft dynamics, the most
common set of transformations is that between the Earth axis system which
incorporates the gravity vector, g, as one axis, and the body-fixed axes, Xg. Yp
and 7. The rotations follow the usual order: azimuth W, pitch 8, and roll 4. The
corresponding matrices are:

cosW  sinW 0

Ty = | —sin¥ cos¥ 0 (2.49)
|0 {0 1 ]
cos € 0 —sin® |

To = 0 1 0 (2.50)

sin € 0 cos &

[ 0 0]

Ta = ] cosd®  sind (2.51)
0 —sind cosd J

The complete transformation matrix T is called the direction cosine array

and is defined as:
T = [LdiratttsT [Tg] [Ta] [Ty] (2.52)
Before expressing the matrix T in full, a notational shorthand is proposed

whereby a term such as cos £ is written as c& and a term such as sin & is written
as 52, Thus:

5Yc @
c'Wed == — s
T= (c¥s@sd — sWed)  (sWsBsd + cWed) cBsd (2.53)

(c¥s@cd + sWsd) (s¥Ps@cd — cWsd) cBed

FERTR T
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It is worth noting that the order of rotation W—8-® is that which results
in the least complicated resolution of the gravity vector g into the body axis
system. It can easily be shown that:

g = g{~ s0i + cOsbj + Ok} (2.54)

Another practical advantage is that the angles are those which are
measured by a typically oriented vertical gyroscope. A two degree of freedom,
gravity erected, vertical gyroscope, oriented such that the bearing axis of its outer
gimbal lies along OXg. measures on its inner and outer gimbals the Euler angles
@ and &, respectively.

2.3.7 Linearization of the Inertial and Gravitational Terms

Equations (2.14)-(2.16) and (2.39)—(2.41) represent the inertial forces acting on
the aircraft. Equation (2.45) represents the contribution of the forces due to
gravity to those equations, All these forces are proportional to the mass of the
aircraft. Consequently, these terms may be conveniently combined into
components to represent the accelerations which would be measured by sensors
located on the aircraft in such a manner that the input axes of the sensors would
be coincident with the body axes Xp, Yg and Zg. The external forces acting on
the aircraft can be re-expressed as

X = AX # 8X
Y = AY # Y (2.55)
Z=A7Z %87

where 85X, &Y and &7 are the gravitational terms and AX, AY and AZ
represent the aerodynamic and thrust forces. For notational convenience, AL,
AM and AN are now denoted by L, M and N. Thus the equations of motion of
the rigid body, for its six degrees of freedom, may be expressed as

Xg’/fﬂg:{= m[U + QW — RV + g sin @]
YW),;; =m[V + RU — PW — g cos © sin @]
z,.&_,/)ﬁff,é= m|W + PV = QU — g cos ©® cosd|
L =PI, — I.(R+ PQ) + (I, - 1,,)OR
M = Ol + 1(P* = R?) + (L, — I:)PR
N =RL, = I.P+ PQ(l,y - I) + I..OR

_ The auxiliary equations of eq. (2.46) must also be used since they relate
¥, @ and @ to R, Q and P.
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The equations which constitute eq. (2.56) are non-linear since they
contain terms which comprise the product of dependent variables, the squares of
dependent variables, and some of the terms are transcendental. Solutions of such
equations cannot be obtained analytically and would require the use of a
computer. Some simplification is possible, however, by considering the aircraft to
comprise two components: a mean motion which represents the equilibrium, or
trim, conditions, and a dynamic motion which accounts for the perturbations
about the mean motion. In this form of analysis it is customary to assume that the
perturbations are small. Thus, every motion variable is considered to have two
components. For example:

UEU:]'FM RéRn-l‘-?
A0, +q MAM,+m;, et

The trim, or equilibrium, values are denoted by a subscript 0 and the small
perturbation values of a variable are denoted by the lower case letter.”

In trim there can be no translational or rotational acceleration. Hence,
the equations which represent the trim conditions can be expressed as:

Xy = m|OpW, — RoVy + g 5in 8y

Yy = m[UyRy — PyWy = g cos Oy sin dy)
= m[PyVy — Quly — g cos B, cos By
Ly = QuRy(I.. — 1,,) = PaQol.:

My = (P = R, + (L — 1.:)PoRy

Ny = 1. 00Ry + (1, — 1 )0Py 0y

Stecady rolling, pitching and yawing motion can occur in the trim
condition; the equations which define Py, (0y and R, are given by eq. (2.46) but
with @, @ and ¥ being subscripted by 0.

The perturbed motion can be found either by substituting eq. (2.57) into
(2.56), expanding the terms and then subtracting eq. (2.58) from the result, or by
differentiating both sides of eq. (2.56). When perturbations from the mean
conditions are small, the sines and cosines can be approximated to the angles
themselves and the value unity, respectively. Moreover, the products and squares
of the perturbed quantities are negligible. Thus, the perturbed equations of
motion for an aircraft can be written as:

(2.57)

N

{2.58)

dX = m[i + Wyg + Qgw = Vyr — Ryv + g cos 8,6)

dY = m[v + Upr + Rou — Wyp — Pow — (g cos &y cos $g)d
+ (g sin €y sin dy)8)

dZ = mw + Vyp + Pov — Uyg — Ouue + (g cos By sin dy)d

_ (2.59)
F (g sin @y cos $y)0]

ra

SrreEE
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dL = 1.p — 1.7 + (I.. = Iyy](gur T an} = Lo Pog + Qop )
dM = I__l:y‘? + f-'rn' - !,_;](P;]f’ + RUP] - (szJr h zpnplfxz see ‘EHHDM
dN = Izz'f - Ixzﬁ + ':!y_v - fu”!"’n‘]' + Qﬂp} + f.rz'::Qt!r + Rni{] #

where ¥, ©,; and @, have been used to represent steady orientations, and W,
# and & the perturbations in the Euler angles. Equations (2.59) are now linear.
Obviously, perturbation equations are required for the auxiliary set of equations
given as eq. (2.46), because the gravitional forces must be perturbed by any small
change in the orientation of the body axis system with respect to the Earth axis
system. However, the full set of perturbed, auxiliary equations is rarely used since
it is complicated. But the components of angular velocity which represent the
rotation of the body-fixed axes Xg, Yg and Zg relative to the Earth axes X, Yg
and Zp are sometimes required. These are:

p=1d é WV sin By — 80, cos B,) "
q = J cos Dy — B(, sin Bysin Oy) + ¥ sin Wi cos Og

+ d(W¥, cos B, cos By — @ sin By) Co (2.60)
r =W cos©, cos®,; — d,:[‘l"‘n cos By sin by + 25:’6 cos @)
— @ sindy, — 0¥, sin B, cos dy)

Although these equations are linear, they are still too cumbersome for general use
owing to the completely general trim conditions which have been allowed. What
is commonly done in AFCS studies is to consider flight cases with simpler trim
conditions, a case of great interest being, for example, when an aircraft has been
trimmed to fAy straight in steady, symmetric flight, with its wings level. Steady
flight is motion with the rates of change of the components of linear and angular
velocity being zero. Possible steady flight conditions include level turns, steady
sn’icqllp and helical turns. Steady pitching flight must be regarded as merely a
‘quasi-steady” condition because U7 and W cannot both be zero for any appreciable
time if  is not zero. Straight flight is motion with the components of angular
velocity being zero. Steady sideslips and dives and climbs without longitudinal
acceleration are straight flight conditions, Symmetric flight is motion in which the
plane of symmetry of the aircraft remains fixed in space throughout the
manoeuvre taking place. Dives and climbs with wings level, and pull-ups without
sideslipping. are examples of symmetric flight. Sideslip, rolls and turns are typical
asymmetric flight conditions. The significance of the specified trim conditions may
be judged when the following implications arc understood:

1. That straight flight implies ¥, = 8, = (.

2 That symmetric flight implies ¥, = V,, = (0.

3. That flying with wings level imphes dy, = 0.

For this particular trimmed flight state, the aircraft will have particular values of

¥ chould be Lower case. This problewt qoes on
over the wext poges uubil Se*s solveel gvy

page 3%,
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U,. W, and ©,. These may be zero, but for conventional aircraft the steady
forward speed, Uy, must be greater than the stall speed if flight is to be sustained.
However, certain rotary wing and V/STOL aircraft can achieve a flying state in
which Uy, W, and &, may be zero; when Uy and W, are simultaneously zero the
aircraft is said to be hovering.

Hence, for straight, symmetric flight with wings level, the eguations
which represent translational motion in eq. (2.59) become:

x = mlu + Wyg + Qpw —Rgv + g cos 6)8]
y= ml'l:" + Uur + R[]H - Wnp - F,UW = & C0% @g]{b] {261]
= ml'l-'llf’ + P||V - f-lr,;:q - Qﬂ“ + g sin @'ﬂﬂ]

The equations (2.59) which represent rotational motion are unaffected. Equation
(2.60), however, becomes:

p = — ¥sin@,
g==8 (2.62)
F= ‘E’ cos By
From the same expression, for this trimmed flight state, it may be assumed that:
Op=Py=Ry=10 (2.63)
Therefore, it is possible to write eqs (2.59) and (2.61) in the new form:
mlia + Wyg + g cos Og8)

il

X

y= H’I[1:I + L"Ur - W(]P = g COs ("}nib]
z = m|w — Upg + gfsin €8]
od T gsinBo (2.64)
; = Iz.lﬁ - !I:f
my = Iyqg
n=[.t—I.p

Consideration of eq. (2.64) indicates not only that the equations have been
simplified, but that the set can be separated into two distinet groups which are
given below:

= mfu + Wyg 4 g cos O]
z = mw — Uyg + g sin O8] (2.65)
my = 1,4
and
vy =m[v + Uyr — Wyp — g cos Oyd]
I=1.p—1.F (2.66)
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no=l.f — Ip

In eq. (2.65) the dependent variables are u, w, ¢ and 6 and these are confined to
the plane XpZg. The set of equations is said to represent the longitudinal motion.
The lateral/directional motion, consisting of sideslip, rolling and yawing motion is
represented in eq. (2.66). Although it appears from this equation that the sideslip
is not coupled to the rolling and yawing accelerations, the motion is, however,
coupled (at least implicitly). In practice, a considerable amount of coupling can
exist as a result of aerodynamic forces which are contained within the terms on
the left-hand side of the equations.

It is noteworthy that this separation of lateral and longitudinal equations
is merely a separation of gravitational and inertial forces: this separation is
possible only because of the assumed trim conditions. But ‘in flight’, the six
degrees of freedom model may be coupled strongly by those forces and moments
which are associated with propulsion or with the aerodynamics.

24 COMPLETE LINEARIZED EQUATIONS OF MOTION
2.4.1 Expansion of Aerodynamic Force and Moment Terms

To expand the left-hand side of the equations of motion, a Taylor series is used
about the trimmed flight condition. Thus, for example,

z=[?—xu+ E,]%/'n':--gzw+d—;_:-ﬂ’—+ ?—£q+¥¢ + —-dz—ﬁ;_
du du aw i iy e T
(2.67)
+ 92 5 4
gude

Equation (2.67) supposes that the perturbed force z has a contribution from only
one control surface, the elevator. However, if any other control surface on the
aircraft being considered were involved, additional terms, accounting for their
contribution to z, would be used. For example, if changes of thrust (T), and the
deflection of flaps (F) and symmetrical spoilers (sp) were also used as controls for
longitudinal motion, additional terms, such as

-g-;; B, 9z Gy and i

AbE ]
would be added to eq. (2.67). Furthermore, some terms depending on other
motion variables. such as 8, are omitted because they are generally insignificant.
_ For the moment only longitudinal motion is treated, and, for simplicity, it
is assumed that only elevator deflection is involved in the control of the aircraft’s
longitudinal motion. Thus, 1t s now possible to write eq. (2.65) as

By

=
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X 89X 8X _aX . éax  0X . aX

——u + w4+ —Wwt—g+t—qg+—
e e T e M T e M T g 9T e 1T s, B
+ d—X b = mu + Wyg # g cos B8]
1 G5 +
; / ; YA aZ
£”+_a_£ﬁ+£w+a_zw+_q+iz q+— E'F'.
du i W 1t dg e i
+ 9Z 5. = mlw — Upg + g sin ©0) (2.68)
?rali
EH | ﬂd_i_ﬂ-w+£@ﬂ,+wq 1 ﬂﬁ? -+ ﬂ 5|-:
A i i A aq g B8
+ M5 =1
L LIS
To simplify the notation it is customary to make the following substitutions:
1 ax
i
Z, = L oz - (2.69)
m dx
_1 oM
oI, ax

When this substitution is made the coefficients, such as M,, Z,, and X, are
referred to as the stability derivatives.

2.4.2 Equations of Longitudinal Motion

Equation (2.68) may now be rewritten in the following form:
u = X”H + X&!’i + XWW + X,,-,.W - X“.q‘ t Xq.f!" - Wuq
— g cos Ogb + X B + X3 bk
w=Zu+Zun+Zw+Zw+Zg+ Zg+ Upyg
_ T v 0 (2.70)
— g sin B8 + Zy e + ZE-I_.EL-'
E? = Muu + MML‘! + Mwlr'r' + J'Il"f,;.w + qu + qu
+ Mal_.ﬁl-: + M:s]:'ﬁr-.
For completeness, the second equation of (2.62) is usually added to eq. (2.70),
i.e.
=g (2.70a)

From studying the aerodynamic data of a large number of aircraft it becomes
evident that not every stability derivative is significant and, frequently, a number
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can be neglected. However, it is essential to remember that such stability
derivatives depend both upon the aircraft being considered and the flight
condition which applies. Thus, before ignoring stability derivatives, it is important
to check the appropriate aerodynamic data. Without loss of generality it can be
assumed that the following stability derivatives are often insignificant, and may be
ignored:

X&, Xril'? X,,i., XE.—_, ZJ", Z,,',., Mﬁ., ZEF and M;’:,]___ .

The stability derivative Z,, is usually quite large but often ignored if the trimmed
forward speed, Uy, is large. If the case being studied is hovering motion, then 2,
ought not to be ignored. With these assumptions, the equations of perturbed
longitudinal motion, for straight, symmetric flight, with wings level, can be
expressed as:

= Xu+ X,w# Wyg — g cos 68
W = Z”u + ZWH’ + U.:]q - 5 sin (']nH + Zﬁi"aﬁ

(2.71
r.i' = !‘r’fu“ + M‘ww -+ Mﬁ.\-‘;' + """qu + Mﬁ]:.?}'.: )

b=gq

Notice that each term in the first three equations of (2.71) is an acceleration term,
but since the motion and control variables, u, w, g, # and . have such units as
m s~!, and s~' the stability derivatives appearing in these equations are
dimensional. [t is possible to write similar equations using non-dimensional
stability derivatives, and this is frequently done in American literature and is
always done in the British system; but when it is done, the resulting equalions
must be written in terms of ‘dimensionless’ time. The responses obtained
from those equations are then expressed in units of time which differ from real
time. If the reader requires details of the use of non-dimensional stability
derivatives, Babister (1961) should be consulted. It has been decided in this book
to use the form of equations given in (2.71) where dimensional stability
derivatives must be used (these are the stability derivatives which are usually
quoted in American works) but where time is real. Such a decision makes the
design of AFCSs much easier and more direct for it allows direct simulation, and
also makes the interpretation of the aircraft responses in terms of flying qualities
more straightforward,

2.4.3 Equations of Lateral Motion
From eqs (2.64) and (2.62) the following set of equations applies to lateral
motion:

y=ml¢ + Uyr = Wyp — g cos Oyd]

I'=ILp — |t

n=1_.r—I.p (2.72)
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P A= & — W sin B,
Y #=WcosB,

Expanding the left-hand side of the first three equations results in the following
(subscripts A and R indicate aileron and rudder, respectively):

da¥ a¥ ay Y il dY e ay ay
— v+ —V+—r+-—i+—p+—p+ Bo+ —— B
aov ' Ta T ar T e T P T ap P e, M aeg R
= m|v + Uyr — Wyp — g cos Byd)
aL daL aL AL aL dalL = aL aL
— Vvt — v+ —r+—F+t—p+—p+ o+ — &
v ' T T e " T T T T P e, O Taeg R
=d.,p— [.F (2.73)
aiN an aN aN aN aN e aN AN
— v+ —V+—r+—Ft+t—p+-——p+ ot — B
av T aw T e TP T ap P as, 0T aeg R
- "I.:_'?: - "up
Adopting the more convenient notation, namely:
1 ayYy 1 8L 1 aN
— — Li— — A — — 2.74
"= m o L 1 =1, 9 ( )
allows the eqs (2.73) to be written more simply as:
v=Yv+ Yo+ Yo+ Yp+ Yi+Yp+ YﬁnaA + }'ﬁkﬂg;f_fﬂr
+ Wop + g cos Oy
p = ‘;— P+ Ly + Liv+ L+ Lif + Lpp + Lyp + Ls Ba + L g
(2.75)

[ . - .
F=—2—p 4+ Nv+ Nov+ Nor+ N+ Nop + Nyp + Ny Ba + Ni Br
T
For conventional aircraft, it can usually be assumed that the following stability
derivatives are insignificant:
Yo, ¥p. ¥

"

Y.r- Yr" Yﬁﬂl -'Lf'l f

]

N;, N, .

Mote, however, that ¥, may be significant if U/, is small. When this assumption is
made the equations governing perturbed lateral/directional motion of the aircraft
are given by:

v =Y. ; Upr + Wyp 4 £ cos Oyd + YE-RE'H

In?
.fj = —F + .L-,.P' + 'L.”P + L,J' + Lanaa f LERER

rx

o= =X j.} + f"‘ru'l-‘l + ai\'rl,‘,ﬁ + N,J‘ + .n"'!rg'qﬁa + NﬁkﬁR {2.?{5}

!
!
!
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sz= b — U s5in O,
Y f= W ocos O

25 EQUATIONS OF MOTION IN STABILITY AXIS SYSTEM

The aerodynamic forces which contribute to the x, y and z terms in eq. (2.65) are
the components of lift and drag resolved into the body-fixed axes. The angles
which orient the forces of lift and drag relative to the body-fixed axes are: the
angle of attack, o, and the angle of sideslip, B. The angles are defined in Figure
2.5 where the subscript ‘e’ has been used to indicate that the velocity and its
components are relative in the sense of airframe to air mass. If the velocity of the
air mass is constant relative to inertial space, then the subscript ‘o’ can be
dropped. The velocity components along the body axes are:

U,=Vr cosp cosa
Vo= Vr sinp (2.77)
W, =V cosp sina
Earlier it was shown that if symmetric flight was assumed, V, would be zero.
Therefore, if the axis system is oriented such that Wy is zero, then both a, and By

are zero. This orientation results in the X axis, in the steady state, pointing into
the relative wind and the X axis and the velocity vector being aligned such that:

Up= V¢ {2.78)

Such an orientation results in a stability axis system which, initially, is inclined to
the horizon at some flight path angle, g, since:

0 L,

i

Figure 25 Orientation of relative wind with body axis system.



35 Eguations of Motion of an Aircraft

("}n é in + Xy {2.?‘}_}

and oy is zero.

This initial alignment does not affect the body-fixed character of the axis
system: all the motion due to perturbations is still measured in a body-fixed frame
of reference. However, the alignment of the stability axis system with respect to
the body axis system changes as a function of the trim conditions. When an
aircraft is disturbed from its trim condition, the stability axes rotate with the
airframe and, consequently, the perturbed X, axis may or may not be parallel to
the relative wind while the aircraft motion is being disturbed. The situation is
illustrated in Figure 2.6.

Using the stability axis system, in which W, = 0 and @, = v,. eq. (2.71)
may be expressed as:

u=Xu+ X,w— g cosyyl
Ww=Zu+Zw+ Uyg—gsinyh + Z; &g
E (2.80)
g =Mu+ Mow+ Mo + Mg + MF.L__B._-
b=gq
whereas eq. (2.76) may now be written as:

v=Yuw ; Upr + g cosvyed + YERER

Relative
wind X
-'i—l‘—_
Horizontal
(a)
L]
X
Relative “E‘H
\F—-:h-— K2
¥
Horizontal 'y
|
(b}

Figure 2.6 Direction of stability axes with respect to the relative wind.,
(a) Steady flight. (b) Perturbed flight.
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For Steady Manoeuvring Flight Conditions

I F + L,.V + Lpp + L,J‘ + Lﬁﬁﬁ,\ + LRRER

N + InLy
Ny + IsL,
N, + I.L,
.'"'lrﬁn + "‘A';‘EA

V=Y Usr + g cosyob + Y be
p=Liv+ Lyp+ Lir+ L B+ Lj br
F= N+ Npp + Nir + Nj b + Ni_Br
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(2.81)

The cross-product inertia terms which appear in eq. (2.81) can be eliminated by a
simple mathematical procedure: the use of primed stability derivatives. By
ignoring second order effects, the cross-product of inertia terms are taken into
account in the following primed stability derivatives:

(2.82)

(2.85)

2.6 EQUATIONS OF MOTION FOR STEADY MANOEUVRING FLIGHT

Steady flight conditions provide the reference values for many studies of aircraft
motion. Once the relationships for steady fight are known, they are used
subsequently to climinate initial forces and moments from the equations of
motion. How these steady relationships are determined is covered in the next
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2.6.1 Steady, Straight Flight

This is the simplest case of steady flight. All time derivatives are zero and there is
no angular velocity about the centre of gravity. Therefore, setting to zero all time
derivatives, the angular velocities P, (2, R, and the time derivatives of angular
position (attitude) reduces eq. (2.56) to:

Xy = mg sin ©

Yy = — mg cos 8 sind
(2.86)
Zy = — mg cos® cosd

Ly=My=Ny=1

These equations can be applied to a steady sideslip manoeuvre, for the velocity
components V, W, and the bank angle, @, are not necessarily zero. However, if
the motion is restricted to symmetric flight, the bank angle is zero. For this case,
the equations become:

Xy = mgsin®
Yo=10 (2.87)
Zo=—mgcos®

Again, all the moments are zero.

2.6.2 Steady Turns

In this case, the time derivatives are all zero again and the rates of change of the
Euler angles, & and ©, are also zero; the rate of turn, fr_ is constant. Generally,
such steady, turning manoeuvres are carried out for very small pitching angles, or
for shallow climbing or diving turns. Hence, for small 8, the following
relationships hold {see eq. (2.46)):

P==Wsnt=—-ip®
Q=W cos® sind = sind (2.88)
R=Ycos® cosd = ¥ cos b

For most manoeuvres of this type, W, although constant, is small so that the
products of P, J and R may be neglected. Furthermore, for co-ordinated shallow
turns, the side force Y is zero (by definition) and the velocity components V and
W are small. Therefore, for a steady. co-ordinated, shallow turn, the equations
become:

X =mg®
Y Z=14mWUsdo % g gos @) (2.89)
o5 S

2= -Mst:as;ﬁ
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P = i tan &
o

Apain, all the moments are zero.

2.6.3 Steady Pitching Flight

Symmetric flight of an aircraft along a curved flight path, with constant pitching
velocity , results in a quasi-steady flight condition. In this case, U/ and W do vary
with time but V, P, R, @ and ¥ are all zero. Therefore, the equations of motion
for a rigid body aircraft reduce to:

X=m(U+ QW) + mg sin®
Z=m(W - QU) — mg cos ® (2.90)
L=M=N=Y=10

Equation (2.90) can be used to evaluate the initial conditions which are used in
the small perturbation analysis. For reasonable values of pitch rate, the linear
accelerations i and w are negligibly small; consequently, eq. (2.90) becomes the
initial conditions:

Xﬂ = HIQQ[]WU + g sin 'H'[;J
.Zvu = = m(QnUg] + g C05 ("}U}

(2.91)

If the second equation is solved, a relationship is obtained between the initial
pitch rate Oy and the initial load factor n . along the Zy axis:

&
0, = E. 3 (_ m; - con{'{il.)

= £ (n, ~ cos@y) (2.92)

ne, = - Znlmg (2.93)

2.6.4 Steady Rolling (Spinning) Flight

The equations of motion for steady rolling (spinning) flight cannot be simplificd
without improperly describing the physical situation so that the results obtained
are unrepresentative of the actual motion. Special methods of treatment are
required and, consequently, no such simplified equations are developed here.
See, for example, Thelander (1965) for such methods,
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2.7 ADDITIONAL MOTION VARIABLES

Even for the straightforward case of straight, steady, wings level, symmetric
flight, the designer of AFCSs may be interested in motion variables other than the
primary ones of change in forward speed u, in vertical velocity w, in pitch rate g,
in pitch attitude 8, in sideslip velocity v, in roll rate p, in yaw rate r, in bank angle
&, and in yaw angle . Other commonly used motion variables are treated here,
with particular regard to the development of their relationship to the primary
motion variables. Such additional motion variables are usually those which can be
measured by the sensors commonly available on aircraft.

2.7.1 Longitudinal Motion
Normal acceleration, for perturbed motion, and measured at the c.g. of the
aircraft, is defined as:
a; = (W= Upq) (2.94)
o
For small angles of attack, o,

W o= Uuﬂ
(2.95)

a".:g, = Un{'-l* -q)

In aircraft applications, acceleration is often measured in units of g. in which case

n, =- & (2.96)
When an aircraft changes its attitude, the steady, normal acceleration due tw
gravity, g, also changes. In that case:

ﬂ'rl_g = W — Uuq - g (2,9?}

If it is required to know the acceleration at some point, x distant from the c.g. by
[, but still on the fuselage centre line, that acceleration is given by:

a; = W — Lyg — L (2.98)
The distance [, from the c.g. is measured positive forwards. By definition:

hey = — a: (2.99)
where h is the height of the aircraft’s c.g. above the ground. Consequently:

heg = = w + Uyt (2.100)

hey = Upfods — [wde

— Uy (2.101)
- [}
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ey = —Uqylg (2.102)

The variation of load factor with the angle of attack of an aircraft, n, , is an
important aircraft parameter known as the acceleration sensitivity. It ‘will be
shown in Chapter 3 how n, can be determined from the stability derivatives and
the equations of motion; the result obtained there is quoted here for convenience:

'L'rlln {ZBF.MW - JW&HZW}

. = — —
(2.103)
- Efft_f (Zs My, — My Z.)
Usually, for m-twcntinnal aircraft, MEFZW = ZEEMM_: consequently:
ne == Z.Uolg (2.104)
For straight and level flight, at )/g’ ‘ﬂ!n |
n, == 2. Uy C,«_“a’f_";_ (2.105)

where C, is the lift curve slope and C; is the coefficient of hft.

2.7.2 Lateral Motion

In lateral motion, the perturbed acceleration at the c.g. of the aircraft is defined
by:
Ay —gd + Uy (2.106)

ay

If it is required to know the lateral acceleration at some point, X, on the OX

axis, distant from the c.g. by !xla , and displaced a distance. I., on the OZ axis, the
- . N 18

appropriate equation is:

a, =a, +1l F—Lp (2.107)

X
M e lat

Lm is measured positive forwards of the c.g. and [, is measured positive down-
wards. Heading angle. A, is defined as the sum of sideslip, B, and yaw angle, .

A=Y+ (2.10%a)
2.8 THE STATE AND OUTPUT EQUATIONS
2.8.1 The State Equation
A state equation is a first order, vector differential equation. It 1s a natural form

in which to represent the equation of motion of an aircraft. Its most general
expression is:
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x=Ax+ Bu (2.108)*

where x € B” is the state vector, u € R™ is the control vector.

The elements of the vector x are termed the state variables and the
elements of the vector u the control input variables. A is the state coefficient
matrix and B the driving matrix; they are of order (n x n) and (n X m),
respectively.

From an inspection of eq. (2.108) it should be observed that the Lh.s.
terms involve only first derivatives of the state variables with respect to time: the
r.h.s. depends solely upon the state vector x and the control vector u. Thus, the
state equation is an attractive mathematical form for aircraft control and stability
studies since its solution for known inputs can easily be obtained by means of
integration. Furthermore, this same form of equation lends itself to simulation. In
Chapter 1 it was stated that the flight of an aircraft can be affected as much by
disturbances such as atmospheric turbulence as by deliberate control inputs, w.
Such disturbances can be taken into account by adding a term to the r.h.s. of eq.
(2.108), i.e.:

x=d4x + Bu + Ed {2.109)

where d is a vector of dimension ! which represents the / sources of disturbance.
The associated matrix, E, is of order (n x ). If the disturbances are random,
special methods are used to introduce the disturbances into the aircraft’s state
equation which is generally considered to be deterministic. These methods are
dealt with separately in Chapter 5, and, consequently, for the remainder of this
chapter d will be regarded as a null vector,

Any set of first order, linear, constant coefficient, ordinary differential
equations can be combined into the form of eq. (2.108).

2.8.2 The Output Equation

If the concern is with motion variables other than those chosen as state variables,
then an output equation is wanted. The output equation is merely an algebraic
equation which depends solely upon the state vector, and, occasionally, upon the
control vector also. Its customary form of expression is:

y=Cx + Du (2.110)°

The output vector is ¥ € RY and its elements are referred to as the output
variables. The matrices ¢ and D, the output and direct matrix respectively, are
generally rectangular and are of order {(p ® n) and (p » m), respectively.

For AFCS work the sensors used to measure motion variables, for use as
feedback signals, are often subject to measurement noise. To incorporate these
noise effects into an output equation requires the addition of another term to eq.
(2.110):

y = Cx + Du + FE (2.111)°
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The characterization of sensor noise and how it is modelled dynamically are dealt
with in Chapter 5. For the rest of this present chapter £ is assumed to be null.

2.8.3 Aircraft Equations of Longitudinal Motion

If the state vector is defined as, say:
[
W
x = (2.112)
q .

]

and if an aircraft is being controlled only by means of elevator deflection, &g, such
that its control vector is defined as:

ud B (2.113)
then, from eq. (2.80}):

[ X, X, 0 — gcosy
Z, Z, U, = gsin
AL | Ce O To TR (2.114)
- M, M, M, M,
00 1 1]
X
Zy
BA _E (2.115)
MEE{
| 0

The significance of the tilde in row 3 of eq. (2.114) is easily explained. In eq.
(2.80) the equation for ¢ was written as:

G = M+ Myw + Mow + Mg + Ms b (2.116)

It is obvious that a term in W exists on the s, of the eguation, The state
equation, though, does not admit on its r.h.s. terms involving the first (or even
higher) derivatives of any of the state or control variables. Fortunately, w, itself,
depends only upon x and uw and, therefore, an easy substitution is possible. In eq.
(2.80) the equation for w is given as: 2 Se

W= Zu+ Zow + Usg — g sinyob + N e (2.117)
Substituting for w in the equation for § yields:

g=(M,+ M Zu+ (M, + M.Z,)w
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+ (M, + M Up)g — gMy; sinyob + (Ms_ + MiZs )be
1.C.
G =Mu+ Mow+ Myg + M + J'r?aaﬁt (2.118)
where
M, = (M, + MyZ,)
M, = (M, + M.Z,)
M, = (M, + UM,) (2.119)
My = (— gMy sin o)
MBE =M+ M2y )
If there were some other control inputs on the aircraft being considered, say, for
example, a change of thrust, &, and a deflection of symmetrical spoilers, &,

then the order of the driving matrix, #, becomes (4 x 3) and the elements of the
matrix become:

XF’I:‘ XB1h Xﬂ'ip
ZEE'Z Zﬁ'.tl éb:\p
My M M,

0 0 0

B = (2.120)

=P

It must be understood that the state equation is not an unique description of the
aircraft dynamics. For example, if the state vector had been chosen to be

B

xa [ ? (2.121)
I
" 2.8

rather than the choice of eq. (22), A and B must be changed to:

[0 01 0
Mﬂl Mw 'ﬂ"}q "I;fﬂ

A= (2.122)

X, X, 0 —pgcosyy

| Z,,, z“_. Ug] — B sin Yo

0

M

B = E (2.123)
XﬁF

| Zs
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When the state equation is solved, with either set of A and B, the
responses obtained for the same control input, &g, will be identical.

In American work it is common to use as a primary motion variable the
angle of attack, «, rather than the heave velocity, w. Since, for small angles:

a = willy (2.124)
then:
a = Wil (2.125)
dally = dw (2.126)
£y w Z?,F
a=—u+2Z,—+qg+—bg (2.127)
Liy Uy Ly
=Z*u+ Lo+ g+ ZE‘EEE (2.127)
where

Z: = LUy and zs]: = ZEEJUH .
Frequently, again in American papers, a stability derivative Z, is quoted,
and eq. (2.127) is written as:
a=Zu+Loa+g+ ZEFEF_ (2.128)

The reader is warned, however, that confusion can occur with this form. In eq.
(2.128) Z, is identical to Z,, in eq. (2.127), but, for consistency of notation, Z,
ought to be defined as:

Z, A aZlpa = Z,U, (2.129)

7, is sometimes quoted as a value which turns out to be identical to £,,, and
sometimes as equal to Z, Uy The student is advised always to use the form of
equation given in (2.117) and from the state equation obtain the heave velocity w.
If the angle of attack is required, then determine o from eq. (2.124). In this way,
ambiguity and confusion can be avoided.

If the output variable of interest was, say, a, , then eq. (2.98) can easily
be shown (by substitution for w and g) to be given by:

a, =(Z., - LM+ (Z. — LMOw = LLM,q
¥ i (2.130)
+(Zs — 1 M5 )5
Hence:
yda, =((Z, — LM)(Z, = LM.) = LM Ox + [(Zs_ — [ M5 )Ju (2.131)
which is the same form as eq. (2.110), where
C = (2, - LMNZ, - LM,) = M, 0] (2.132)
D= (Z_ - ;,MEP_] (2.133)
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If the concern is with the height of an aircraft at its c.g., then:

Heg = — a: (2.99)
a. = Zu+ 2w+ Z;,FEE (2.134)
i.e.
.-h. = = Zh!,! - wa - ZEFE‘E
To express this in terms of state variables let:
Xo=h (2.135)
and let:
Xs =5 =h (2.136)
ts = = Zu — Zyw — Zp e (2.137)
Hence:
Fu ]
W
g i
x4 o and u = [&g] (2.138)
h
b h -
Then the state equation (2.108) is obtained once more, i.e.:
= Ax + Bu (2.108)
but now:

X, X, U0 —pgcosyy 00
Z, Z, U; —gsiny 00
M, M, M M 00
= ! ‘e (2.139)
0 0 1 0 00
- Z. 0 0 00

0 00 0 1 0 |

B = E (2.140)
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If the motion variable being considered is the flight path angle v then it can be
inferred from eq. (2.79) that:

y=60-a

=0 — (w/Up)

Consequently, if y A v, then

v=|o -

1

— 0 li| x=Cx
Uy

where x is defined as in eq. (2.112).

2.8.4 Aircraft Equations of Lateral Motion

For lateral motion, the control vector may be defined as:

uld Ba ]
= s
If the state vector, x, is defined as:
-
P
x4 r
&
L v
then the state equation is given by:
¥ =4x + Bu
where:
(¥, 0 =U, +gcosy0 |
L, L, L 0o 0
A=|N/N, Npp 0 0
0 1 tan-yy ] 0
L 0 0 secyy 0 0 |
0 Vs,
!.gﬁ Ls,
B = NgA N3,
o o
o 0

(2.141)

(2.142)

(2.143)

(2.144)

(2.108)

(2.145)

(2.146)
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The sideslip angle, B, is often used as a state variable, rather than the sideslip
velocity, v. From eq. (2.77), for small angles:

v = Uyp (2.147)
and consequently:

g Ys
B=YB—r+ —cosyh+ —— 5 (2.148)
" UD "f? Uu R N

which may be written as:

B=YB—r+ -g—c::rs vob + Y3 Br (2.149)
(1]
where:
Y, = Ys,/Uo (2.150)
If, now, the state vector is defined as:
]
P
x=|r (2.151)
&
]

then eq. (2.108) obtains, but the coefficient matrix has become:

[Y,,. 0 lﬁmsyuﬂ]

ik
Ly L, L; 0 1]
A= | NgN, N, 0 0 (2.152)
0 1 tan+vyy 0 0

| 0 0 secwyy 0
The driving matrix has become:
0 Y;H
L;ﬁ !.ER
B = N;A NER (2.153)
0 0
| 0 0
The fifth column of A in both eqs (2.145) and (2.152) is composed entirely of
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zeros. The physical significance of this is explained in Chapter 3, but the presence
of such a column of zeros can often be avoided by redefining the state vector, as
in eq. (2.154) which has now dimension 4; i.e. let:

B
P

X = (2.154)
F

&
then A becomes:
[ V-y ﬂ _]. g.lfi.lrﬂ
Lol L 0
A= & (2.155)
Ny N, N, 0
| 0 1 tany, O
and B becomes:
*
0 Yi
Ly L
B = :“ 8 (2.156)
J\ﬁﬁ JNIER

o o

It must be emphasized that in straight and level flight (i.e. non-climbing or diving)
+o is zero. Consequently, for this flight condition, those elements which appear in
the various forms of A, and which depend upon ~, will take a value of zero if the
element has the form sin -y, or tan vy, or will take the value unity if the element
involves cos g O sec ;. Sometimes there is interest in the lateral acceleration of
an aircraft at some point x, which is a distance [, from the c.g. (I, i1s positive
forwards) and a distance [, off the axis OX (/. is positive when down from the
c.g.). Hence:
. g + 5= Ip (2.107)
which can easily be shown to be:
a, = (Y, + LN, = LL)v + (LN, = :Lp)p
+ (LNy = LL)r + (LNs = If_L;,A}E,x (2.157)
+ (V3 + LNy, = LL3 Jox
If the output variable y is taken as the lateral acceleration, then eq. (2.157) can be
expressed as:

y = [(Y, + LN, = LLOUN, = LL) (LN, = L) Olx

a, =a
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+ [(LNs, = LLs WYE, + LNG = LLg )u
= Cx + Du (2.158)

2.9 OBTAINING A TRANSFER FUNCTION FROM STATE AND OUTPUT
EQUATIONS

Whenever the variables of a linear system are expressed in the complex frequency
domain, i.e. as functions of the Laplace variable s, then, whenever the initial
conditions can be assumed to be zero, the ratio of the output variable to some
particular input variable (all other input variables being considered identically
zero) is the transfer function of the system,

Given that the small perturbation dynamics of an aircraft can be
represented by a state equation of the form of eq. (2.108) and an output equation
of the form of eq. (2.110), namely x = Ax + Buand y = Cx + Du respectively,
then, provided that y is scalar and that only those columns of matrices B and D
are used which correspond to the particular control input u; being considered,
then a transfer function relating y and «; can be found. If y is a vector and it is
required to find the transfer function corresponding to some particular element, v,
as a result of some control input, u;, the rows of the matrices C and D which
correspond to y; are used in the calculation. To illustrate the procedure consider
that ¥y and u are scalars. Taking Laplace transforms, and assuming initial
conditions are zero, results in egs (2.108) and (2.110) being expressed as:

sX(s) — AX(s) = BU(s) (2.159)
vis) = CX(s) + DU(s) (2.160)
X(s) = (s] — A)~" BU(s) B
(2.161)
y(s) = [C(sl — A) ' B + D|U(s)
y(sWUE)AG(s)=Clsl - A" B+ D (2.162)
In general, if:
G(s) = yils)uls) (2.163)
then:
G(s)=Clsl — A" B; + Dy (2.164)

where B; represents the column of matrix B which corresponds to u;, and Dy is
the ith row of the matrix D corresponding to y; and the jth column corresponding
to u;. C; is the ith row of matrix C corresponding to y;.

It is evident that transfer function relationships can be found for output
motion caused by sensor noise or by atmospheric disturbances rather than
manoeuvre commands acting through the control inputs, but these are not treated
until Chapter 5.
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2.10 IMPORTANT STABILITY DERIVATIVES

All stability derivatives are important but some are more important for fight
control than others. This section treats only the latter type.

A number of parameters appear frequently in the eguations defining
stability derivatives. They are listed here for convenience (note that all the
stability derivatives presented are dimensional): § is the surface area of the wing,
¢ is the mean aerodynamic chord, p is the density, and b is the wing span.

2.10.1 Longitudinal Motion
Motion-related

pSUyé

A
Mu = 1

(Con, + C) (2.165)"
Yy
The non-dimensional pitching moment coefficient C,, is usually zero in trimmed
flight, except in cases of thrust asymmetry. M, represents the change in pitching
moment caused by a change in forward speed. Its magnitude can vary
considerably and its sign can change with changes in Mach number and in
dynamic pressure and also as a result of aeroelastic effects. In modern aircraft,
the Mach number effects and the effects of aeroelasticity have become
increasingly important. =
2, %% ¢, +cp) (2.166)
2m
The change in lift coefficient with a change in angle of attack, C; . is often
referred to as the lift curve slope. It is always positive for values of un;:]:, of attack
below the stall value. The lift curve slope for the total airframe comprises
components due to the wing, the fuselage and the tail. For most conventional
aircraft it has been found to be generally true that the wing contributes 85-90 per
cent to the value of C,_“, Consequently, any aeroelastic distortion of the wing can

appreciably alter C; and, hence, Z,,. [
_ pSUE .
M, =5 =G, (2.167)

¥

The non-dimensional stability derivative, C,, , is the change in the pitching
moment coefficient with angle of attack. It 1s referred to as the longitudinal static
stability derivative’. C,, is very much affected by any aeroelastic distortions of
the wing, the tail and the fuselage. However, both sign and mdgmtudc. of C,, are
principally affected by the location of the c.g. of the aircraft. C,, is pmportmnal
to the distance, xa¢, between the c.g. and the aerodynamic centre {a.c.) of the
whole aircraft. x .- is measured positive forwards. If x ¢ 15 zero, (,,, is zero. If
Xae < 1, f,m“ is negative and the aircraft is statically stable. If the c.g. is aft of the
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a.c., xac = 0 and C,, is positive, with the consequence that the aircraft is
statically unstable. In gr;}ing from subsonic to supersonic flight the a.c. generally
moves aft, and, therefore, if the c.g. remains fixed, C,, will tend to increase for a
statically stable aircraft. M,,(M,) is closely related to ?he aircraft’s static margin,
The significance of stability, static margin and M, is discussed in section 3.3 of
Chapter 3, but it can be stated simply here that M,, (or M,) is the most important

longitudinal derivative. ]
L pSe?
M, al C’"a {2.168)

¥y

Although (,‘,,,&dues not have a powerful effect upon an aircraft’s motion,
particularly the short period motion, it does have a significant effect. Usually

M, < (it increases the damping of the short period motion. [
_ pSUe?
Mo =5, Cma (2.169)

For conventional aircraft, M, contributes a substantial part of the damping of the
short period motion. This damping comes mostly from changes in the angle of
attack of the tail and it is also proportional to the tail length, It But I} is the lever
arm through which the lift force on the horizontal tail is converted into a moment,
e & this “atth' nieans anF‘\‘HnHﬂ{ "

M, oli =~(2.170)

M, 15 a very significant stability derivative which has a primary effect on the

handling qualities of the aircraft (see Chapter 6). ]

Control-related

. ~ pU3S .
2y =—/——C 2.171
e =ty (2.171)
Since € is usually very small, Z; is normally unimportant except when an
AFCS mmlvmg feedback of normal accdcratmn is used. Also, if a tailless aircraft
is being considered, the effective lever arm for the elevator {(or ailerons) is small,

hence C, may be relatively large compared to L,,, . In these cases, ZﬁE cannot
E'Z

safely be ncglcclul in any analysis. a
plUise .

‘H = ( FH 2. 1?2

P 21, 8 ( )

C,,,aE is termed the ‘elevator control effectiveness’; it is very important in aircraft
design and for AFCS work. When the elevator is located aft of the c.g.,” the
normal location, C,,,rs is negative. Its value is determined chiefly by the maximum
lift of the wing and also the range of c.g. travel which can occur during a flight. =




Important Stability Derivatives 53

2.10.2 Lateral Motion
Mouotion-related

_ oUyS

2m e (2.173)

The sideforce which results from any sideslip motion is usually obtained from the
fin of the aircraft, and usually opposes the sideslip motion, i.e. C, < 0. But for
aircraft with a slender fuselage, at large values of the angles of attack the forces
can be in an aiding direction. For certain (rare) configurations having a wing of
low aspect ratio but required to operate at a large value of angle of attack, this
force on the fuselage can counter the resisting force of the fin which results in the
stability derivative Cy, being positive. Such positive values, even if very small, are
undesirable because the reversed (or small) side force makes it difficult for a pilot
to detect sideslip motion and consequently makes a co-ordinated turn difficult to
achieve. Such values of C"B also reduce the damping ratio of the dutch roll mode,

whereas Cfﬂ normally makes a large contribution to this damping. In the normal

case g is not a derivative which causes great difficulty to AFCS designers. =
PU[bSb

- = C 2.174

Ly = UL, = 2. s ( )

Note that:

Lg + (I N,

Ly==B" lx B o + = N 2.175

] L.@ IHX la ( :l

1= “2 I:z} —
o = (2@2)

The change in the value of the rolling moment coefficient with sideslip angle C;p is
called the ‘effective dihedral’. This derivative is very important in studies
concerned with lateral stability and control. It features in the damping of both the
dutch roll and the spiral modes. It also affects the manoeuvring capability of an
aircraft, particularly when lateral control is being exercised near stall by rudder
action only. Usually small negative values of C; are wanted, as such values
improve the damping of both the dutch roll and the spiral modes, but such values

are rarely obtained without considerable aerodynamic difficulty. =
Ug Sb
Na R0 22 ¢ (2.176)
2 .liﬁl B
22

The change in the yawing moment coefficient with change in sideslip angle C"H is
referred to as the ‘static directional’ or “weathercock’ stability coefficient. It
depends upon the area of the fin and the lever arm. The aerodynamic
contribution to ":"E from the fin is positive, but the contribution from the aircraft
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body is negative. A positive value of C,, is regarded as static directional stability;
a negative value signifies static directional instability (see Chapter 3). (.“,,B pri-
marily establishes the natural frequency of the dutch roll mode and is an important
factor in establishing the characteristics of the spiral mode stability. For good
handling qualities (.',,ﬂ should be large, although such values magnify the disturb-
ance effects from side gusts. At supersonic speeds C,,ﬂ is adversely affected

because the lift curve slope of the fin decreases. [ ]
— pUpSh*
"‘.r! = Tu CJP (2.177)

The change in rolling moment coefficient with change in rolling velocity, L‘;P is
referred to as the roll damping derivative. Its value is determined almost entirely
by the geometry of the wing. In conjunction with (, [q v.), L; establishes the
maximum rolling velocity which can be obtained I'rum the alrcrdft an important
flying quality. C ,ﬂ is always negative, although it may become positive when the

wing (or parts of it) are stalled. ]
N, = BHSE” o (2.178)
4!#- n
Lis W:ns

The change in zelisg moment coefficient with a change in rolling velocity, C, , is
i

usually negative, although a positive value is desirable. The more negative is C‘,,,P

the smaller is the damping ratio of the dutch roll mode and the greater is the

sideslip motion which accompanies entry to, or exit from, a turn. ]
UnSb*
L, =E=022 o (2.179)
4 f

The change in rolling moment coefficient with a change in yawing velocity, C;,
has a considerable effect on the spiral mode, but does not much affect the dutcil
roll made, For good spiral stability, C; should be positive but as small as possible.
A major contributing factor to C; is the lift force from the wing, but if the fin is
located either above or below the :ixis OX it also makes a substantial contribution

to O , being positive or negative dependent upon the fin's geometry, ]
U, Sb*
N, = *# Cn, (2.180)

The change in yawing moment coefficient with a change in yawing velocity, t,, L 18
referred to as the ‘yaw damping derivative’. Tt is proportional to 5. Usually C, iﬁ
negative and is the main contributor to the damping of the dutch roll mcdc. It
also contributes to the stability of the spiral mode. ]
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Control-related
Uis .
Ys = 92’:— G, (2.181)

The change in side force coefficient with rudder deflection, €, . is unimportant
except when considering an AFCS using lateral acceleration as feedback. C, is
nearly always negligible. Because positive rudder deflection produces a positive

side force, C, < (), [
Yo
_ pU3Sb .
Ly =5 G, (2.182)

C'I'E'R is the change in rolling moment coefficient which results from rudder
deflection. It is usually negligible. Because the rudder is usually located above the
axis OX, positive rudder deflection produces positive rolling motion. i.e.
Cfﬁ = 0.

® " The change in rolling moment coefficient with a deflection of the ailerons,
C;H, is referred to as the aileron effectiveness. In lateral dynamics it is the most
important control-related stability derivative. It is particularly important for low
speed flight where adequate lateral control is needed to counter asymmetric gusts

which tend to roll the aircraft. n
_ pUGSH
T f-nﬁ (2.183)

The change in yawing moment coefficient which results from a rudder deflection,

C"a _is referred to as the rudder effectiveness. When the rudder is deflected to

the Etlcfl {i.e. g = 0) a negative yawing moment is created on the aircraft, i.e.
C"ﬁn < (.

The change in yawing moment coefficient which results from an aileron
deflection, f?nhx results in adverse yaw if (.‘nan < {), for when a pilot deflects the
ailerons to produce a turn, the aircraft will yaw initially in a direction opposite to
that expected. When C"a,\ = () the yaw which results is favourable to that turning
manoeuvre, and this is referred to as proverse yvaw. Whatever sign c"ﬁ,« takes, its
value ought to be small for good lateral control. ]

2.11 THE INCLUSION OF THE EQUATIONS OF MOTION OF THRUST
EFFECTS

1. Many of the stability derivatives which are used in the equations of
motion are the result not only of aerodynamic forces but of forces arising
from flows induced by the propulsion system. Such flows profoundly
modify the derivatives but the effects are usually difficult to predict,
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ler = ay)

X...H

Relative
wind

7
Figure 2.7 Thrust alignment geometry.

requiring special wind tunnel tests for their resolution. But where
slipstream interference is minimal, such being the case when a subsonic
jet has a central exhaust aft of the tail, the forces and moments associated
with direct thrust make considerable contributions to various derivatives,
The number of forces associated with the propulsion system include:
(a) The forces acting on the inlet which result when the air mass
entering the engine changes direction.
(b) The moments caused by the angular velocity of a tube
containing a mass of moving air,
(¢) The forces and moments resulting from the thrust itself,

2, The angle which the thrust line makes with the relative wind is & (see
Figure 2.7) and is fixed by both the geometry of the aircraft and its trim
condition. The angle of the thrust line with respect to the X-axis is fixed
at (e — o). Hence:

X‘r = T cos (E'r - u(]} {_2-134}
Zr = — Tsin(ep — ) {2.185)
JMT = l’:’TT (z-lxﬁ)

where the thrust offset ey is positive downwards.

3. Of course, thrust is a function of density, throttle setting, and the relative
speed of the aircraft (on rare occasions it is a function of o). Hence:
ar [ av av ) aT ]
= cos (Ey + — B 2,187
axy = cos (e — ao) (30 (Tou+ Sow) + o baf @187
aT (av av ) ar }
o = sin (& + — + — § 2188
dZy = sin (e — o) N (au aw FT ( )
However:
9Xy _ 0T (cos e cOS” ay + SIN e 8N oy COS o) (2.189)

au -~ av
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X7 al . ) .

W = av [CUH E 51N g COS oy + s1n ET 5IN° CI!:]} (2.1‘)“}

dXT aT . .

E = 35, {cos e COS oy, + sin &1 sin ay) (2.191)
T i

E‘]Z - ﬂT . El "

U = v (sin e COS° @y — COS &1 SIN 0 COS ) (2.192)

(LAY - daf . . 3

TW - av (5in £ sin o COS oy — COS £ SIN° o) (2.193)

dZ k' )

E = T (sin &1 €Os ny — COS B i ay) (2.194)
] I:

At the trim condition, however, the total moment must be zero, i.e. the
thrust moment must be balanced by an equal and opposite aerodynamic
moment. Thus:

M“ = Tﬂf‘r + & 56 (m =1 {2]95}
aT (av  av ) aT ]
= b + — &
dM = er { (au aw 35y, "
(2.196)
. fav eV
T |:lU||a5'|."-'(,,_,.| (@ u + aw Hr')
From eq. (2.195), however:
_ 2z
Toer = %"g‘ C,, (2.197)
1.e.
pULSEC,, = —2Teer (2.198)
Uy

ar 2T, aT
dM = &g [(dl” Lﬂ:j) (ucosoy + wsinog) + —— 35, B, (2.199)

It is evident that the perturbations in moment due to thrust are influenced
by the trim condition term, Ty/Up.

4, Thrust can be written as:
T = p;‘r” SCu (2.200)

However, Cy, is not an aerodynamic coefficient so that eq. (2.200) is
misleading. The thrust contribution manifests itself chiefly in X, and is
expressed in the form:
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x C.B.
Thrust ﬂ'lr
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Figure 2.8 Resolution of thrust into forces and moments.
- |'_I5U“ [[-‘rn a(:D " ) 1 ﬂ]‘“x
_— ———— — = JJ + — —
m 2 al m al

where T, is the component of thrust along the axis OX. The partial

derivative 87./aU is found from data on the power plant. The direct
contribution of thrust to other stability derivatives is usually negligible.

X, (2.201)

5 When the throttle setting, 8, i5 increased there is a corresponding
increase in thrust, Figure 2.8 shows how thrust is resolved into forces and
moments.

From Figure 2.8:
1 ar
ok () o
1 aT
- e 2
Zﬁrﬁ . (aam) sin &1 (2.203)
_ (e (8T .
ME‘m = (.‘H) (ﬂﬁm) COS B (2.204)

212 CONCLUSIONS

The form of the equations of motion of an aircraft depends upon the axis system
which has been chosen. Once a particular axis system is adopted, it is helpful to
expand the aerodynamic force and moment terms, and to linearize the inertial
and gravitational terms so that when small perturbations are considered the
resulting equations will be linear and can be separated into longitudinal and
lateral motion. Using the stability axis system is the most convenient for AFCS
work. Sometimes, small motion is not of concern, however, and it is essential
instead to consider steady manoeuvring flight such as pitching or turning. Not
every motion variable of interest appears in the resulting equations of motion;
such important variables as flight path angle, height, heading, and normal and
lateral accelerations, are related, however, to these equations and this chapter
shows how these variables can be obtained from a knowledge of the equations of



Exercises 59

motion. The form of the equation lends itself to representing the longitudinal and
lateral dynamics of the aircraft directly as state equations, with the other variables
being obtained from associated output equations. Once the state and cutput
equations are known it is possible to determine any transfer function relating a
particular output variable to a particular control input.

Not every stability derivative is significant in terms of its influence on the
dynamics of the aircraft and only the most important need to be studied for their
likely effects on the subsequent performance of an AFCS. Thrust changes do
affect the motion of an aircraft, of course, but the thrust line does not always act
through the c.g. of the aircraft, the origin of the stability axis system upon which
the equations of motion are based. Consegquently, special techniques are needed
to introduced th¥ese thrust effects into the equations of motion.

=


(info)
Chapter 2.13 not included in these notes.
Page 60 not included in these notes.


2.14 NOTES

1. For example, see chapter 4 of McRuer er al. (1973).
2. This depends upon the assumption of constant aircraft mass.
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Equations of Motion of an Aircraft

iy has been used to denote the perturbation in the pitching moment, M, to avoid
confusion with the aircraft’s mass, m.

This form applies to linear, lime-invariant systems only; when the system is non-
linear, the appropriate form is & = f{x, u, 1).

For linear, time invariant systems only; when the output relationship s non-linear
the appropriate form is y = g(x, v, t).

If the output equation is non-linear, the presence of measurement noise modifics
v o become: ¥ = gix, u, £, 1).

This assumes that the matrix (s/ — A) is non-singular, which can be proved by
recalling that £ "{[sf — A]7'} = ™.

Although Uy is used in these equations, the correct value to be used is the true
airspeed. For small perturbations, the errors are insignificant if L, is used instead
of Vi

If the elevator is located forward of the c.g. it is renamed canard. This description
is increasingly common, although canard referred originally to an aircraft
confipuration which flew ‘tail first', the forward tail surface being called a
foreplane, It is this foreplane which is now considered to be a canard.
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3

Aircraft Stability and Dynamics

3.1 INTRODUCTION

The equations of motion have been derived in some detail in Chapter 2. Only
under a large number of assumptions about how an aircraft is being flown is it
possible to arrive at a set of lincar differential equations which can adequately
represent the motion that results from the deflection of a control surface or from
the aircraft’s encountering atmospheric turbulence during its flight. This resulting
motion is composed of small perturbations about the equilibrium (trim} values.
To achieve such equilibrium values requires the use of certain steady deflections
of the appropriate control surfaces. Consequently, the entire range of the angle of
deflection of any particular control surface will not necessarily be available for the
purposes of automatic control, since much of that range is required to trim the
aircraft. What is meant, then, by small perturbation is that any angle be
sufficiently small to guarantee that the assumptions concerning any trigonometrical
functions involved remain valid. For practical purposes, a change of angle of 15°
or more should be regarded as large, and the designer should then consider the
likely effects of continuing to use the small perturbation theory whenever such
angular values can occur. Similarly, translational velocity should always be small
in relation to the steady speeds; when the steady speed, such as V,, or Wy, is zero
then changes of velocity of Sm s ' should be regarded as being the limit of
validity. However, it must be strongly emphasized that these are not firm rules
but depend upon the type of aircraft being considered, its flight condition, and the
manoeuvres in which it is involved.

For the remainder of this chapter it is considered that all the assumptions
of Chapter 2 hold, that any aircraft being considered is fixed wing and flying
straight and level in a trimmed condition, and that its motion is properly
characterized by egs (2.109) and (2.110). For example, for longitudinal motion,
eq. (2.112) is taken as the definition of the state vector x, i.e.

x A (2.112)

and the control vector u 15 defined as:
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ud [31-;] . {2.] |3}
The state coefficient matrix A is then given by:
[ Xy Xy 0 — B
A = Zu Z‘w [:'riil 0 {3_!}
M, M, M, 0
o o0 1 0
and the driving matrix B by:
-Xn[_:
Z
B=| "k (3.2)
Mﬁt
0

For lateral motion, the appropriatc cquations are (2.143) and (2.154), respectively
where the coefficient matrix is:

CY, 0 —1g/U;,
Ly L, L0

A= (3.3)
Ng N, N O
| 01 0 0
and the driving matrix is:
Yi, vi,
L Lj
B=| "a "w (3.4)
N, Neg
0 o0

3.2 LONGITUDINAL STABILITY
3.2.1 Short Period and Phugoid Modes

The dynamic stability of perturbed longitudinal motion is most effectively
established from a knowledge of the eigenvalues of the coefficient matrix A. They
can be found by solving the linear equation:

WM—=Aal=10 (3.5)

Iis a 4 % 4 identity matrix. By expanding the determinant, the longitudinal
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stability quartic, a fourth degree polynomial in A, can be expressed as:
A+ a At 4 @k 4 ash +oas =0 (3.6)

An aircraft may be said to be dynamically stable if all its eigenvalues, A;, being
real, have negative values, or, if they be complex, have negative real parts. Zero,
or positive, values of the real part of any complex eigenvalue means that the
aircraft will be dynamically unstable.' Rather than solving the polynomial by
numerical methods it is more effective to use a numerical routine to compute the
four eigenvalues of A,

It has been observed that for the majority of aircraft types, the quartic of
eq. (3.6) invariably factorizes into two quadratic factors in the following manner:

(AF 4 2{ppwanh + wi )N+ 2wk + 0l) (3.7)

The first factor corresponds to a mode of motion which is characterized by an
oscillation of long period. The damping of this mode is usually very low, and is
sometimes negative, so that the mode is unstable and the oscillation grows with
time. The low frequency associated with the long period motion is defined as the
natural frequency, wp,: the damping ratio has been denoted as L. The mode is
referred to as the phugoid mode, a name improperly given to it by the English
aerodynamicist, Lanchester, who coined it from the Greek word which he
believed meant ‘flight-like’. Unfortunately, duym implies flight as demonstrated
by a fugitive, not a bird (Sutton, 1949). The second factor corresponds to a rapid,
relatively well-damped motion associated with the short period mode whose
frequency is w,, and damping ration is L.

As an example. consider the passenger transport aircraft, referred to as
aircraft DELTA in Appendix B. If flight condition 4 is considered, the aircraft is
flying straight and level in its cruise phase, at Mach 0.8 and at a height of
13000 m. From the values of the stability derivatives quoted in the appendix, A is
found to be:

- 0.033 00001 0 - 98l
0.168  —0.387 2600 0
A= (3.8)
55 x 107* - 0.0064 — 0.551 0
0 0 1 0

The eigenvalues corresponding to this matrix are found to be:
Ay, As = + 0.0033 £ j0.0672 (3.9)°
Ay, Ay = — 0.373 £ j0.889 (3.10)

The cigenvalues of eq. (3.9) are seen to be those associated with the phugoid
mode since the damping ratio, although positive, is very small (0.0489) and the
frequency is very low (0.067 rad s™'), hence the period is long. Such an inference
can be drawn because the solution of any quadratic equation of the form:
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x4+ Wwx + w® =0 ' (3.11)
is given by:
x; = —lw+ joV(l = %)
(3.12)

Xy = = gm - _J'-Lu-"'."f{] - {2}

whenever { < 1.0, Complex roots occur only when the damping ratio has a
positive value less than unity.

From eq. (3.10) the eigenvalues can be deduced to be those associated with
the short period mode, for which the frequency is 0.964 rad s=! and the damping
ratio is (L3587,

3.2.2 Tuck Mode

Supersonic aireraft, or aircraft which fly at speeds close to Mach 1.0, occasionally
have a value of the stability derivative, M,,, such that M, takes a large value
which is sufficiently negative to result in the term wyy, in the phugoid quadratic
becoming negative too (see Section 3.6). When this happens, the roots of the
quadratic equation are both real, with one being negative and the other positive.
Hence the phugoid mode is no longer oscillatory but has become composed of
two real modes; one being convergent, which corresponds to the negative real
root, and the other being divergent, which corresponds to the positive real root.
The unstable mode is referred to as the ‘tuck mode’ because the corresponding
motion results in the nose of the aircraft dropping (tucking under) as airspeed
increases. Aircraft DELTA in Appendix B will exhibit a divergent tuck mode in
flight condition 3.

3.2.2 A Third Oscillatory Mode

The c.g. of a modern combat aircraft is often designed to lie aft of the neutral
point (n.p.) (see Section 3.3). When this is the case the stability derivative, M,
can take a value which will result in every root of the longitudinal stability quartic
being real. As the c.g. is then moved further aft of the n.p., the value of M,
changes so that one of the real roots of the short period mode, and one of the real
roots of the phugoid mode, migrate in the complex plane to a point where they
form a new complex pair, corresponding to the third oscillatory mode. When this
has occurred, that mode is the main influence upon the dynamic response of any
AFCS which is used. The phugoid mode has now become a very slow aperiodic
mode, and there also exists another extremely rapid real mode. Too positive a
value of M,, can result in dynamic instability, for one of these real eigenvalues can
become positive (see Section 3.5.2),
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3.2.4 s-plane Diagram

The location of eigenvalues in the complex frequency domain is often represented
by means of an s-plane diagram (which is simply a special Argand diagram). In
Figure 3.1 are shown the locations (denoted by x) of eigenvalues for a typical
conventional aircraft. For an aireraft which exhibits a tuck mode the locations are
denoted by O and for an aircraft with a third oscillatory mode they are denoted
by A

Jet
o
— 2
Fa'
¥ Conventional aircraft X
— L.
o Aarcraft with tuck mode
A Adrcraft with 3rd oscillating pair
— L l L | fr "}i—c ]
B —-4.0 1 20 —-1.0 EAFTI) +a
——- 1.0
x
il
Eall
o

- Jud

Figure 3.1 s-plane diagram.

A popular method of investigating how sensitive is an aircraft’s stability
to values of some particular stability derivative (and, consequently, some aero-
dynamic, inertial, or geometric parameter) is to illustrate how the eigenvalues
travel around the s-plane as the values of the stability derivative are changed. This
is a form of root locus diagram. Another effective way of determining to which
stability derivative the aircraft’s dynamic response is most sensitive is to carry out
a sensitivity analysis on coefficient matrix, A (Barnett and Storey, 1966). It is
important to remember that when the aircraft dynamics can be assumed to be
lincar those stability derivatives associated with the control surfaces play no part
in governing the stability properties of the aircraft. Their importance for achieving
effective automatic flight control, including stability augmentation, is paramount
nevertheless.

E


(info)
Chapter 3.3 not included in these notes.
Pages 68 ... 72 not included in these notes.
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34 TRANSFER FUNCTIONS RELATED TO LONGITUDINAL MOTION
3.4.1 Relationship Between Transfer Function and State Equation

The theory relating to deriving transfer functions from the linearized equations of
motion is given in Section 2.9 of Chapter 2. In this present section, some of the
more commonly used transfer functions for longitudinal motion will be derived,
but the reader should be aware that a number of computer programs are available
(see for example, Systems Control Technology, Inc., 1986; Larimer, 1978) for the
automatic determination of appropriate transfer functions from a knowledge of
the stability derivatives. These programs are usually based on the Leverrier
algorithm (Faddeeva, 1959).

The purpose of deriving analytically a number of transfer functions in this
present section is to arrive at their final forms, to see which parameters and terms
are significant, and to note possible simplifications which can lead to useful
approximations,

It has been shown in Chapter 2 that if only a single control, &g, is
considered, the linearized, small perturbation eguations of longitudinal motion
are given by:

= Ax + Bu (3.23)
where:
b
W
x 4 (3.24)
]
]
u d [8g] (3.25)
The coefficient matrix, A, and the driving matrix, B, are given by:
(X, X. 0 —g
zu zl-v Uﬂ n
A= . (3.26)
M, M, M, 0
o 0 1 0
XE'E
Zy
B=| _F (3.27)
M
E
0

From eq. (2.164), the transfer function relating output variable, y;, to control
input, 1, is given by:
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G(s)=Clsl — A" B, + Dy ’ (2.164)

Thus, every transfer function depends upon the variable chosen as the output and
the control surface deflection used to change the motion variable. But it must
always be remembered that when the control deflection is used to change some
particular motion variable that same control deflection changes other motion
variables simultaneously. It is this simple fact which sometimes causes great
difficulty for the designers of AFCSs, and it is this fact which results in so many
systems, designed by means of the conventional theory of control for single input,
single output, linear systems, producing aircraft performance which is unaccept-
able to pilots. Although transfer functions are useful, their use is limited,
particularly for AFCS design for modern aircraft where many control surfaces are
employed simultancously. However, from eq. (2.164) it is evident that every
transfer function relating to the motion of the aircraft must depend on the
inherent characteristics of the aircraft through the resolvent matrix, [s/ — A]™".

3.4.2 Use of Output Matrix, C, to Select a Particular Motion Variable

For the present, normal acceleration, and those motion variables such as A which
are directly related to it, are not being considered. Thus:

y=Cx {3.28)

and, for further simplicity, since transfer functions are being considered, only a
single output variable will be dealt with at a time. Consequently, eq. (3.28) now
becomes:

y=Cx (3.29)

where Cis a 1 x4 rectangular matrix. C contains only one non-zero element and
that element has the value unity, The column in which this value is to be found
depends upon which state variable is being taken as the output variable of
concern. For example, if the output variable is chosen to be u, then:

yvA[1000)x (3.30)
The other three relationships are:

yAw =010 0] (3.31)

yvAg=[0010)x (3.32)

yAde=[000 1) (3.33)

Thus, the unit element can be looked upon as a kind of pointer indicating which
state variable has been chosen as the output vanable,

Quite often, the output matrix C is used to achieve conversion of physical
units. For example, if the state variable g is defined in rad s™' but is required to
work with pitch rate in degree s~!, then defining g in degree s~! as an output
variable results in y = [0 0 57.3 O]x.




Transfer Functions Related to Longitudinal Motion 75
3.4.3 Transfer Function Notation

It will be plain to the reader now that four transfer functions can be determined.
namely:

(s )Wo(5), wis)Be(s), g(s)/og(s) and Bis Woels)
The form of these transfer functions is identical:
G(s) = N(syD(s) (3.34)

The denominator polynomial is the characteristic polynomial of the aircraft,
namely det[\] — A] which was dealt with in Section 3.2. When the roots of the
polynomial are known, i.e. those values of 5 are known which result in:

Apongls) = det|sl — Al=10 {3.35)

it will be seen that they are identical to the eigenvalues of A. The polynomial
det|s] — A] is often called the stability quartic. Every transfer function for
longitudinal motion has the same denominator, because every transfer function
must represent the characteristic motion of the same aircraft. Therefore, the only
way in which the transfer functions can differ for a particular motion, longitudinal
or lateral, of an aircraft, is in their numerator polynomials. These numerator
polynomials are direct functions of the output variable and the control input, and
to emphasize this fact, they are often denoted, in American reports especially, as
N-;i{.s]. The superscript yi denotes the particular output variable, and uj denotes
the control input. Thus, for the four transfer functions considered up to this point,
the corresponding denotations would be: Ng‘F(s], Nﬁ":}{s}, N;f] (s), and N 5{]_(.-;}.

For longitudinal motion the matrix [s/ — A |=" can be shown to be:
n(s) nia(s) mals) mals)

ﬂ:;{s} f!zz(.‘!’} ﬂ13l:_.'i';| Hg..[.!'}

ﬂ:g]{,'.i'] 11_13{3} ﬂ3;q{5} H_u,(.’.‘l"] {33&}
_ -1 A Hd_il.ﬁ'f —ii - ﬂ.ﬂ{."] H.]_;g{.f} ﬂ.ﬁ{.‘f} H44[S]
[sT— A" 2 det[s] —#] {T’ + a5t + d.5" + @y5 + ag)

The elements, ny;. of the numerator matrix are given as follows:

n(s) = s{s® — [My, + MyU, + Z,]s + [Z,M, — M, Uyl} (3.37)
na(s) = X5t = XM, + M Ugls — g[M, + My Z,] (3.38)
mals) = s(UpX, — g) + 22 (3.39)
na(s) = Z,5° — [Z,M, — M, Ugls = s[Z.s — (Z.M; — M, Uy)] (3.40)
nals) = 5% — [X, + M, + M Ugls® + X, [M, + M Ugls G.41)
+ g[M, + M,Z,] '
naals) = Ups® — X, Ups — g2, (3.42)

‘o

-

ot
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nals) = s(s[My + MaZ,] + [ZMy — ZuM,]) (3.43)
nuls) = M, + MuZ,) — s[X.M, — XMy + My[ZuXo — Z,X,)] (3.44)
nuls) =s{s* — [X, + Z,)s + [ X2, - Z.X.]} (3.45)
na(s) = s[My + MyZo] + [ZuMyy — MuZ,] (3.46)
na(s) = s[My, + MyZ,] + ZoMy — XM,y + M[Z X — XuZ]  (3.47)
na(s) =57 — [X, + Z,.s + [X.Z, — Z,.X,] (3.48)

The elemental functions, ra(s), Ma4(s), nay(s) and ng(s) are all identically zero
{because the fourth element in the driving matrix, B, is zero, i.e. by, = 0). The
coefficients, @, of the characteristic polynomial can be determined by evaluating
det[sf — A]. They are:

a = — (X, + M, + Z, + M,Uy) (3.49)
iy = {quh. - M Uy + X, 2 — 2. X, + X,_LM,{ + X UpM,) {3.50)
ay = = (X, Z.M, % X, M, Uy ~ M,Z, X, + M, X, U, - gM, — gM,Z,) (3.51)
ay = g(Z,M, — Z,M,) (3.52)

Thus, firstly:

uis) _ np($)byy + npls)byy + na(s)bs,

bi(s) Mg ()
uis) N;‘,‘E{s] bas® + bys® + bys + by
Bg(5) - Ajong(5) B st +-a-]:-'3 + a5t + a;s + ay (3.54)
where:
by = Xa, {3.55)
by = —Xp |2, + My + MyUs] + Zs Xy (3.56)
by, = Xﬁil:[Z“.Mq - M, Uy — ZF,F_[X“Mq + gMg] + Maﬁ[xwun -] (3.57)
by = g[M;,];_Z“. - Zﬁ;.—_Mwl {3.58)
The a; are defined in eqs (3.49)3.52).
Secondly:
wis) NE2 () bis? + bys® + bys + by
86(5)  Biomgls) Bone) 3:59)
where:
by =27 (3.60)
by = Xo Z — Zs [ X, + M| + My U, (3.61)

by = Xs [UsMy — Z,M ] + X.[Z; M, & UpM, ] (3.62)
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by = EizﬁﬁMw - MEEZJ-] (3.63)
Thirdly:
qis) N (s)  s{bis® + bis + bg)
= B — (3.64)
&F. [3 ] ﬁlnng{S} ‘&Inng [:S ]
where
by = [Mf.F_ + M»;Zﬁ!_._] (3.65)
b = X;,E[Mu + M.Z,) + Zar[Mh. - M. X, - MEE[X,, + Z.l {3.60)
by = Ji';.i_:[Z,_.."'Ir:I’,,P - Z.M,]+ Zaﬂ[X“.Mu - XM, 3.67)
+ MﬁE[XHZw - ZuXw]
Note that knowing eq. (3.64) means that 8(s)/8g(s) is known:
B(s)aE(s) = (bis® + bis + bi)Aing(s) (3.68)

3.4.4 Transfer Functions Involving Motion Variables Other Than
State Variables

It has been shown how the four primary transfer functions relating to longitudinal
motion can be evaluated. Other longitudinal transfer functions can be as easily
found. For example, since it is known that:

a = w/ly (3.69)
then:

als) _ 1 wis) _ _f—'_;sj + bos® + bys + B

Bp(s) Uy dgls) Un[ﬂ*!nng[ﬂ]
h(s)/(s) can be evaluated by making use of eq. (2.94):

a; =W = Upa = - k (2.94)

s*his) _ swls) _ o q(0)

T Be(s) Bpls) " Se(s) (3.71)
_sh(s) _ wls) o A(s)
Be(s)  Be(s) Vo Br(s) (3.72)
Csh(s) _  bas® + bas” + bys + by Udlbis® + bis + by)
ali':s] ‘f"]ong(s} -&Inng(s:]
3.73
_ byst + bas® + bys + by (3.73)
ﬁ']:mg[:s}
where:
by = K= Zs, (3.74)
A
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by = (by — Usht) = Xy _Z, — Zs (X, + M, + MilUy) (3.75)
EI=(51_U:J1]——X3[[M4H‘E] M
} 7, [X,(w ¥ UpMg)- UMK, | + Ms UoZ,
bo = (by — Unbi) = X5 (UnZuM, — UsM\Z,] = Z5 [M(Up X, — g)
— M UpX,] = My [UpZ, X, + Z.(g — XX U0)]

(3.76)

(3.77)

3.4.5 Numerical Example

Using the numerical data presented in Appendix B for aircraft BRAVO at flight
condition 1, it is easy to determine that the characteristic equation is given by:

Ajong(s) = (s* + 2.925% + 2.1785% + 0.0155 + 0.01) = 0 (3.78)
which can be factorized as:

Apone(5) = (s + 0.00068 5 + 0.0046)(s* + 2.91365 + 2.17) = 0 (3.79)
Then:

uis) — 0.0035° + 0.4355 + 0.48

Be(s)  (s* + 2.925° + 2.1785° + 0.0155 + 0.01) (3.:80)

wis) _ — 95.166(s* + 85.42652: 1.9717 5 + 80.86) (3.81)

Be(s) (s* + 29257 + 2.1785% + 0.0155 + 0.01)

qls) _ — 13.04(s* + 0.707 5 + 0.01) (3.82)

de(s) (31 + 2925 + 2.178s5% + 0.0155 + 0.01)

Equation (3.79) shows that, at this flight condition, the characteristic motion of
aircraft BRAVO is composed of phugoid mode, with damping ratio, L., of 0.073
and frequency, wy,, of 0.0682rad s~ !, and a short pericd mode with damping

ratio, L, of 0.557 and frequency, wy,, of 1.774 rad s~

35 TRANSFER FUNCTIONS OBTAINED FROM SHORT PERIOD
APPROXIMATION

3.5.1 Pitch Rate and Angle-of-attack Transfer Functions

The short period approximation consists of assuming that any variations, u, which
arise in airspeed as a result of control surface deflection, atmospheric turbulence,
or just aircraft motion, are so small that any terms in the equations of motion
involving u are negligible. In other words, the approximation assumes that short
period transients are of sufficiently short duration that U remain essentially
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constant, i.¢. u = 0. Thus, the equations of longitudinal motion may now be
written as:

w=Z.w+ Uyg + ZEFEE (3.83)

= Mow + Mow + Myg + My 5 = (M, + M, 2w

q W q4 By O (3.84)
b (!“fq + UuM :}q + rMﬁF. + ZELMW}ﬁF

If the state vector for short period motion is now defined as:

W

xA (3.85)
g

and the control vector, u, is taken as the elevator deflection, &g, then eqs (3.83)
and (3.84) may be written as a state equation:

= Ax + Bu (3.86)
where:
A= { o Yo ] (3.87)
(M, + M, Z,) (M, + UM,;)
<o
- E (3.88)
(Ms_ + Za M)
[s] — A] = [ b= 2) - (3.89)
— (M, + M,Z,) (s — [M, + UsM,])
Agp(s) = det[s] — A] = 5* = [Z, + M, + MyUpls + [Z.M, — UpM,,] (3.90)
= 5% + ptoges + w3,
where:
Wpwep = — (Z, + My + My Uy) (3.91)
wyp = (ZuM, — UyM,)'"? (3.92)
It is easy to show that:

(UsMy_ — M, Z; ) {1 + — e (3.93)
wis) B E 50 (UsMs — MyZs) S} K, (1 + sT))
Bels) Asp(s) T A0

where:
Ky = (UoMs, — MyZs ) (3.94)

Ty = Zy /K, (3.95)
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Also:
Ms_+ Zs M,
(Zs My — My Z,) 11 + ] - 5} (3.96)

g(s) E E (Zs M, — M; Z.,) K (1 + sT3)

B (s) Ay(s) O Ayls)
where:

Ky =(Zs My — Ms Z.,) (3.97)

Ty = My + Zy My )IK, (3.98)

3.5.2 The Effect of Changes in Static Stability on Short Period Dynamics

When the steady forward speed is fixed, it is possible to increase the value of the
short period damping ratio, {,,, by augmenting (increasing) any or all of the
stability derivatives: £,,, M,, and M.

If M, is augmented, T, is increased; the value of the short period
frequency, w,,, is unchanged. If the value of Mﬁl_. is arranged to be equal to
zaEMw it is possible for 7> to be zero. '

Augmenting the value of M, causes an increase in the value of the
damping ratio of the short period motion. The frequency of the short period
mode is also increased by this change in the value of M,. The value of T, is
reduced, although the value of T5 remains unchanged.

The damping ratio, {,,, is also a direct function of M, the stability
derivative whose value is related to the static stability. When the value of M,
approaches zero, the damping ratio of the short period increases, since the value
of the natural frequency is reduced. If the aircraft is statically unstable, M, is
positive and if UpM,, = M_Z,, the aircraft will become dynamically unstable (sce
Section 3.2.3).

3.5.3 The Aircraft Time Constant

If the inequality (3.99) holds, i.e.:

Z&EM,,. < M Z, (3.99)
and if:

Zs My — 0 (3.100)
then:

T, ="M IMs Z,, = — IZ, =T, (3.101)

T5 is usuvally referred to as the aircraft time constant. How good the
approximation is may be judged from Table 3.1 in which are quoted, for a wide
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Table 3.1 Aircraft time constants

Parameter Aircraft tvpe

A-4D F4C Jaguar Jetstar DC-# B-747 C-5a

. — 0307 - 0452 — 0.6 — 1.01 — 63 = 0512 — 0634

Tal 2 031 0.3% 0.57 0.95 0.56 0.49 (1.595

variety of aircraft operating at about the same flight condition, the values of £,
and of the inverse of T (determined from the full equations).

3.5.4 Flight Path Angle

There is a useful kinematic relationship which can be found by means of the short
period approximation: to change the flight path angle, v, of an aircraft it is
customary to command a change in the pitch attitude, 8, of the aircraft. Since

y=0-—a (3.102)

% =1- ;‘L% : %é? (3.103)
By means of eqs (3.93) and (3.96), and remembering that:

a = wily (3.104)
and

b=gq (3.105)
it can be shown that:

sy — zaE—'-'z + [Uo(Ms_ + Zs M) — (Ms Us — MZ; )s |

o) UMy + Zo Ma)s + Ug(MyZs, — ZuMs,)

: (3.106)
. Un(MyZs — ZM.MﬁE_}
Uu(Mat + Zgl:_M.,i,}s + UM 2y — ZWM?,E}

Generally Z;,F_ is negligible. Then:

Yis) = ZyM; Uy - Zy 1

05)  Uo(Mss — ZuMs) (s — Z.) A
where:

Th=— 2" (3.107)

as before. From eq. (3.107) it is easy to derive that:

v=alTs (3.108)

[ AL S r.-:l
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3.6 TRANSFER FUNCTIONS OBTAINED FROM PHUGOID
APPROXIMATION

Lanchester (Sutton, 1949) studied the slow period motion of aircraft and noted
that the phugoid motion consists of large oscillatory changes in speed u, height h,
and pitch attitude 8. In that classic treatment, Lanchester took the value of the
stability derivative M,,, i.e. the change in pitching moment due to changes in
airspeed, to be negligible for all aircraft, 1.e.:

M,=0 (3.109)

However, for modern aircraft M, is seldom zero and the total static stability
moment of the aircraft becomes:

Mo + Myw =10 (3.110)

Since short period changes in g, for example, are not of interest the equations of
motion can be written as:

=X+ X,w— g+ Xd
W= Zu+ Z,w+ Upg + Zsd (3.111)°
0= M,u+ MMHE
Hence, taking Laplace transforms:
su(s) — Xu(s) — X,w(s) + glfs) = X:d(s)
swis) — Zuls) — Z,w(s) — Upsbfs) = Zsb(s) (3.112)
— M,u(s) — M, w(s) = Msb(s)

Le.:
(s—X) —X. &g - u(s) Xy
~Z, (s—=2Z,) — Ups wis) | = | Zs | 8(s) (3.113)
M, —-M, 0 f(s) M
ie.:
Q(s)x(s) = P(s)a(s) (3.114)
hence:
x(s) = Q7 (s)P(5)3(s) (3.115)
ff(_ﬂ _ s[X, UgMs — gMs — UyM, X5 + g[MsZ,, — M, 2] (3.116)
B(s) Agn(s)
0(s) _ "M + [M X5 + M Zy — (X, + Z,)Ms]s
() Apnls)

(3.117)
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3 [(ZuM = M Z) X, + M X — M X)Z:F 4 (B Xy ~XwZuI Mg

Apn(s)
where:

ﬁpj,{.!'] = — UM, [32 — lx“ + MSJ] &

UM,
- (3.118)
(-4
Uy | M.,
From eq. (3.118):
2 _—8 ‘Huznb]
= — _—_— 3 i
Wik U“ [zu !ww { II..}:I
M (L X, —
Wppopn = = {X;. + *—-[Wﬁ] (3.120)

If M,, is sufficiently negative the result is that wy, becomes negative: that unstable
mode is called the divergent tuck mode (see Section 3.2.2).
If Lanchester’s classical approximation is invoked, i.e. M, = 0, then:

pnwpn = = Xy, (3.121)
and
win = — 8Z,/Uy (3.122)
The stability derivative, Z,, can be shown to be:
Z, = =00 ¢, (3.123)
1

but the lift coefficient, C;, can be shown to be (in steady, straight and level
flight):

weight 2mg
c, = Mg . =5 3.124
Z,==2pgllU; {3.125)
Wy = v’?ﬁ- (3.126)
i

Based on the assumption that the stability derivative, M,,, had a value of zero, the
resulting approximation, the classical phugoid approximation, was called the two
degrees of freedom phugoid approximation, i.e.:

(s — X,) u(s) +gois) =10
— Z,u(s) — Uyst(s) = Zzd(s)

Therefore the characteristic equation is

(3.127)
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Table 3.2 Comparison of phugoid parameters
Afrcraft Uy Z, il o M,
type fm s~ . =z
Actual Calculated  Actual Calculated ===
eq. (3.125) eq. (3.126) eq- (3.19)
0.
DC-3 45 — L4786  — 0,474 0,301 0.33 -B—gﬁ" 0.0
F-#9 210 — (L9955 — 0.0976 0,063 0.069 00678 0.0
DC-K 285 — (L0735 0076 (= 0.0016) 0.053 00527 — 0.00254
st = X5~ (gZU) =0 (3.128)

For modern aircraft, the three degrees of freedom approximation represented by
eq. (3.114) is preferred. Table 3.2 illustrates the character of the approximations.

It can be seen from the table that the classical, and even the three degrees
of freedom, approximation is unacceptable in the case of the DC-8 where a
divergent tuck mode exists.

In the classical approximation, the assumption that the value of M, is
zero corresponds 1o an assumption that the coefficient of drag due to changes in
forward speed, (',;”~ is also zero.

Mow,
X.'.r XIHU“
Loh = — = — (3.129)
T w4 A VA §
However,
q% g
= + 2 = O 3.130
Xﬂl " U“ {.(IJ {'ﬂ‘] Lirg] i { j
From eq. (3.124):
. 2mg
O, = E (3.124
LT Uls )
2 C
v = 5 Lo 3,131
= & (3.131)
Hence,
__ (= (CU] o _ 1 Cp_ 1 3132
Eph (uu] C, VR c,  VALID) (3.132)

where L/D is the Iifﬂdra;.; rali-oanf the aircraft. For example, at Uy = 210m 5~
the F-89 has a lift/drag ratio of 12.0, therefore:

.= 1/ 12)= 0.06

wpn = V2 % 9.81/210 = 0.0661 rad 5™
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3.7 LATERAL STABILITY

The characteristic polynomial of lateral motion, det{h — A], is of fifth
degree, i.e. it is a quintic of the form: A® + d\* + doh* + di\® + dah.
This ‘stability quintic’ can usually be factorized into the following form:
MA £ e)h + DG + 2Upwph + wh). The simple term in A corresponds to the
heading (directional) mode. Because A =0 is a root of the characteristic
equation, once an aircraft’s heading has been changed, by whatever agency, there
is no natural tendency for the aircraft to be restored to its equilibrium heading.
An aircraft has neutral heading stability and it will remain at its perturbed
heading until some corrective control action is taken. The term (A + ¢)
corresponds to the spiral convergence/divergence mode, which is usually a very
slow motion corresponding to a long term tendency either to maintain the wings
level or to ‘roll off in a divergent spiral. The term (& + f) corresponds to the
rolling subsidence mode; the quadratic term represents the ‘dutch roll” motion for
which the value of damping ratio, {p, is usually small, so that ‘dutch’ rolling
motion is oscillatory.

When the dihedral on the wing is great, and roll damping (L) is low, the
roll and spiral modes can couple and become a single roll/spiral oscillation (often
referred to as the ‘lateral phugoid’ mode). If such aircraft have also a very lightly
damped ‘dutch roll’ mode, then these aircraft have poor handling qualities and
are difficult to fly.

3.8 TRANSFER FUNCTIONS RELATED TO LATERAL MOTION
3.8.1 State and Output Equations

By following the method used in Section 3.4 a number of important transfer
functions relating to lateral motion can be found. However, in this case there are,
even for conventional aircraft, two control surfaces, the aileron and the rudder,
which are used simultaneously in certain phases of flight, such as final approach.
When two inputs act simultaneously, then the use of transfer functions is less
exact, since they are strictly single-input, single-output functions.

If the state vector for straight and level lateral motion 1s taken as that
defined in eq. (2.151), namely:

[ B ]
fJ
x=|r (2.151)
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and the control vector is defined as -

8
A I (2.143)
b

the corresponding coefficient and driving matrices are given in egs (2.152) and
(2.153) as:

Y, 0 —1%50

Ly L, L, 00

Ni N, NI 00

01 0 00

00 1 00

0 Yi

Ly L

B=| "a (2.153)
Ni Ni,

0 0

(2.152)

Assuming that no acceleration term, such as a, , is defined as an output variable
. . " LR f
and that the output will be taken as a single state variable, then:

y = Cx (3.133)
If:

vap (3.134)
then:

Ca=[10000 (3.135a)

Similarly, the following output matrices can be defined:
C,=101000] Co=[00010]

(3.135b)
C,=[00100] Cu=1[00001]

If the transfer function being evaluated depends upon the aileron deflection, &4,
the first column of the driving matrix, B, is used; the second column of B is used
when the control input is the rudder deflection &g. Consequently, the
development will proceed using & as a control input; the appropriate subscript A
or R should be added when the input is particular, and the corresponding values
of the control stability derivatives ¥3, Lg, and Nj should be used.
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3.8.2 Transfer Functions in Terms of Stability Derivatives

From eq. (2.152) it is evident that the characteristic polynomial will be a quintic
(i.e. of fifth degree) since:
dets] — A] =5° — (L, + N; + Y,)s*
+ (LpN, — LN, + Y, L, + YN + Ng)s?

+ (LWNG, — LUNG % Ly — Y LN, + Y, LiN})s
Fed 03 r

+ (f— INILj - .r.;N,a])s
Us .

= 5 8y(5) (3.136)
where
&.;“U} = 5'4 + dLS?‘ + d:.ﬁ'z -+ d_:l,.'!' g d_1_ {3.'.3?]
dy=— (L) + N} + Y,) (3.138)
dy = (LLN, — LN, + YL}, + Y,N; + Nj) (3.139)
dy = (LyN} = LLNp — I—ﬁ- Ly - Y,LLN! + Y,LINJ) (3.140)
0
dy= L [NILy— LINg] (3.141)
Uy

The adjoint of [s] = A] takes the form:

[ mis(s) mia(s) nys(s) muals) mis(s)
nay(s) nols) naals) maals) nas(s)
adj[s] — A] A | nay(s) na(s) nsals) naa(s) nasis) (3.142)

nyp(5) Naa(s) naa(s) nas(s) nasls)

| 15y (8) nsa(s) nsa(s) nsal(s) nss(s) |

where n;(s) is a cofactor of [sI — A]. The cofactors are:

nyls) = S:{Sz - [L;, + AV;]S + [le.;_, - f.:.N;,H (3.143)
. _ & Niﬁ}
npas) = — 5 N, — =+ — 3144
1246) [( P Uy Uy { )
”]3(5} = — X [.’i‘z - .lr.;_-l.'f - &} {3.145}
UU
Ry ls) = :rz{.-.'f_.l'; + INEJ.L:. - LE;JM;“ (3.146)

nan(s) = s7{s* — [¥, + N[]s + [Y.N] + Ni]} (3.147)

- s g -
PSR A

Files 1
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nals) = s2{sL; — [Y, L. + Li]} (3.148)
ny(s) = s2{sNj + [LiNL — LING]) (3.149)
b n(s) =8 {EN;, ~ Y,Njs + %ji} (3.150)
§ 0o
P nnals)=s {:3 — Y, + Lp]s* + Y,L,s — f} L,’,} (3.151)
il
na(s) = s{sLy + [NgL: — LaN.]} (3.152)
K ng(s) = s{s” = [Y, + Ni]s + [Y.,N! + N3]} (3.153)
L nga(s) = s{sL; — [V, L. + Li]} (3.154)
-a nsi(s) = sMsNj + [LiNp — NLAJ) (3.155)
" nsa(s) = 52 [.#N;, — Y.Nps + Nf’g] (3.156)
:._: Uﬂ
1 nas) = s {53 — [V, + L} + Y,Lbs — % L;;} (3.157)
- (4]

Those cofactors not listed above are zero. Obviously,

Bls) = Cylsl — A" B = [13105) mi2(5) nya(s) muals) msis)] B

Bfs) §Ap(s)
_muls) Y&+ npp(s) Ly + nia(s) Na (3.158)
s A (s)
Bs) _ Yis® — [(L, + N)Y& + Ny’
() A ls)
J 3
+ ] (NIL, — LIN,)YE + (LLNi — NLLS) + SL—L“ 5 (3.159)
ol
A (s)
+ {NGL; = NiL)
&]al(s.}
pls) _ 15%,;, + [(LaYE— LN, 4+ Y,) + NiLl]s
afs) Ap(s)
L YA(LING - N;L,rg»f Li(Y,N. + Ni) — Ni(Li + Y,.L;)}
ﬁla!{s}
sdis) 5 NE(s
i (3.160)
B(5) = Bjals)
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ris) _ suls)
B(s)  B(s)
_ Nist + [VENG + LN, — Ny(Y, + L)ls* (3.161)
'ﬁlsn':ﬁ]
L [YaLEN, — Nily) = LiY N, + NiY, L)]s
'&I;LL{S:I

+ £ (LiNg — NiLp)
Uy )
ll'!'Iul':"'i'}

3.8.3 Lateral Acceleration as an Output Variable

If the transfer function relating the lateral acceleration at the aircraft’s c.g. to
some control input & is required. it may be obtained by noting that, from eq.
(2.158),

a, = Cax+ Dully (3.162)
C, =Y, 0000] (3.163)
D =1[0VYg] (3.164)

3.8.4 Some Representative Transfer Functions

Taking the large passenger jet aircraft CHARLIE in Appendix B, for flight
condition 4, the following transfer tunctions can be evaluated:

Bls) _  0.012(s — 0.027)(s + 0.52)(s + 40.1) (3.165)
Brls) (s — 0.012)(s + 0.562)(s + 0.091s5 + 0.656) :
r(s) _ = 0.48(s + 0.587)(s* — 0.066s + 0.059) (3.166)
Brls) (s — 0.012)(s + 0.562)(s* + 0.091s + 0.656) o
pls) 0.14(s* — 0.25 + 0.668) _ (3.167)
Bals) (5 — 0.012)(s + 0.562)(s” + 0.091s + (.656) -

a, (s) 0.012(s = 0.027)s — 31.6)(s + 17.744)(s + 0.52)

-t = (3.168)

Sels) (s — 0.012)(s + 0.562)(s* + 0.0915 + 0.656)

3.8.5 Some Transfer Function Approximations

In every transfer function, except eq. (3.167), the dutch roll mode is a major
component of the weighting function of the aircraft, i.e. its response to an
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0.4 Flight condition 3

I e N Flight condition 2
E, . '--.._.--"--..______ e
[ i \
\ ~
1\ N\
VoSN ~~, Flight condition |
NS Y _,/ N
N/ h
1 — | Ay
i I E— — e
] 11l 20 -
Timee (5)

Figure 3.4 Roll rate response for CHARLIE.

impulse. For the transfer function, p(s)/8,(s), the quadratic numerator term very
nearly cancels the quadratic term in the denominator. If that cancellation were
exact, no dutch roll motion would be evident in the rolling motion of the aircraft;
however. there is usually a small amount evident (see Figure 3.4). In every
transfer function above, except the rolling motion transfer function eq. (3.167), a
first order numerator term almost exactly cancels the term (s + 0.56) in the
denominator; this term corresponds to the rolling subsidence mode. The transfer
function relating the lateral acceleration at the c.g. to a rudder deflection
a, (¥)/6x(s) approximates very closely to a constant value of — 33.0, because all
the¢ numerator terms very nearly cancel the corresponding denominator terms.
Inspection of the transfer function eq. (3.165) shows that a much simpler,
approximate form might be used, namely:

Bls)  0.012(s + 40.1)
drls) (5% + 0.091s + 0.656)

__0.481(1 + 0.0255)
C (57 + 0.0915 + 0.656)

(3.169)

The time constant of the numerator term, 0.025s, is very short and can be
ignored, so that the approximation may be taken as:

B(s) _ (.48
Br(s) (57 + 0.0915 + 0.656)

The primary response to aileron deflection is in roll rate and the evidence of any
dutch roll motion excited by an aileron deflection is principally found in sideship B
and yaw rate r. In the spiral motion of an aircraft, rolling and yawing motion are
predominant and, although the mode is usually unstable, the motion is very
nearly co-ordinated. Sideslip is almost non-existent in the spiral mode, and the

(3.170)
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motion which occurs is a co-ordinated bank turn defined by:
ay, =¥ = U(B+7)=Up(v+r)=0 (3.171)
__'I::' = Un':_B + 'JJ} =1 {3.]?2]

where y denotes lateral displacement.

3.9 THREE DEGREES OF FREEDOM APPROXIMATIONS
3.9.1 Dutch Roll Approximation

From a consideration of the appropriate cancellation of terms in transfer
functions, it appears likely that there are some useful approximations which can
lead to simpler transfer functions of acceptable accuracy. which still represent the
tunctional relationship between the motion variable of the aircraft and the control
deflection which caused it. The first of these approximations is the three degrees
of freedom approximation which is arrived at by taking the equations of motion
for straight and level flight given by eq. (2.85), and neglecting a few insignificant
terms. Thus, the following terms are small for small perturbation motion and
flight at moderate and higher speeds, and are assumed to be zero: the term due to
gravity, gd/lly; rolling acceleration as a result of wvaw rate, L)r; vawing
acceleration as a result of roll rate, N,p. Therefore, the equations of motion may
now be written as:

B=VY.B—r+ YD
p=LyB+¥p + L' (3.173)
]
= NiB + NuA + N#b
¥

Le.
B Y, 0 -1 B 1%
pl=1|Lil, 0 pl+ | Li|d (3.174)
P Ng U Ny r N

This is referred to as the dutch roll approximation,
From eq. (3.174) it is easy to show that:

Ap(s) = * = [Y, + L, + NJJs* + [Y, L, + YN, + LLN} + Njls

(3.175)
— L [Ns + NJY,]
and that, for example,
Bls) _ Yis® — (L, + NQ)Ya + Nils + [LoNYE + LiNj] (3.176)

Br(s) oo Auls)
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pls) _ Lis* + [YiLy — Y.L — N/Li)s

i
b4(5) Apai () ‘ﬁ"a (3.177)
L LYuNILy + NiLeg LiNY= YiLuN]] '

a‘]tﬂ ::"'. ]

3.9.2 An Example of Dutch Roll Approximation

For aircraft CHARLIE at flight condition 4,

pis) _ 0.14(s* + 0.193s + 0.673)
Bals) (s + 0.506)(s% + 0.135s + 0.63)

(3.178)

By cancelling the quadratic terms of the numerator and denominator the resulting
transfer function becomes:

pls) _ 0.14

Bals) (s + 0.506)
Inspection of eq. (3.167), with appropriate cancellations, will indicate how closely
the results correspond. The transfer function for the same aircraft and Hight
condition is casily determined:

Bls) _ 0.012(s + 0.48)(s + 40.1406) _0.481(1 + 0.025s)

Brls) (s + 0.506)(s” + 0.1355 + 0.68) (s* + 0.1355 + 0.68)

(3.17%

(3.180)

Since the time constant of the numerator term is negligibly small, the approximate
transfer function is given by:
Bls) 0.48
Bpls) (57 + 0.145 + 0.68)

(3.181)

which should be compared with eq. (3.170): note how close the transfer functions
Are.

3.9.3 Spiral and Roll Subsidence Approximations

The approximations are founded on the observation that, for both spiral and roll
modes, the corresponding sideslip motion is small and that, for the spiral mode,
the term { is negligible with respect to the remaining terms in the equation for
side force. Consequently, eq. (2.85) can be rewritten as:

0= [irt_‘p — P4 YIB+ V.B
i

p=LiB+ Lp+ Lir+ Lid (3.182)
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F=NgB+ Nyp+ Nir+ Ngb
b=p

Thus, when B = (), the equations of motion reduce to the following set:

P = LJ’-‘P + .",,r t I.-auﬁ-&
F = Nip + Nir + Ni s
d=p

Le. if:

when
[ L, L0
AA N, NO
1 00
s
BA | Ni,
0

(3.183)

(3.184a)

(3.184b)

(3.184c)

(3.185a)

(3.185b)

To find the sideslip angle, B, which results from a rudder deflection, it is

necessary to define B as an output variable, y, i.e.

1 g Vi
3 é - F o & - &
Y e B YI.' ' UUYU Y'u' "
1 g Y3
Jog ol [
Y, Uf¥, Y,
= Cﬂx + f}ﬁmu

For CHARLIE-4
— 0.47 0.39 0.0
A= | — 0032 -0.115 0.0
1.0 0.0 0.0

(3.186)
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0.15
B=|-048
0.0
Cy = [0.0 — 17.857 0.7
Dy = [0.2143]

It can easily be shown that the following transfer functions are obtained using this
three degree of freedom approximation, namely:

B(s) _ 0.2143(s — 0.026)(s + 0.52)(s + 40.1)

Br(s) s(s + 0.155)(s + 0.43) (3.187)
_0.2143(s + 40.1)
(s + 0.155)
pls) _ (.15(s — 1.133) (3.188)
dr(s) (5 + 0.1535)(s + 0.43) .
r(s)  —048(s + 0.48) - 0.48 (3.189)

5ls) (s + 0.43)(s + 0.155) (s + 0.155)

It is evident from these transfer functions that the dutch roll mode is absent from
this characterization, which is really unacceptable. Consequently, the approxima-
tion is rarely used.

3.10 TWO DEGREES OF FREEDOM APPROXIMATION

If it is assumed that the bank angle motion is negligible then the sum of the rolling
moments is zero at all times; consequently, the roll equation is eliminated along
with the bank angle perturbations. Thus:

B=YB—r+Yd F=NLp+ Nr+Nid (3.190)

: Y, =1 Y
Bl [ Bl { ° } 5 (3.191)

P Ni N r Ni
Ap(s) = 57 = (Y, + Nl)s + (N + Y.N)) (3.192)

and
Bls) _ (s — N)YZ - Ni

= 3193
Br(5) A(s) (3.193)

ris) (5= YNG + YENg
(s ) Ape(s) . (3.194)
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For aircraft CHARLIE, at flight condition 4:

Bls) _ 0.012(s + 40.115)
Br(s) (% + 0.1735 + 0.61) (3.195)
Fis) _ — 0.48(s + 0.4)

Bris) (5% + 0.173s + 0.061)

(3.196)
The approximation (3.1953) is reasonably close to that obtained as eq. (3.169),

although the damping ratio is about twice the proper value. Nevertheless this
approximation (3.193) is used frequently in AFCS work.

3.11 SINGLE DEGREE OF FREEDOM APPROXIMATION

In this approximation only rolling motion is assumed to occur as a result of an
aileron deflection, i.e.

p=Lyp+ L 5a (3.197)
| I i
(s = Lp)p(s) = L, Bals) (3.198)
pis) Li,
(3.199)

Bals) (s — L)
For aircraft CHARLIE, at flight condition 4:

p(s) _ _ 0.14
dals) (s +0.47)

If the corresponding numerator and denominator terms in eq. (3.167) are
cancelled, the result is:

pis) 0.14
Gals) (5 + 0.56)

(3.200)

(3.201)

which is very close to eq. (3.200). For bank angle control systems, the single
degree of freedom approximation is frequently used as a first approximation.

3.12 STATE EQUATION FORMULATION TO EMPHASIZE
LATERAL/DIRECTIONAL EFFECTS

If the state vector for lateral motion is defined thus:

(3.202)
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and the control vector, u,
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is defined as:

b
u= (3.203)
L B
then:
[ N. Ny N, O
~1v, 0 £
A= Uy (3.204)
Lr Ly L, O
0o 0 1 0
[ Ni Ni,
Yi. Yi
B = r“ 'A (3.205)
Ly, L,
| 0 0
By choosing the state and control vectors in this fashion, A can be partitioned as
follows:
Directional | Lateralldirectional
effects | coupling
________ e ——— (3.206)
Directional/lateral | Lateral
coupling | effects
or, more compactly:
- | -
Ap | Ab
A= R (3.207)
AP | A
i | i
In a similar way:
- | -
Bp, | Bb
B=|——m———— | ————— (3.208)
BY | By,
! | _

The strength of the lateral/directional coupling depends upon the relative

magnitude of the ‘off-diago

nal’ blocks.

In A, the coupling effects are ‘stability’ effects, while the coupling effects
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in B represent control effects. They are quite separate phenomena. But coupling
effects in A almost always lead to coupled control response whether or not there
are any explicit coupling effects in B, Control coupling can affect stability only
when there is external feedback as a result of a pilot’s action or of the AFCS,

If the off-diagonal blocks are negligible then dutch roll motion is
approximated by the directional equation:

[ 7] N; N r N§ N 5
6] L-iv] L v, vi, | Loa

The lateral equation is given by:

L p ] L,0 L;

PL_ | [P ] + | e s, (3.120)
K 1o] |a 0

As always, the stability of the respective motions is governed by the roots of the
characteristic equations. For the dutch roll motion it is easy to show that:

wp = (Ng + NY,) (3.211)
(N! + Y.)
p=—"—F (3.212)
EI'JJ"J

For the lateral motion the characteristic equation is given by:
sis—L,)=10 (3.213)

The time constant of the roll mode (which is described by the single degree of
freedom approximation) is — {.L;,J'l. The other mode - the spiral mode — is
neutrally stable since the remaining eigenvalue associated with eq. (3.213) is 0.0
Effectively, this approximation assumes that Ly — 0 (i.e. the dihedral effect of
the wing is small) and U, is large. For further discussion, the reader should refer
to Stengel (1980).

3.13 CONCLUSIONS

There are many ways ol representing the dynamics of an aircraft. Which form to
choose depends principally upon the task being considered. Where only a single
control input or a single source of disturbance is being considered, it is natural to
use the transfer function approach: the relationship between the output and the
input is unique. The state equation is not a unigue representation of the aircraft
dynamics, but depends upon the definition of the state and control and
disturbance vectors. Nevertheless, even for cases where the designer can be
certain that only a single forcing function applies, there is great merit in using
state space methods since they afford information about the response of all the
state variables to that single input, and not just about response of a single output.
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More and more, modern AFCS problems are multivariable in their nature; state

space methods are now the natural tools for design and analysis of such dynamic
systems.

=
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NOTES

A zero real part corresponds to a mode having simple harmonic motion, which,
for practical flight situations, is considered to be unstable.

By computer, using NAG library routines {from NAG, Mayfield House, Oxford,
England), or the routine available in the EISPACK package (Garbow et al., 1977)
or the EIG function in CTRL-C (Systems Control Technology, Inc., 1986).

It is assumed here, again, that any forces, which may arise owing to the thrust
lines not coinciding with the aircraft axes, are negligible and may be ignored.
In acronautics, volume is the product of the area of a flying surface and the
distance of that surface from the c.g. of the aircraft measured to 0.25¢ of the
surface.

% is used here to indicate any control surface deflection. To be specific an
appropriate subscript is used.
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The Dynamic Effects of Structural
Flexibility Upon the Motion of
an Aircraft

4.1 INTRODUCTION

The current design and mission requirements for military and commercial
transport aircraft are such that the resulting configurations of such vehicles have
required the use of thin lifting surfaces, long and slender fuselages, low mass
fraction structures, high stress design levels, and low dynamic load factors. In
turn, those features have resulted in aircraft which are structurally light and
flexible. Such aircraft can develop large values of displacement and acceleration
as a result of structural deflection, in addition to those components of displace-
ment and acceleration which arise owing to the rigid body motion of the aircraft.
Such structural deflections may occur as a result of aircraft manoeuvres which
have been commanded by a pilot, or as a result of the aircraft’s passage through
turbulent air. Aircraft motion of this kind can result in a reduction of the
structural life of the airframe because of the large dynamic loads and the
consequent high levels of stress. The amplitude of the aircraft’s response, caused
by gust-induced structural flexibility, depends upon either the amount of energy
transferred from the gust disturbance to the structural bending modes or, if any
energy is absorbed from the gust, the dissipation of that energy by some form of
damping. When the amplitude of the response of the elastic motion is such that it
compares with that of the rigid body motion, there can be an interchange between
the rigid body energy and the elastic energy to the detriment of the flying qualities
of the aircraft.

This chapter deals with such effects of structural flexibility, with how they
may be described in mathematical terms, and how these terms can be in-
corporated into the equations of motion of an aircraft. The resulting equations
must be used in studies of active control technology and in any studies connected
with those special control systems which permit control configured vehicles to
produce the performance expected by their designers.
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4.2 BENDING MOTION OF THE WING
A wing’s lift force, L, is defined by:

L=12pV?8C, a (4.1)

where p is the density of the atmosphere, « the angle of attack, § the wing surface
area, C,_I1= the lift curve slope of the wing, and V the speed of the airstream. The
dynamic pressure is defined as:

g = 112pV? (4.2)
Hence

L = .:;r:a"(."f_am = K, o (4.3)
where:

K. = qSC,,_ (4.4)

Equation (4.3} can be represented by Figure 4.1 for all values of a below the stall
value, ie. for all values of angle of attack for which the relationship between lift
and angle of attack remains linear,

Rigid wing
wis) Liz)
SEm——

K. 3 e

Figure 4.1 Block diagram representation of an ideal wing.

If a rigid, non-swept, rectangular wing of chord ¢ and semi-span b/2 is
hinged at its root, as represented in Figure 4.2, the wing has freedom of motion
only in bending. The bending angle, A, is taken as positive when the wing tip is
down. The spring has stiffness, K,, which represents the bending stiffness of the
wing in its fundamental mode. The wing also possesses a moment of inertia, I,
given by:

— e, angle

I= [ dmy? (4.5)
wing
Spring, K,
".Illl |.¢ —_—— . Pivo
[ . e .
@9 i o m—— - 1 Bending

b \
|""—' T T Spring, K,

{a) (b
Figure 4.2 Hinged wing.
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104
where &m represents an element of mass. It can be deduced from Figure 4.2(b)
(4.6)'

that
IN+ Kx=0
where K, is the bending moment stiffness. This is true only in still air and when
structural damping is absent. Equation (4.6) may be re-expressed as:
{4.7)

(4.8)

A+ wh =0
where the natural frequency of the bending motion is given by:

o = (K"
When the wing is in a stream of air with relative velocity V, then it can be shown
(for example, from quasi-steady aerodynamic strip theory — see Bisplinighoff er al.,

1955) that:
. . bi2 .

I+ K\ = — 112pV- J éydy €y (%,\)
0 “ J

Ec'r . 2
N yidy
{

= - tF
Cp
Now
SApe2 (4.10)
fa+fcgh._—ﬁf;h (4.11)
i.e,
K+%§;i+"§*h=ﬂ (4.12)
or
A+ 2wk + ok =0 (4.13)
where
(4.14)

K. b*

E= 2V VKD
Thus, wing bending motion is characterized by a linear, second order, differential

equation in which the damping is provided by aerodynamic forces.
Further discussion of wing flexure can be found in Hancock et al. (1985)
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Disturbances Affecting Aircraft Motion

5.1 INTRODUCTION

When an aircraft is controlled automatically its motion may be affected by:
manoeuvre commands, atmospheric effects, and noise from the system and its
SENSOLS.

Manoeuvre commands are applied either by a human pilot or are
provided by a guidance, a navigation or a weapons system. Such commands are
deliberate inputs to the AFCS, and are intended to change the aircraft’s path. The
other effects are unwanted disturbances to the aircraft’s motion. It is one of the
principal functions of an AFCS to suppress as much as possible the unwanted
effects of such disturbances. In this chapter only disturbances caused either by
atmospheric effects or by sensor noise are considered.

5.2 ATMOSPHERIC DISTURBANCES

The air through which an aircraft flies is never still. As a consequence, whenever
an aircraft flies, its motion is erratic. The nature of those disturbances to the air is
influenced by many factors, but it is customary to consider turbulence, which
occurs above that region where the atmosphere behaves as a boundary layer, as
belonging to either of these classes:

1. Convective turbulence. which occurs in and around clouds. This includes
thunderstorms particularly.

2. Clear air turbulence (CAT). Below the cloudbase, direct convection heats
the air and causes motion which, together with the many small eddies
arising as a result of surface heating, are often regarded as mild CAT.
Above a cluster of cumulus clouds a regular, short broken motion can
persist, particularly when the change in velocity with height is large. More
virulent CAT is usually to be found near mountains, and, depending
upon the meteorological conditions, flights near the tropopause can often
be turbulent. The most virulent turbulence of all, however, is caused by
thunderstorms and squall lines, especially when the same area is
simultaneously being subjected to rain, hail, sleet or snow.
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Another violent atmospheric phenomenon which can be encountered in flight is
the microburst, a severe downburst of air. Microbursts are associated with
considerable changes in the direction and/or velocity of the wind as the height
changes. They exist for only very brief periods. Such severe changes in the nature
of the wind over resticted ranges of height are caused by convection and they are
often referred to as ‘wind shears’. Rising, or falling, columns of air, ringed by
toroids of extreme vorticity, are produced by the convection and it is this
phenomenon which is called the microburst. A fuller account is presented in
Section 5.11,

Because the mechanisms of turbulence are so varied and involved, it has
been found that the only effective methods of analysing dynamic problems in
which turbulence is involved are statistical methods. However, large gusts, which
are reasonably well defined by a particular deterministic function, do occur, but at
random times. To assess the effect on the structure of an aircraft encountering
such gusts, it is common practice to employ a discrete gust as a load testing
function. Even though its time of occurrence may be random, a wind shear can be
regarded, once it has occurred, to be effectively a deterministic phenomenon.
Thus, in this chapter, there will be presented mathematical models of three types
of atmospheric turbulence. The models are not entirely descriptive of the
phenomena, but they do represent the significant characteristics sufficiently well
to permit an analysis to be carried out with adequate accuracy for engineering
purposes. Another method of analysis, which uses an analogue signal in a
transient fashion to represent continuous turbulence, is also discussed, before the
problem of how the outputs of these models of atmospheric turbulence can be
introduced correctly into the equations of motion is dealt with.

The interested reader is referred to Etkin (1980) for further discussion.

5.3 A DISCRETE GUST FUNCTION

That mathematical model, representing a sharp edged gust, which enjoys the most
general acceptance for fixed-wing aircraft is the (1-cos) gust, defined thus:

x (1) = % (1-cos (2w/T ) {5.1)

where the duration of the gust, denoted by T, is given by:
T= LIl (5.2)

The scale length L is the wavelength of the gust in metres; the equilibrium speed
of the aircraft, Uy, is measured in metres per second. In eq. (5.1) k is a scaling
factor which is selected to achieve the required gust intensity. The gust function is
represented in Figure 5.1. The gust wavelength is traditionally taken to be equal
to twenty-five times the mean aerodynamic chord of the wing of the aircraft being
considered, i.e.:
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—_ : ¥
W) [I |31!1__:".|!)
|| T
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Giust length L = 25¢
]
A
T
(1.0 1
0 2 T
Time
Figure 5.1 (1-cos) gust
L =25¢ (5.3)

This traditional value resulted because study showed that it coupled with the short
period pitching and heaving motions of an aircraft to produce the greatest induced
load factors. However, as aircraft have flown faster and, as a result of the
consequent configuration changes, have become more flexible, it is possible for
other gust wavelengths to couple with the flexible modes, thereby producing
substantial load responses. When an attempt was made to consider all the possible
gust wavelengths which could couple, it became necessary to use statistical
methods, particularly the method involving the power spectral density which
required a mathematical model to represent the atmospheric turbulence as a
stationary, random process. Before dealing with that model, a brief review of the
statistical theory associated with the power spectral density functions is presented.

5
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5.8 THE EFFECTS OF GUSTS ON AIRCRAFT MOTION

The components of translational velocity of turbulence are defined as positive
along the positive body axes. Hence,

e = — will (5.70)
By = — v/l (5.71)

The pust velocities, u,, w, and v,, may vary along the length and span of the
aircraft. To account for that it is assumed that the exact distribution of the
turbulence velocity over the airframe can be satisfactorily approximated by a
truncated Taylor series cxpansi:m, e

i

(x) = u,(0) + a” (5.72)
L
i
voly) = vefﬂ}+ﬁg (5.73)
= _E
wulx, ¥) = wy(0,0) + ‘“ ay ) (5.74)

For small perturbation motion the gradient of dw,/dx is linear and can be taken as
the acrodynamic equivalent to the inertial pitching velocity, g. Hence,

gy = dwldx (5.75)
pe = — Owldy (5.76)
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ry = Ovax ' (5.77)
dio ot dx d
Noo— g Oy dx [
T4 T e @ ax( WJU“JU” (>.78)
oW
= — &
ax (5.79)
by = — g, (3.80)

For example, the equations of small perturbation longitudinal motion, with gust
terms included, are given by:

= — g+ X + X,(u + uy) + X,(a + o) (5.81)

. -
& = q+En{u+ug]+Z“(a+ag] +Zq[q+qﬂj

(5.82)

4 =M, (u+ tg) + M (o + o) + My(a — Q)
=+ Mq.(q + qg} + Mﬁﬁ
Thus, if:

(5.83)

=

=]

Lo
[{[=g
B~

L=

bold
then A

u
%= Ax + BE + EV, (5.85)

where
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5.12 SENSOR NOISE

Moise on the output signal, which is usually electrical, is regarded as a random
signal. However, the properties of these uncertain signals are not well described
in the literature and recourse is usually taken in analysis or simulation studies to
representing such noise signals as random signals with a Gaussian distribution.
They are usually regarded as having been generated as the output signals from
linear first order filters which have been driven by white noise sources. The filter
time constant is usually selected in the first instance, in the absence of specific
knowledge of the power spectral density function relating to the noise, to ensure
that the boundaries of the noise spectrum are at least an order greater than those
of the AFCS. 1t 15 usual to regard the noise signal as being stationary and having
zero mean value, But a number of common AFCS sensors are known to have
drift rates which, fortunately, are very slow. For example, a typical attitude gyro
may have a drift rate of 0.1° h™'. (4.84 x 10 "rad s '). The accuracy of
gyroscopes is typically 0.1°, or 0.1° s~ ', if it is a rate gyroscope. Accelerometers
have errors of, typically, 3 x 10 °g (3 x 107" m s™%), and barometric altimeters
are subject to typical r.m.s. errors of 16 m. For accelerometers, a typical r.m.s,
noise figure is 10 *g (107 * m s77) with the corresponding power spectral density
being approximately 3 x 10~ g*/Hz.

5.132 CONCLUSIONS

This chapter presents some information about the disturbances which most affect
the operation of AFCSs. The atmospheric turbulence phenomena considered
were continuous gusts, defined by the mathematical model suggested by Dryden
as a practical improvement on the Von Karman model, and the discrete (1 — cos)
gust. Generating test signals by means of a transient analogue was also dealt with.
An account of wind shear and some methods of representing such a phenomenon,
particularly the microburst, was also given and the chapter closed with a brief
note on the nature of representations of sensor noise.

=
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Flying and Handling Qualities

6.1 INTRODUCTION

A special issue of the influential Journal of Guidance, Control and Dynamics from
the American Institute of Aeronautics and Astronautics was concerned with
aircraft flying qualities which were defined in the editorial as ‘those qualities of an
aircraft which govern the ease and precision with which a pilot is able to perform
his mission’. All the papers which made up that special issue refer to the handling
qualities of the aircraft. It is helpful to those new to the field to distinguish
between flying and handling qualities; with experience, the two will be seen to
merge into a single topic.

Aircraft flying qualities are usually characterized by a number of
parameters relating to the complex frequency domain, such as the damping ratio
and undamped natural frequency of the short period longitudinal motion of the
aircraft, Knowledge of these parameters allows a designer to imagine the nature
of the aircraft’s response to any command or disturbance; it allows a general
notion of how the aircraft will fly in a controlled manner.

Handling qualities reflect the ease with which a pilot can carry out some
particular mission with an aircraft which has a particular set of flying qualities.
However, handling gualities depend not only upon flying qualities but also upon
the primary flying controls, the visual and motion cues available, and the display
of flight information in the cockpit. The importance of handling qualities 15 par-
ticularly marked when some aircraft exhibit such unwanted flight characteristics
as pilot-induced oscillations or roll ratchet. It should always be remembered that a
human pilot is a variable, dynamic element closing an outer loop around an
AFCS. Handling qualities ought to be arranged, therefore, to suit the pilot, so
that his adapted characteristic is best for the flight mission. Sometimes, special
command input filters are added to AFCSs to assist in providing acceptable
handling qualities. Since different types of aircraft can carry out similar missions,
it follows that the required handling qualities also depend upon the type of
aircraft.

Extensive research into flying and handling qualities has been carried out
in many countries for a great number of years. Harper and Cooper (1986) provide
an excellent account of this research. The results of these studies have been
incorporated into specifications for aircraft flying qualities which have been laid
down by the statutory bodies responsible for aviation in different countries.
Although ten years ago, the UK specifications were in a number of respects
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different in expression from those laid down by the American authorities, it was
decided by 1978 that the UK specifications (Mo, 1983) should correspond
wherever possible with those used by the American authorities. For most classes
of fixed wing aircraft, the most significant of these specifications is MIL-F-
BTE5(ASG), Military Specification — Flying Qualities of Piloted Airplanes
published in 1980, If general aviation aircraft are to be considered, the
specification generally used is FAR 23 issued by the Federal Aviation Authority
(FAA) in the USA. Whenever AFCS designs are to be studied, then it is
necessary to consider, in conjunction with MIL-F-8785( ASG), other specifications
laid down by the American military authorities, namely MIL-F-9490D (sce
references at end of chapter), which is the current USAF flight controls
specification, and MIL-C-18244, which is a general specification for piloted
airplanes with automatic control and stabilization systems. The appropriate
specification  defining the flying and ground handling qualities for military
helicopters is MIL-H-8501A. When the concern is VSTOL aircraft then the
appropriate specification is MIL-F-83300. Details can be found in the references
at the end of this chapter.

In this book, it is essentially the recommendations of MIL-F-8785 which
are followed for fixed wing aircraft, and those of MIL-H-8501A for rotary wing
aircraft. Since many of the specifications in MIL-F-8785 are framed with reference
to aircraft classes, flight phases, and levels of flying qualities, these terms are
explained first before discussing the specifications.

6.2 SOME DEFINITIONS REQUIRED FOR USE WITH FLYING QUALITIES’
SPECIFICATION

6.2.1 Aircraft Classes

An aireraft is considered to belong to one of the four classes shown in Table 6.1.

Table 6.1 Aircraft classification

Class Aircraft characterisiics

1 Small, light aircraft (max, weight = 5 000 kg)

11 Aircraft of medium weight and moderate manoeuvrability {weight between
5000 and 30000 kg)

111 Large, heavy aircraft with moderate manoeuvrability (30 000+ kg)

v Aircraft with high manoceuvrability
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6.2.2 Flight Phases

Whatever mission an aircraft is used to accomplish, the mission is divisible into
three phases of flight, as follows:

FPhase A which includes all the non-terminal phases of flight such as those
involving rapid manoeuvring, precision tracking, or precise control of the flight
path. Included in phase A would be such flight phases as: air-to-air combat (CO),
ground attack (GA), weapon delivery (WD), reconnaissance (RC), air-to-air
refuelling in which the aircraft acts as the receiver (RR), terrain following (TF),
maritime search and rescue (MS), close formation flying (FF), and aerobatics
(AB).

Phase B involves the non-terminal phases of flight usually accomplished
by gradual manoeuvres which do not require precise tracking. Accurate Hight
path control may be needed, however. Included in the phase would be: climbing
(CL), cruising (CR), loitering (LO), descending (D), aerial delivery (AD) and
air-to-air refuelling in which the aircraft acts as a tanker (RT).

Phase € involves terminal flight phases, usually accomplished by gradual
manoeuvres, but requiring accurate flight path control. This phase would include:
take-off (TO), landing (L), overshoot (O5) and powered approach (including
instrument approach) (PA).

6.2.3 Levels of Acceptability

The requirements for airworthiness are stated in terms of three distinct, specified
values of control (or stability) parameter. Each value is a limiting condition
necessary to satisfy one of the three levels of acceptability. These levels are
related to the ability to complete the missions for which the aireraft is intended.
The levels are defined in Table 6.2

Table 6.2 Flying level specification

Level Definition

] The fying qualities are complerely adequate for the particular Aight phase

being considered.

The fiying qualities are adequate for the particular phase being considered, but

there i1s either some loss in the effectiveness of the mission, or there is a

corresponding increase in the workload imposed upon the pilot to achieve the

mission, or both.

3 The flying qualities are such that the aircraft can be controlled, but gither the
effectiveness of the mission is gravely impaired, or the total workload imposed
upon the pilot to accomplish the mission is so great that it approaches the limit
af his capacity.

]
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There is a direct relationship between these levels of acceptability and the pilot
rating scale developed by Cooper and Harper (1986). The rating scale is shown in
Figure 6.1 and a representation of the relationship between the rating scale and
the levels of acceptability is illustrated in Figure 6.2

' il _—y
Pilot state rating Level Definition
1
O O | - - . .
1 Clearly adequate for the mission flight phase
L
ELL
* Adequate to accomplish mission flight phise
& Increase in pilod workload, or koss of
effectiveness of mission, or both
fil: 2
s . ® Adrcraft can be controlled
& y & Pilol workload excessive — mission effectivencss
o % impaired
. ) ® Category A Mlight phases can be terminated safely
! .
10

Figure 6.2 Acceptable level of flying qualities.

6.3 LONGITUDINAL FLYING QUALITIES
6.3.1 Static Stability

An aircraft should have no tendency for its airspeed to diverge aperiodically
whenever it is disturbed from its trim condition and with its pitch control either
free or fixed.

6.3.2 Phugoid Response

Provided that the frequencies of the phugoid and the short period modes of
motion are widely separated, for the pitch control either being free or fixed, the
values of damping ratio quoted in Table 6.3 must be achieved.

If the separation between the frequencies of the phugoid and short period
modes is small, handling difficulties can arise. If wpp/w,, < 0.1 there may be some
trouble with the handling qualities.
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Table 6.3 Phugoid mode flying qualities

Level Damping ratio of phugoid mode
1 = (.04

2 = 0.0

3 An undamped oscillatory mode

rv-hu»'mt.he-pe-rieé of at least 55«
Lwith a dime +o olouble amplifude

6.3.3 Short Period Response

The flying qualities related to this work are governed by the parameters, {,;. the
short period damping ratio, and w,/n; where n_ is the acceleration sensitivity of
the aircraft. The specified values of damping ratio are quoted in Table 6.4. At
high speed, low values of short period damping ratio are less troublesome than at
low speeds.

Table 6.4 Short period mode damping ratio specification

Flight phase Level | Level 2 Level 3

Caregory -
Min. Mux. Min, Max. Min. Max,

A (1,35 1.3 .25 2.0 01g

B 0.3 2.0 0.2 2.0 0.18 —

C same as A 45 .35 2.0 Ba2s

If the short period oscillations are non-linear with amplitude, then the
flying qualities parameters quoted must apply to each cycle of the oscillation.

The specified limits for the undamped natural frequency are functions of
the acceleration sensitivity, s, , for any particular level category and phase: the
specification is usually presented as a figure such as Figure 6.3.

The curves defining the upper and lower frequency limits are straight
lines, each with a slope of + 0.5 on the log-log plot. The parameter mfpf'n{ is
referred to as the control anticipation parameter (CAP) which relates initial pitch
acceleration to steady state normal load factor, ie.:

CAP = G(0)n._ (6.1)

This parameter has been proposed upon the assumption that when a pilot initiates
a manoeuvre the response of greatest importance to him is the initial pitch
acceleration. In a pull-up manoeuvre, his concern is with the steady state normal
acceleration. By assuming constant speed flight, and by applying to the
approximate transfer function relating pitch acceleration to an elevator deflection
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Figure 6.3 Handling qualities diagram.

the initial value theorem, and then the final value theorem to the transfer function

relating normal acceleration, n, . to the same elevator input, an expression for
- . . o - [

the CAP can be written, if it is assumed that the elevator deflection is a step

input:

I.'Elih

n, = U:J{ZE.]:_MW = Maﬁzw}l'lgwfp
= Mﬁynzna’wfi, . (6.2)
If:
5g(s) Mg
A —= (6.3)
Bels) ~ (s + (UTg)
where T = — M, then:
G0y — M (6.4)

and the CAP defined in eq. (6.1) is obtained.
Figure 6.4 shows the specifications for levels 1, 2 and 3 for categories A,
B, and C.

6.4 LATERAL/DIRECTIONAL FLYING QUALITIES

The specification of flying qualities for lateral/directional motion is more involved
than for longitudinal motion and, consequently, requires more parameters,
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6.4.1 Rolling Motion

The time constant of the roll subsidence mode, Ty, is required to be less than the
specified maximum values given in Table 6.5. It is customary to specify roll
performance in terms of the change of bank angle achieved in a given time in
response to a step function in roll command. The required bank angles and time
are specified in Table 6.6,

Table 65 Roll mode time constant specification

Flight phase Class Ty (seconds)
category

level I Level 2 Level 3

1, IV 1.0 1.4 Mlok-specified-— 10,
11, 111 1.4 3.0 dimit-s-beleved 10,
All 1.4 3.0 bbb 10,

LIV 10 1.4 Fange-b-Sem 10,
I, I 1.4 3.0 10.

MM mE e
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Table 6.6 Bank angle specification

Class Flight phase Bank angle in fixed time
category

Level 1 Level 2 Level 3

A 60F in 1.3s  60Fin 1.7s  &0°in 2.6%
I B 6F in 1.75s  &0Fin 255 60 in 3.4%
C AFin 135 30Fin 1.85 3Fin 2.6s

A 450in 145 45%in 1.9s5 457 in 2.8s
I B 457in 1.9s 45" in 2.8s 45 in ¥Ms 3.8
C 7 in FEs 30 in s 30 in #0s
e i.s 3.6
A M in 1.5s 307 in 2.0s  3Pin 3.0s
111 B 30" in 2,05 30F in 2Hs3330° in #Bs 5.0
C 3P in dAs 307 in 4.0s  30°in 605
1.5
A 90Fin 1.3s 9P in 1.7s 9P in 2.6s
v B 90°4% in 1.7s %5 in 2.5 %% in 3.45
C

307 in .E-'iﬂ's 3Fin 135 30%in 2.0%

For class IV aircraft. for level 1, the vaw control should be free. For other
aircraft and levels it is permissible to use the yaw control to reduce any sideslip
which tends to retard roll rate. Such yaw control is not permitted to induce
sideslip which enhances the roll rate.

6.4.2 Spiral Stability

When specifying spiral stability it is assumed that the aircraft is trimmed for
straight and level flight, with no bank angle, no yaw rate and with the flying
controls free. The specification is given in terms of the time taken for the bank
angle to double following an initial disturbance in bank angle of up to 20°, The
time taken must exceed the values given in Table 6.7.

Table 6.7 Spiral mode stability specification

Flight phase Level
category — —
i 2 3
A and C i2s  8s 56 ks

B s 8s  5€ Lg
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Table 6.8 Dutch roll mode specification

Flight phase  Class Level

category

2etq wmek X1 - ! 2 3 -
?II‘ .—3‘ En EEBMU w s in Epwp r‘ﬂl}fs flu En‘ﬂ[[ﬁ ;'Jn[ s

A LIV 019 035 1.0 002 0.05 0.44 003 — 0.4

A I, I 019 0,35 084 0.02 0.05 0.7y .03 — .4

B All 008 015 Df& 002 005 084 0.08, - 0.4

C .1V 008 (115 1.0 002 0.05 0.2% 0.0 — 0.4

C I I 008 0] 0.7g 0.02 0.05 0.F4 0,08 — 0.4

Noke: Waimiwuwt  Values ave specif eo
Yae 3“"““"“3 clampive requirewieut eguals  the Lavyest
volue of %y oblained frown either of ihe +wo columns Lobleo

6.4.3 Lateral/Directional Oscillations — Dutch Roll 33 o of g.a wa .

Although the dutch roll mode has very little useful part to play in the control of
an aircraft, it does have significant nuisance valug. The values of the important
dutch roll parameters, namely damping ratio, f. the dutch roll frequency, wp,.
are specified in Table 6.8, >

It is usual to avoid coupled rollispiral oscillation as its leads to inferior
tracking performance.

For atmospheric turbulence the Tables 6.5, 6.7 and 6.8 are still valid. For
bank angle, however, for a class 1V aircraft, level 1, category A flight phase, the
r.m.s. value of bank angle which arises in severe turbulence must be less than
2.7°

6.9 THE C* CRITERION

This criterion can be used to assess the dynamic response of the aircraft’s
longitudinal motion to a manoeuvre command. When an AFCS is used. it has
been found that if the poles and zeros of the controller are located in the s-plane
such that they are close in frequency to the resulting short period frequency, w,,,
of the uncontrolled aircraft, the resulting dynamic response of the controlled
aircraft is so altered that charactenizing the response by specifying the short
period damping ratio and undamped natural frequency is unsatisfactory. The C*
criterion is based upon the tailoring of the total response of the controlled aircraft
to pilot inputs such that the defined output response lies between specific limits.
The quantity €' * is a measure of a blended contribution to the total response from
the normal acceleration, the pitch acceleration, and the pitch rate of the aircraft,
That blend varies with airspeed: the acceleration measure, C*(¢), is arranged so
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Figure 6.5 C* time history for category A

that when the erossover speed, U,., is reached, the contributions to C*(r) from the
normal acceleration term and the terms related to pitching motion are equal. The
crossover speed is a weighting factor which reflects the change in emphasis which
pilots place on motion cues at certain speeds, a change from controlling pitch rate
at the lower speeds to an emphasis upon controlling normal acceleration at the

higher speeds. One definition of C"[r} is:

O —'r!—x'—_l"-l-{'b‘;fﬁ Vig + -'—" q.
The criterion adopted is that the normahzcd time response, C*(1)/CJ, shall lie
between two specified boundaries. For as long as the C*(t)/C}, response remains
within the specified boundaries the AFCS designer may assume that the response
of the controlled aircraft is satisfactory, without regard to the details of the
control system or the aircraft dynamics being considered. Typical C* boundaries
are shown in Figure 6.5, for flight condition 1. Similar boundaries obtain for the
other flight categories.

It must be remembered that C* is a function of time and, consequently,
the C* criterion is a performance criterion for the time domain. It should be
noted that C* can be treated as an output variable of the aircraft. In Chapter & it

is shown that n, could be expressed as:
i

(6.3)

n, = +{a, - 1] (6.6)
X £ g
1 . - - - .
"£|:l||.dl - g [Z“” +Z,wt Za'];_a“ - "rlrp“m[‘”r:” + Mow + Mg + MF,E_:E}:_}
1 q,. . . - -
- E [lxu - F'TTﬁImMI"]H + IZ,,.. N !rxpilnljw'“lw - f*pih-:qu (6.7)

* [ZSI-. - LmImMEE]aE
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There is still uncertainty about the general applicability of the C* criterion,
however. The problem can be seen from Figure 6.6 from which it is seen that
system 1 has a number of overshoots, but lies wholly within the boundaries.
System 2 infringes the boundary slightly at the initial part of the response. System
I attracted a pilot rating of 8.5 and system 2 was awarded 2.5.

It is this difficulty of reconciling human prejudices with quantitative
performance indices and parameters which makes the study of handling and flying
qualities a most demanding and protracted technical problem. The single fact
which 4 is essential for students to understand is that extensive studies related to
the flying qualities specification must be undertaken, before being satishied that
any AFCS design is acceptable; it must never be forgotten that the motion of an
aircraft is controlled by a number of control surfaces which a pilot, human or
automatic, can operate simultaneously.

2

" boundaries

&

_— System & pilot rating = 2.3

£ ()
o

System 2 pilot rating = 8.5

b =
L

Time (5]

Figure 6.6 Different C* responses with pilot rating.



6.8 CONCLUSIONS

This chapter introduces the important subjects of the flying and handling
gualities of an aircraft. They are important because they involve a set of complex
interactions between the pilot, the aircraft, the operational environment and the
mission which is being flown. Since these qualities are what govern the ease, the
accuracy, and the precision with which a pilot can carry out his flying task it is
specially important for the designer of an AFCS to understand them, how they
are specified and how they can be measured, for, if an aircraft has been found to
have poor handling qualities, it is customary to recover the loss by introducing a
control system. The importance of these aircraft qualities is not lessened by the
introduction of modern technology: indeed, with the introduction of digital flight
control systems the inevitable time delays involved in this form of control law
generation invariably have a detrimental effect on aircraft handling.

The reader should regard this chapter as no more than a brief
introduction to a complex scientific study which is more fully accounted for in the
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Appendix B

Stability Derivatives for Several
Representative Modern Aircraft

B.1 NOMENCLATURE

Some stability data for seven aircraft are presented here. These aircraft are
generic types and are referred to as follows:

ALPHA a four-engined, executive jet aircraft

BRAVOD a twin-engined, jet fighter aircraft

CHARLIE a very large, four-engined, passenger jet aircraft
DELTA a very large, four-engined, cargo jet aircraft
ECHO a single-engined, CCV, jet fighter aircraft
FOXTROT a twin-engined, jet fighter/bomber aircraft

GOLF a twin-piston engined, general aviation aircraft

When referring to an aircraft and its particular flight condition, the aircraft name
is given first followed by a number corresponding to the flight condition. For
example, FOXTROT-3 means flight condition 3 for the aircraft, FOXTROT.

B.2 AIRCRAFT DATA
B.2.1 ALPHA — A four-engined, executive jet aircraft

General Parameters

Wing area (m?) 50.4
Aspect ratio: 5.325
Chord, é (m): 333
Total related thrust (kN): 5492
Cg.: 0.25¢

Pilot’s location (m)
(relative to c.g.)
I 6.77

" - 0.73

"
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Weight (kg): Approach All other flight conditions
10635 17 000
Inertias (kg m®)
I 57000 162 000
Iy 171 500 185 000
I, 218 500 330 000
I:: 7 500 6900

Flight Conditions

Parameter Flight condition

i 2 3 4
Height (m) S.L. 6 100 6100 12 200
Mach no. 0.2 0.35 0.75 0.8
Uy (ms™) 67.7 110.6 237.1 236.0
G(N i) 2844.0 4000 18 338 8475
oy (degrees) + 6.5 + 99 + 2.6 + 4.2
vy (degrees) 0 0 0 0

Stability Derivatives

Longitudinal Motion

Stabiliry Flight condition

derivative 1 2 3 4

X, - 0.0166 - 0.00324 — 0.0157 - 0.211 x 107°
X, 0.108 0.00102 — 0.0005 — 0.0043
X, 0.6 0.8 1.02 0.774

Xs. 092 x 107% 573x 1075 573 x107° 573 x 1077
Z., - 0.175 - 0.08 - 0.02 0.035

Z. - 1.01 — 0.565 - 1.33 — 0.665
Zs, — 524 — 4.57 —22.4 - 10.55
M, 0.0043 0.0033 - 0.0015 — 0014
M, — 0.033 - 0.022 — 0.051 — 0.025

M, - 0.003 — 0.0015 — 0,002 - 0.001

M, - 0.546 — 0.439 - 1.09 — 0.506
M —2.26 - 2.95 - 14.5 - 6.78

My, ~065%107° —0.6x107° —06x107° —0.6x107°
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Lateral Motion

Stability Flight condition

derivative 1 2 3 4

Y, = 0.014 - 0.076 - 0.167 - 0.078
Y;R 0.034 0.018 0.037 (.016
L ~ 4.05 —-3.23 - 4,93 -2.27
L, — 1.85 — (.58 - 1.34 — (.64
L, 0.52 0.17 0.09 0.06
Lgn 2.21 1.1 5.83 2.64
L, 1.11 0.57 2.43 1.21
Nj 1.34 1.21 5.63 2.66
N, = 0.25 = 0.12 — 0.14 — 0.07
N, - 0.19 = 0.125 —0.25 - 0.12
N;,A = (.06 — 0.08 = 0.06 - 0.072
NQR — 0.64 0.62 — 2.66 - 1.16

B.2.2 BRAVO — A twin-engined, jet fighter aircraft

(General Parameters

Wing area (m?): 56.5
Aspect ratio: 30
Chord, ¢ (m): 4,86
Total related thrust (kN): 210 (no reheat)
C.g.: 0.255¢ or 0,311 ¢
Pilot's location {m)
{relative to c.g.)
Ly : 8.2
:,i: -13
Weight (kg): Approach All other flight conditions
15 x 10° 16 x 107
Inertias (kg m®):
[, 35250 38 000
Iyt 176 250 255000

Is: 210 000 285 000
I.: 3000 4000
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Flight Conditions
Paramerer Flight condition

I 2 3 4
Height (m) S5.L. 6 100 6 100 9150
Mach no. 0.4 0.6 0.6 0.8
Uy (ms™) 136 190 190 240
GINm™?%) 11348 11 760 11760 10700
oy (degrees) + 3.5 + B.5 + 8.5 + 2.5
o (degrees) 0 0 0 0
C.g 0.311 0.255 0.311 0.311
Stability Derivatives
Longitudinal Motion only
Stability Flight condition
derivative 1 2 3 4
X, — 0.017 = 0.011 - (.012 — 0.007
X, 0.026 0.018 0.017 0.012
Ly - 0.143 - 0.113 — 113 — 0.128
Z, - 1.02 - 072 =072 - 0.54
Z, - 0.0076 — (L0044 — 0.0044 — 0.0027
Zs,. - 0,064 0.047 — 0.047 - 0.036
M, 0 0 0 0
M, 1.4 =27 1.09 0.649
M, — (.66 = 0.61 - (.54 — .51
M, = 0.53 — 0.64 - 0.57 — 0.48
Mg — 11.56 = 13.04 — 12.25 - 12.63

B.2.3 CHARLE — A very large, four-engined, passenger jet aircraft

General Parameters

Wing area (m®):

Aspect ratio:

Chord, ¢ (m):

Total related thrust (kN):
Cpg.:

310
7.0
8.3
000
0.25¢
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Pilot's location (m)
(relative to c.g.)

Appendix B

[ : 26.2

L — 3.05
Weight (kg): Approach All other flight conditions

250 000 290000

Inertias (kg m):

I 18.6 x 10° 24.6 x 10°

I, 41.35 % 10° 45 » 10°

I,.: 58 x 10° 67.5 x 10°

I.: 1.2 % 10° 1.32 x 10°
Flight Conditions
Parameter Flight condition

1 2 3 4

Height (m) 5.L. 6 100 6 100 12 200
Mach no. 0.198 0.5 0.8 0.8
Uy (ms™1) 67 158 250 250
G(Nm™) 2810 8 667 24 420 9911
oy (degrees) 8.5 6.8 0 4.6
vy (degrees) 0 0 0 0
Stability Derivatives
Longitudinal Motion
Stability Flight condition
derivative ! 2 3 4
X. = 0.021 0.003 — 0.0002 0.0002
X. 0.122 0.078 0.026 0.039
Xa, 0.292 .616 0.0 044
X, 388 % 107° 3434 x 107° 3434 x 107 3434 x 107°
Z, - 0.2 - 0.07 0.09 — 0.07
Zo = 0.512 — 0.433 — 0.624 - 0,317
Z, - 19 —1.95 — 3.4 - 1.57
Ly, — 1.96 — 5.15 - B.05 — 5.46
Zs, — 169 % 1077 ~15x1077 —1.5x1077 —15x 1077
M, 0.000036 0.00008 — 0.00007 0.00006
M, — 0.006 0.006 = 0.005 — 0.003
M, = 0.0008 - 0.0004 — 0.0007 — 0.0004
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Longitudinal Mation Cont'd

Stability Flight condition

derivative i 2 3 4

M, - 0.357 - 0.421 — 0.668 - 0.339

ME'F = 0.378 - 1.09 — 2.08 = 1.16

My, 0.7 x 1077 0.67 x 1077 0.67 x 1077 0.67 x 1077

Lareral Motion

Stability Flight condition

derivative ! 2 3 4

Y, — 0.089 — 0.082 — 012 — (L056
;R 0.015 0.014 0,014 0.012

Ly - 1.33 — 2.05 - 4.12 - 1.05

L, - (.98 = 0.65 = .98 — 047

L] + 0,33 + 0.38 + 0.29 + 0.39

I.;A 0.23 0.13 0.31 0.14

I.;,R .06 (.15 0.18 0.15

Ng 0.17 0.42 1.62 0.6

N, = 0.17 = 0.07 - 0.016 - 11.032

N, - 0.217 —0.14 — 0.232 —0.115

N’I"n 0.026 0.018 0.013 0.008

N;H — 015 - 0.39 = 0.92 = 0.48

B.2.4 DELTA — A very large, four-engined, cargo jet aircraft

General Parameters

Wing area (m?®)
Aspect ratio:
Chord, ¢ (m):

Total related thrust (kN):

Cg.:
Pilot's location {m)
(relative to c.g.)
I, :
I,p:
P
Weight (kg):

576
7.75
9.17

730
0.3¢

25.0
+ 2.5

Approach
264 000

All other flight conditions

300 000
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Inertias (kg m*)

1. 2.6 x 107 3.77 = 107

1, 425 = 10/ 431 =% 107

I.: 6.37 x 107 7.62 x 107

I..: 3.4 % 10° 3.35 x 10°
Flight Conditions
Parameter Flight condition

I 2 3 4

Height (m) s5.L. 6 100 & 100 12 200
Mach no. 0.22 0.6 (.8 0.875
Up (ms™1) 75 190 253 260
G(N i) 3 460 11730 20900 10 100
ap (degrees) + 2.7 + 2.2 + 0.1 + 49
Yo (degrees) 0 0 0 0
Stability Derivatives
Longitudinal Motion
Stability Flight condition
derivative I 2 3 4
X, - 0.02 — 0,003 = .02 — (.03
A 0.1 0.04 0.02 0.0
xﬁl__ 0.14 0.26 0.32 0.45
Xﬁﬂ; 0.17 = 10°* 0.15 = 107 015 % 107% 0.15 = 107
Z, — .23 = (L08 — 0.0 0.17
. — 0.634 — 0.618 (0.925 = (0,387
231_ - 29 — 6.83 - 9.51 - 5.18
Z;,“; 0.06 » 1073 0.05 x 10°° 0,05 x 1077 0.05 = 10~°
M, — 255 x 1077 328 x 107* 14.21 = 107% 54,79 x 1074
M., — (L00)5 = 0,007 — 00011 — 0,006
M., — 0.003 0.001 — (.00 = (L0005
M, — .61 - 0.77 — 1.02 — (.55
Mﬁ]; — (.64 1.25 - 1.51 —0.92
M, 1.44 % 107° 1.42 % 1075 1.42 »x 1073 1.42 % 1077
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Lateral Motion

Stability Flight condition

derivative i 2 3 4

Y. — 0078 0.11 — 15 = 0.07

Yi, — 0.0001 - 029 %10 —038x10* 0.18 = 107
vio 0.0065 0.0055 0.006 0,002

Ly — 0.635 - 1.33 — 238 0.333

L, - 1.09 - 1.0 - 142 ~ 0.63

L, 0.613 0.28 0.30 .26

Lgﬁ 0.46 0.43 0.37 .36

L{;,R 0.1 0.187 0.29 0.107

Na 0.11 0.432 (.88 (0.386

N, - 0.16 ~ 0.09 - 0.09 —0.07

N, — (.23 - 0.2 — 0.25 — (L2

Ngﬁ (.05 0.03 0.09 0.04

NLR - .21 = (.52 — .83 .34

B.2.5 ECHO — A single-engined, CCV, jet fighter aircraft

General Parameters

Wing area (m®):
Aspect ratio:
Chord, ¢ (m):
Total related thrust (kN):
C.g.:
Pilot's location (m)
(relative to c.g.)
f :
F:?:
IE
Weight (kg):
Inertias (kg m*):
In.':
vy
I..
!

xz-

26
3.0
3.33
11
0.35¢

ERY
— 0.326

84,52

11 = 107
6.38 x 10°
7.24 x 10°¢

4.7 = 10*
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Flight Conditions

Parameter Flight condition

i 2 3 4
Height (m) S.L. 4600 9100 15 250
Mach no. 0.6 0.8 0.95 1.7
Uy (ms™!) 207 258 288 502
GINm™) 26245 25 860 17 362 23400
oy (degrees) + 1.92 + 2.17 + 4.25 + 1.6
o (degrees) 0 ] 0 0

Stability Derivatives

Longitudinal Motion only

Stability Flight condition

derivative 1 2 3 4

Z, = 0.0272 - (.023 = 0.016 — 0.008
Z — .4584 — 0.295 — 0.288 0.19

Z, = 2.605 — 1.866 - 1.5 — .46
ZEF = 0.721 - 0.67 - 0.4 - 0.4
Z;,F' = 0.925 - .95 — .612 0.0

M, 0.0055 0.0005 0.0002 = 0.0018
M, - 0.136 — (0.348 — 0.318 0.726
M, = 1.013 0.952 =913 — 1.014
J"lrfﬁi__ — 0.364 = 0.362 - (1.25] = (.66
Mhi__' 0.034 = 0.056 — 0.084 0.0

B.2.6 FOXTROT — A twin-engined, jet fighter/bomber aircraft

General Parameters

Wing area (m”): 49.24
Aspect ratio: 4.0
Chord, ¢ (m): 4. 88
Total related thrust (kN): 160
Cpe.: 0.29¢
Pilot’s location (m)
(relative to c.g.)
{, : 5.32
1" - 1.0

P
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Weight (kg): Approach All other flight conditions
148 173
Inertias (kg m?):
[ 32 100 33900
Ty 16 000 166 000
1., 181 400 190 000
I 2100 3000
Flight Conditions
Parameter Flight condition
1 2 3 4
Height (m) S.L. 10 650 10 650 13 700
Mach no. 0.206 0.9 1.2 2.15
Uy (ms™ ) 70 265 350 650
G(Nm™) 2997 13 550 24 090 48070
g (degrees) 11.7 2.6 1.6 1.4
yp (degrees) 0 0 0 0

Stability Derivatives

Longitudinal Motion

Stability Flight condition

derivative I 2 3 F

X, ~ 0.042 ~ 0,009 - 0.0135 0.016

X, 0.14 0.016 0.006 0.004

Z, ~0.177 — 0.088 0.0125 — 0,001
Z. — 0.452 - 0.547 - 0,727 ~ 0.494
Z, - 0.76 — (.88 - 1.25 —0.39
M, 0.0024 — 0,008 0.009 0.07

M., — 0.006 - 0.03 — 0.08 0.07
M, - 0.002 — 0.001 ~ 0.001 0,001
M, - 0.317 — 0.487 — 0.745 ~ 0.41
X5, 0.00007 0.00006 0.00006 0.00006
zﬁih ~ 0.0006 — 0.00005 — 0.00005 — 0.00005
Mj, — 0.00005 ~ 0.000003 — 0.000003 — 0.000003
Xy 1.83 0.69 0.77 0.62

Zy - 2.03 - 15.12 ~ 27.55 - 25.45
Ms, ~ 1.46 ~11.4 - 20.7 — 16.1
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Lateral Motion

Stability Flight condition

derivative i 2 3 4

Yy - 21.1 - 8.6 = 176.0 - 2770
Ly — 10.4 — 18.3 14.1 - B.67
L, — 1.43 - 1.24 - 1.38 — 1.08
L, 0.929 (0.395 0.318 0.22
Ng 1.44 4.97 12.3 8.37
N, — (0L026 = 0.0504 = (L038 0.015
N, — (0L215 — 0.238 — 0.4 - (1,275
th = (L004 — 0.0007 — 0.0009 0.0005
Yg‘n 0.0053 0.0043 0.004 0.0026
LgA 2.74 9.0 1009 5.35
.’,QR 0.7 1.95 3.0 2.6
N}sn .42 0.2 .67 0.36
N;-,R - 0.67 - 2.6 - 3.2 = 1.86

B.2.7 GOLF — A twin-piston engined, general aviation aircraft

General Parameters

Wing area (m”) 21.0
Aspect ratio: 8.2
Chord, ¢ (m): 1.77
Total related thrust (kN): 48.5
Cg.: 0.25¢

Pilot™s location (m)
(relative to c.g.)

l 1.0
L - 0.3
Weight (kg): Approach All other flight conditions
2000 27,75
Inertias (kg m”)
. 13 470 200420
1, 20 450 27 560
I..: 27 200 46 000

{..: 2150 3870
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Flight Conditions
Parameter Flight condition

! 2 3 4
Height (m) S.L. 5.L. 1 600 6 500
Mach no. 0.143 .19 0.207 0.345
Uy (ms™") 50.0 65 70 105
G(Nm?) 1530 2590 1 960 3440
oy (degrees) — — —
Yo (degrees) — — — —
Stability Derivatives
Longitudinal Motion
Stability Flight condition
derivative I 2 3 4
X - (1.053 — 0,023 = 0.021 = 0.018
X, 21.01 12.8 12.57 18.34
L — 0.002 — (L0 — 0.001 — 0,005
Zpw ~ 1.05 - 1.333 ~ 1.241 1.234
Z, - 0.024 — 0,025 - 0.021 — 0012
M, 0.016 0.0076 0.005 0.003
M, - 123 — 21.26 — 23.46 — 38.43
M, - 6.22 ~ 8.15 7.58 -72
Xs_ — 0.046 = (.06l — 0.055 — 0.052
X;,:_' —0.017 — 0.08 — 0.074 0.074
Zy_ - 0.96 — 1.811 - 1.811 - 2.83
Z;,E — 1.04 - 2.24 - 22 il
MﬁF = 13.55 — 234 =235 — 34.85
MEF' 1.0 1.414 1.29 1.55
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Lateral Motion

Appendix B

Stabiliry Flight condition

derivative 1 2 3 4

Y. — (1,145 — 0.188 = 0.174 - (.184
Y, 0.087 0.087 0.09 0.05

Ly - 2.18 - 371 - 3.71 - 5.33
L, = 2. = 2.63 — 2.43 = 2.33
L, (0,303 0.39 0.36 0.31
Ng 2.182 ER | 3.7 6.33
N, = 0.222 - 0.29 — 0,27 - 0.17
N/ - 0.27 — .35 = 0,325 = (1L314
Y;,H (.038 0.049 0.049 (0.045
.*,Q,A 1.541 2.63 2.62 4.16
Lgn .6 1.02 1.02 1.6
N:;n — 0.036 = (L0336 — 0.061 = 0.044
NﬁR - 1.25 — 1.25 - 2.1 - 333
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Appendix C

Mathematical Models of Human Pilots

c. INTRODUCTION

Notwithstanding the extent to which flight control is being made automatic, it
remains essential for the designers of flight control systems to remember that a
human pilot acts as the ‘outer loop’ of a complete flight control system. As
AFCSs have been improved and developed., the need to represent human pilots
by appropriate mathematical models has become more pressing, although the
need for such representation has been recognized for a considerable time. It has
been the cause of a great amount of research which is recorded in a most
extensive literature. Chief among the workers researching in this field have been
McRuer, Krendel and Graham, and it is their work (see the various references at
the end of this appendix) which provides the basis for those models dealt with
briefly below. More extensive models exist, such as Paper Pilot (Dillow, 1971),
but they are beyond the scope of an introductory textbook such as this.

There are several reasons for using a mathematical model in studies
relating to the performance of closed loop flight control systems being operated
by a human pilot; the include the following:

1. The prediction of what may be possible from some given arrangement,
2. The evolution and, perhaps, development of critical flight or simulator
experiments.
The interpretation of flight tests or simulator results.

4, The determination of the limitations of validity of any experimental
results,

From examining the nature of a pilot’s behaviour when flying it becomes clear
that he normally demonstrates those characteristics commonly described as
adaptive and multimodal. Even when carrying out familiar tasks, the pilot is also
capable of learning. This knowledge suggests that the construction of any
appropriate mathematical model may incorporate some of the following features:

1. The differential equations involved should be invariant , or time-varying.
2 The model may be multi- or single-variable.

3. The equations may be linear or non-linear.

4 The data may be continuous or sampled.
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The model should represent adequately the pilot’s actions when carrying out a
pursuit task or controlling the aircraft using a compensatory display. From
extensive experiments on human operators it has been learned that one
appropriate form of model was a describing function which represents the linear
response of the operator whose actual response can only be accurately described
by non-linear equations. But these describing functions represent very good
approximations for most pilot actions. The wvalidity of the describing function
model does depend upon the addition of a remnant term, but, for simplicity, only
the linear models represented by describing functions are used here. A remnant
term can be considered to be a bias term to ensure that the describing function
corresponds to the appropriate operating point. One example of how such a term
can be included in the model is given in paragraph 4 below.

c.2 CLASSICAL MODELS

1. The pilot’s response is denoted by v; his command is taken as pomm.
Basically, the model assumes that the response is linear and proportional
to the command, with some prediction, but with a pure time delay caused
by the finite reaction time of the pilot. The model is represented in Figure
C.1 from which it can be deduced that

Pl 51 Vis) Viis)
| K s - o —

Figure C.1 Block diagram of pilot model — lead term and pure time delay.

V.ix) e .
——— = K1 + 5T )e™™ C.1
p\'—":\m m {'5 .} r’{. J. ' }L ( .}

The transfer function representing the pure time delay, namely:
ValsWVis) = e (C.2)

is a transcendental function and can only be completely represented by an
infinite series. Consequently, a suitable approximation is needed., One of
the most accepted is the first order Padé approximation:

Vs WVi(s) = — (s — 2i)(s + 2h) (C.3)
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2. Refer o Figure C.2.

PeenlS) L (14 577) | Vish ] Viis)
im+sty | e >

Figure C.2 Block diagram of pilot model - phase advance and pure time delay.

Vols) e (ST o Vi) Vels)

prnmm{.‘-’ } P (1 + 5 Tl} - PL‘erm{s :l WV {.I; ] {C ].ﬂ:l
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3 Refer to Figure C.3.

Poeel [Tl 73T ] VO Ml
- - gt -

(8 + 2ans + o)

FigureC.3 Blockdiagram of pilotmodel-lead term, puretime delay and neuromuscularlag.

Viols) _ wi K, (1 +sTy)e ™ Vils) _ Vis)
Peomm(s) (8% + 20w, + 3)  V(5) Peomm(s)

The term:

(C.16)

wil(s* + 2Lw,s + wl)

represents the addition of a neuromuscular lag to the model.
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