

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

DEPARTMENT FAHRZEUGTECHNIK UND FLUGZEUGBAU

Prof. Dr.-Ing. Dieter Scholz, MSME

Lösung / Solution Flugzeugentwurf / Aircraft Design SS 2015

Date: 11.07.2015

Duration of examination: 180 minutes

1. Part

35 points, 70 minutes, closed books

1.1) Please translate to German.

Please write clearly! Unreadable text will not harvest points!

1.	aeroplane	Flugzeug
2.	airplane	Flugzeug
3.	aircraft	Flugzeug
4.	flying wing	Nurflügelflugzeug
5.	aerodynamic center	Neutralpunkt
6.	payload	Nutzlast
7.	sweep	Pfeilung
8.	taper	Zuspitzung
9.	dihedral	V-Form
10.	twist	Schränkung
11.	camber	Wölbung
12.	bending	Biegung

1.2) Please translate to English.

Please write clearly! Unreadable text will not harvest points!

1.	Flugzeugentwurf	aircraft design
2.	Machzahl	Mach number
3.	Fahrwerk	landing gear
4.	Leitwerk	tail
5.	Höhenleitwerk	horizontal tail
6.	Seitenleitwerk	vertical tail (fin)
7.	Rückenflosse	dorsal fin
8.	Anstellwinkel	angle of attack
9.	Einstellwinkel	incidence angle
10.	Hängewinkel	bank angle
11.	Steigwinkel	climb angle
12	V-Winkel	dihedral angle

1.3) Shown is a de Havilland DH 106 Comet. It was the first production commercial jet. Developed and manufactured by de Havilland at its Hatfield Aerodrome, Hertfordshire – the location of our long term ERASMUS partner university, the University of Hertfordshire.

Source: http://www.zoggavia.com

Please name 4 technical characteristics and for each characteristic at least one advantage and one disadvantage!

```
1.) Engines buried in the wing:
                        Less wetted area, less drag
More complicated to handle during maintenance
      Advantage:
      Disadvantage:
2.) Horizontal tail with dihedral:
      Advantage: Horizontal tail is for sure free of jet blast
      Disadvantage:
                        Less effective area
3.) Rectangular windows on Comet 2:
                        Full use is made of the area formed by stringer and frame
      Advantage:
                        High stress in material in the corners of the window.
      Disadvantage:
                        This lead to structural failures in the early days of this aircraft.
4.) Fuselage converges at tail from top and from bottom.
                        Less drag
      Advantage:
                        Requires longer main landing gear to avoid tail strike.
      Disadvantage:
```

1.4) What is the value of a typical zero-lift drag coefficient for a passenger aircraft? Calculate its drag coefficient at minimum drag speed!

```
0.02
```

1.5) What is the value of a typical ratio between wetted area and wing area of a passenger aircraft? Estimate the maximum glide ratio $(L/D)_{max}$ for such an aircraft with an aspect ratio of 6!

```
A typical value for S_{wet}/S_W = 6.0 \dots 6.2
(L/D)_{max} = 14.9 \cdot (6/6)^{1/2} = 14.9
```

1.6) What is the value of a typical equivalent skin friction coefficient for a passenger aircraft? And what is again the value of a typical ratio between wetted area and wing area of a passenger aircraft? Calculate the value for the zero lift drag coefficient of a passenger aircraft from these numbers!

0.003

- 1.7) What is the minimum speed (with respect to stall speed) at take-off of a business jet? $v_2/v_s = 1.2$
- 1.8) What is the minimum speed (with respect to stall speed) at approach of a business jet? $v_{app}/v_s = 1.3$
- 1.9) What is the ratio of the maximum lift coefficient and the actual lift coefficient at minimum approach speed of a business jet?

 $(v_{app}/v_S)^2 = 1.69$

1.10) Please write down the "First Law of Aircraft Design" from which you can calculate the maximum take-off mass m_{MTO} from payload m_{PL} ? Everything else equal: How much more is the maximum take-off mass m_{MTO} if the payload m_{PL} doubles?

$$m_{MTO} = \frac{m_{PL}}{1 - \frac{m_{OE}}{m_{MTO}} - \frac{m_F}{m_{MTO}}}$$

If the payload m_{PL} doubles, also the maximum take-off mass m_{MTO} doubles.

1.11) How is the tail volume coefficient defined for a vertical tail? Explain how to obtain the vertical tail surface area from the vertical tail volume coefficient! Explain how to get each parameter needed!

Vertical tail volume coefficient: $C_V = \frac{S_V \cdot l_V}{S_W \cdot b}$ This is how to use it: $S_V = \frac{C_V \cdot S_W \cdot b}{l_V}$

Get coefficient from given or own statistics. Take wing area and wing span from preliminary sizing. Get the vertical tail lever arm from a percentage (45 % ... 55 %) of the fuselage length.

..

1.12) Assume you investigated the one class seat layout of many passenger aircraft in order to find out the value of the ratio between the number of rows n_R and the number of seats abreast n_{SA} . Assume you found the ratio of $n_R/n_{SA} = 4$. Determine n_{SA} for an aircraft seating 169 passengers! Explain your choice in light of certification rules CS-25! Write the equation to determine n_{SA} for any ratio n_R/n_{SA} !

$$N_{5A} \cdot N_{R} = N_{pax}$$

$$N_{5A} \cdot N_{R} = N_{pax} \cdot N_{5A}$$

$$N_{5A}^{2} = \frac{N_{5A}}{N_{R}} \cdot N_{pax}$$

$$N_{5A} = \sqrt{\frac{N_{5A}}{N_{R}}} \cdot \sqrt{N_{pax}}$$

$$N_{5A} = \sqrt{\frac{1}{4}} \cdot \sqrt{N_{pax}}$$

$$N_{5A} = \sqrt{\frac{1}{4}} \cdot \sqrt{N_{pax}}$$

$$I = \frac{1}{2} \cdot \sqrt{169}$$

$$I = \frac{1}{2} \cdot 13 = 6,5$$
This can be either 6
or 7 seats abreast, Since
7 seats vequive 2 aisles
(CS-25) N_{5A} = 6 is the
bether Choice,

Х

- 1.13) You plan to design a fuselage with circular cross section for minimum zero lift drag. How do you set up your optimization? Select all correct options!
 - A The task is to minimize zero lift drag per cabin volume
 - B The task is to minimize zero lift drag per cabin area
 - C The task is to minimize zero lift drag per frontal area
 - D The task is to minimize zero lift drag per total area of the passenger doors
 - E The task is to minimize zero lift drag per total area of the cargo doors
- 1.14) You want to design a cabin with 6 seats abreast. What are your options with respect to the number of aisles? Discuss!

6 seats abreast is the maximum number of seats allowed for one aisle (CS-25). This does not preclude to have voluntarily more than one aisle for a 6-abreast cabin.

Advantage:	Two aisles facilitate boarding and deboarding and could lead to a little shorter turn around time, because boarding and deboarding are usually on the "critical path"
Disadvantage:	Two aisles cause a larger fuselage diameter and hence more wetted area and zero-lift drag. On the other hand the fuse- lage could turn out to be lighter.
Together:	Only a more detailed design of the two versions of this air- craft and a comparison can tell what would be the better so- lution. From experience I can tell (and aircraft statistics clearly show) that the 6-abreast two aisle version will not be able to demonstrate advantages after all.

- 1.15) In which sequence is it best to allocate wing parameters in a hand calculation? Input parameter is the cruise Mach number. Select all correct options!
 - A First: wing vertical position, sweep, dihedral angle. Then: taper ratio, thickness ratio.
- **X** B First: wing vertical position, sweep. Then: taper ratio, dihedral angle, thickness ratio.
 - C First: sweep. Then: wing vertical position, taper ratio, dihedral angle, thickness ratio.
 - D First: dihedral angle, sweep. Then: taper ratio, wing vertical position, thickness ratio.
- 1.16) Please order these Mach numbers with respect to increasing flight speed: (typical) cruise Mach number, MMO, critical Mach number, MD, M_{DD} ! Discuss your sequence if necessary!

critical Mach number (typical) cruise Mach number = M_{DD} MMO MD

- 1.17) Name three parameters that you would change, if asked to reduce wing drag in transonic flight at given cruise Mach number! Would you increase or decrease each of these parameters?
 - increase wing sweep
 - reduce relative thickness of the wing (of the airfoil)
 - reduce lift coefficient for less supervelocities
 - select efficient transonic airfoil

- 1.18) You need to carry much fuel for your long range aircraft. How would you change (increase or decrease) each parameter listed (if you are still free to decide): Wing area, wing aspect ratio, wing sweep, taper ratio, relative thickness of the wing? Discuss your selection if necessary!
 - increase wing area
 - decrease wing aspect ratio
 - wing sweep has no/little influence on wing fuel tank volume and should be set for other reasons
 - taper ratio: $\lambda = 0$ (decrease if higher)
 - increase relative thickness of the wing

1.19) Many wings have a kink and are hence formed by two trapezia. Why is this necessary? State aerodynamic benefits (if any)!

This is necessary to integrate the main landing gear on the wing. The wing is roughly were the CG is, but the main landing gear needs to be a little aft of the CG. With an inner wing with unswept trailing edge, room is made for an additional inboard rear spar used to mount the main landing gear. There are not really aerodynamic advantages from the double trapezoidal wing - with the exception of maybe one advantage: It becomes possible to use an inner wing trailing edge flap without sweep which shows a higher maximum lift coefficient than a swept flap.

1.20) Explain why wing twist may help to optimize the lift distribution in the design point, but causes more drag in off-design situations!

With wing twist, the local angle of attack can be increased or decreased and as such the wing loading may be adapted to an elliptical one (or a triangle one - whatever is the goal) in the design point of the flight envelope. However consider the case where the wing produces no lift. With twist (often washout) it would e.g. show negative lift outboard and positive lift inboard (in contrast to an untwisted wing that would show no lift along the whole span). Lift is followed by drag (even if it cancels out over the whole wing).

1.21) For a quick design of a main landing gear: How many tons from the maximum take-off mass do you allocate to each of the main wheels? Or in other words: How many wheels do we need on the main gear?

Eacł	n main w	heel c	can d	carry:			20	t	• • •	30	t	
The	minimum	numbe	er of	- main	wheels	is:	n _{MW}	=	m_{MTO}	/	30	t

1.22) How is the concrete of a runway more likely to fail due to a certain large aircraft with given mass: if each main landing gear leg has two wheels or if each main landing gear leg has four wheels?

The load should always be distributed over a larger area. Four wheels (especially if they are spaced far apart) are better that two. In a formal calculation this is shown with a smaller "equivalent single wheel load" and a smaller Aircraft Classification Number, ACN.

1.23) At a certain angle of attack, a wing would "theoretically" show the distribution of the lift coefficient as given in the diagram that gives actually the behavior of four wings with different taper ratios. Here "theoretically" means that the diagram was produced with an aerodynamic code that can not predict stall. You plan to use an airfoil with a maximum lift coefficient of 1.2. Which of the wings stalls at the given angle of attack and where does it stall? Which wing(s) will produce most lift? Discuss!

The wing with the taper ratio λ = 0 will stall, because it "tries to achieve" a local lift coefficients lager than 1.2 on the wing tip i.e. outboard of 80 % halfspan.

The two wings with $\lambda = 0.2$ and $\lambda = 0.5$ will produce most lift, because they have quite an even distribution of the local lift coefficient and are wasting only very little. The wing with $\lambda = 1.0$ will stall inboard first and will waste lift their.

1.24) What is the ultimate design goal (objective function) for commercial aircraft?

The ultimate goal in commercial aviation is to make money. This means revenues should be as high as possible and costs should be as low as possible. Every unit of transport (expressed as passenger mile) should be generated at lowest costs!

Questions from the Lecture Series

1.25) Has metal a chance in aircraft design in the future, or will aircraft continue to be dominated by composite materials? Explain your answer!

Metal has a chance if production costs can be reduced. This means that metal cutting processes (milling, turning, and drilling) have to be fast, so that an expensive machine can produce more in a given amount of time.

1.26) ICAO puts aircraft in various classes. What are the span limitations (at airports) for aircraft in Class C and D respectively?

Class C: 36 m Class D: 52 m 1.27) What is the advantage of a propeller driven aircraft compared to a propfan with respect to engine integration certification?

With respect to engine integration and certification, it is important to note that propfans are considered to disintegrate. The fuselage structure in the vicinity of the engine needs to be reinforced. Propellers are not considered to disintegrate and save the mass for structure reinforcement.

- 1.28) How efficient are winglets?
 - A Winglets have no effect on the aerodynamic efficiency of an aircraft.
- **X** B Winglets 1 m high have roughly the same effect as a horizontal wing span increase of 0.5 m on each wing tip.
 - C Vertical winglets have the same aerodynamic effect as a horizontal wing span extension of the same size.
- 1.29) What amount of fuel saving can be achieved with a "Smart Turboprop" (as described in the evening lecture) against the jet powered A320?

Fuel saving is given as 36 %.

1.30) Explain how it is possible to achieve "double digit" (%) savings in fuel consumption of passenger aircraft just based on parameter choice in aircraft design without any introduction of new technologies!

This is possible by violating values of commonly selected parameters:

- Higher value of the wing span violating ICAO classes.
- Higher value of take-off and landing distance.
- Slower cruise flight leading to lower flight.
- Changing the objective function from DOC to fuel consumption.

2. Part

Task 2.1

Design "The Rebel"!

These are the requirements for the aircraft:

- Payload: 180 people on board with baggage. 93 kg per person. Additional cargo: 2516 kg.
- Range 1510 NM at a cruise Mach number $M_{CR} = 0.55$ (payload as above, with reserves as given in FAR Part 121, domestic reserves, distance to alternate: 200 NM)
- Take-off field length $s_{TOFL} \le 2700$ m (ISA, MSL at maximum take-off mass)
- Landing field length $s_{LFL} \le 2700$ m (ISA, MSL at maximum landing mass)
- Furthermore the requirements from FAR Part 25 §121(b) (2. Segment) and FAR Part 25 §121(d) (missed approach) shall be met

For your calculation

- The factor k_{APP} for approach, k_L for landing and k_{TO} for take off should be selected according to the spread sheet and to the lecture notes.
- The ratio of maximum landing mass and maximum take-off mass $m_{ML}/m_{MTO} = 0.92$
- Maximum lift coefficient of the aircraft in landing configuration $C_{L,max,L}=3,1$
- Maximum lift coefficient of the aircraft in take-off configuration $C_{L,max,TO} = 3,1$
- The glide ratio is to be calculated for take-off and landing with $C_{D0} = 0.02$ and Oswald factor e = 0.5
- Oswald factor in cruise e = 0.68
- Aspect ratio A = 34.8
- Calculate the maximum glide ratio in cruise, E_{max} with e = 0.68 und $S_{wet} / S_W = 9.1$
- The ratio of cruise speed and speed for minimum drag is set to the optimum value:

$V_{CR} / V_{md} = \sqrt[4]{3}$. Design point is the intersection from take-off and landing line!!!

- The operating empty mass ratio is $m_{OE} / m_{MTO} = 0.59$.
- The by-pass ratio (BPR) of this generic engine is close to $\mu = 15.5$; their thrust specific fuel consumption for cruise and loiter is assumed to be c = 10.3 mg/(Ns).
- Use these values as Mission-Segment Fuel Fractions: Engine start: 1.00; Taxi: 0.997; Takeoff: 0.994; Climb: 0.994; Descent: 0.994; Landing: 0.994.

Results to task 2.1

Please insert your results here! Do not forget the units!

- Wing loading from landing field length: 973 kg/m²
- Thrust to weight ratio from take-off field length (at wing loading from landing): 0.272
- Glide Ratio in 2. Segment: **13.68**
- Glide Ratio during missed approach maneuver: 13.76
- Thrust to weight ratio from climb requirement in 2. Segment: 0.194
- Thrust to weight ratio from climb requirement during missed approach maneuver: 0.172
- $V_{CR} / V_{md} = \sqrt[4]{3} = 1.316$
- Design point
 - Thrust to weight ratio : 0.272
 - Wing loading: 973 kg/m²
- Cruise altitude: 8465 m = 27772 ft
- maximum take-off mass: 67308 kg
- maximum landing mass: 61923 kg
- wing area: 69.1 m²
- thrust of one engine in N: 89850 N
- required tank volume in m³: 10.6 m³

Draw the matching chart (you need to change the scale of the axis for the wing loading!) and **indi**cate the design point in the matching chart!

1.) Peliminary Sizing I

Calculations for flight phases approach, landing, tak-off, 2nd segment and missed approac

Bold blue values represent input data
Values based on experience arelight blue. Usually you should not change these values
Results are marked red. Don't change these cells
Interim values, constants, are in black!
"<<<<" marks special input or user actior.

Approach

Factor	k _{APP}
Conversion factor	
Given: landing field length	
Landing field length	S _{LFL}
Approach speed	V _{APP}
Approach speed	V _{APP}
Given: approach speed	
Approach speed	V _{APP}
Approach speed	V _{APP}
Landing field length	S _{LFL}

Landing

Landing field length
Temperature above ISA (288,15K)
Relative density
Factor
Max. lift coefficient, landing
Mass ratio, landing - take-off
Wing loading at max. landing mass
Wing loading at max. take-off mass

S _{LFL}
ΔT_L
σ
kL
$C_{\text{L,max,L}}$
m $_{\rm ML}$ / m $_{\rm TO}$
m $_{\rm ML}$ / S $_{\rm W}$
m _{MTO} / S _W

Author: Prof. Dr.-Ing. Dieter Scholz, MSME HAW Hamburg http://www.ProfScholz.de Example data: See Klausur SS15

1,70 (m/s²) ^{0.5}

1,944 kt / m/s

<<< Choose according to task (ja = yes; nein = no)</pre>

	-	
V =	= k	·
' APP	•• APP	V ~ LFL
-		

2700 m 0 K 1,000 0,107 kg/m³ 3,1 0,92 896 kg/m² 973 kg/m² $k_{L} = 0,03694 k_{APP}^{2}$ $m_{ML} / S_{W} = k_{L} \cdot \sigma \cdot C_{L,max,L} \cdot s_{LFL}$ $m_{MTO} / S_{W} = \frac{m_{ML} / S_{W}}{m_{ML} / m_{MTO}}$

<u>Take-off</u>

Take-off field length	S _{TOFL}	2700 m	
Temperatur above ISA (288,15K)	ΔT_{TO}	0 K	
Relative density	σ	1,000	
Factor	k _{TO}	2,34 m³/kg	
Exprience value for C _{L,max,TO}	0,8 * C _{L,max,L}	2,48	
Max. lift coefficient, take-off	C _{L,max,TO}	3,1	$T/(m-\alpha)$ k
Slope	а	0,0002796 kg/m³	$a = \frac{T_{TO}/(m_{MTO} \cdot g)}{2} = \frac{\kappa_{TO}}{2}$
	T_{TO}/m_{MTO} *g at m _{MTO} /S _W calculated		$m_{MTO} / S_W \qquad S_{TOFL} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{C}_{L,max,TO}$
Thrust-to-weight ratio	from landing	0,272	
2nd Segment			
Calculation of glide ratic			
Aspect ratio	A	34,8	
Lift coefficient, take-off	C _{L,TO}	2,15	
Lift-independent drag coefficient, clean	C _{D,0} (bei Berechnung: 2. Segment)	0,020	n _E sin(γ)
Lift-independent drag coefficient, flaps	$\Delta C_{D,flap}$	0,053	2 0,024
Lift-independent drag coefficient, slats	$\Delta C_{D,slat}$	0,000	3 0,027
Profile drag coefficient	C _{D,P}	0,073	4 0,030
Oswald efficiency factor; landing configuration	e	0,5	
Glide ratio in take-off configuration	E _{TO}	13,68	
Calculation of thrust-to-weight ratio			
Number of engines	n _e	2	T (n) (1)
Climb gradient	sin(γ)	0,024	$\left \frac{r_{TO}}{r_{TO}}\right = \left \frac{r_{E}}{r_{E}}\right \cdot \left \frac{r_{TO}}{r_{E}}\right + \sin\gamma$
Thrust-to-weight ratio	T _{TO} / m _{MTO} *g	0,194	$\left[m_{MTO} \cdot g (n_E - 1) (E_{TO} f) \right]$

1,83 0,020 0,037 0,000

no yes 0,015 0,072 13,76

0,021 **0,172**

Missed approach

Calculation of the glide ratic	
Lift coefficient, landing	C _{L,L}
Lift-independent drag coefficient, clean	C _{D,0} (bei Berechnung: Durchstarten)
Lift-independent drag coefficient, flaps	$\Delta C_{D, flap}$
Lift-independent drag coefficient, slats	$\Delta C_{D,slat}$
Choose: Certification basis	JAR-25 bzw. CS-25
	FAR Part 25
Lift-independent drag coefficient, landing gear	$\Delta C_{D,gear}$
Profile drag coefficient	C _{D,P}
Glide ratio in landing configuration	EL
Calculation of thrust-to-weight ratio	
Climb gradient	sin(γ)
Thrust-to-weight ratio	T _{TO} / m _{MTO} *g

	JAR-25 bzw. CS-25	FAR Part 25
$\Delta C_{D,gear}$	0,000	0,015

<<<< Choose according to task

n _E	sin(γ)
2	0,021
3	0,024
4	0,027

$\frac{T_{TO}}{m_{MTO} \cdot g} =$	$\left(\frac{n_E}{n_E-1}\right)$	$\cdot \left(\frac{1}{E_L} + \sin \theta\right)$	$\mathbf{n} \gamma \Big)$	$\frac{m_{_{ML}}}{m_{_{MTO}}}$

2.) Max. Glide Ratio in Curise

Estimation of k_E by means of 1.), 2.) or 3.)

1.) From theory			
Oswald efficiency factor for k _E	e	0,68	
Equivalent surface friction coefficient	C _{f,eqv}	0,003	
Factor	k _E	13,3	
2.) Acc. to RAYMER			
Factor	k _e	15,8	
3.) From own statistics			
Factor	k _E	???	
Estimation of max. glide ratio in cruise, E_{max}	(
Estimation of max. glide ratio in cruise, E _{max} Factor	k K _{E chosen}	13,3	<<<< Choose according to task
Estimation of max. glide ratio in cruise, E _{max} Factor Relative wetted area	k _{E chosen} S _{wet} / S _w	13,3 9,1	<<< Choose according to task $S_{wet} / S_w = 6.0 \dots 6.2$
Estimation of max. glide ratio in cruise, E _{max} Factor Relative wetted area Aspect ratio	k _{E chosen} S _{wet} / S _w A	13,3 9,1 34,8 (from sheet 1)	<
Estimation of max. glide ratio in cruise, E _{max} Factor Relative wetted area Aspect ratio Max. glide ratio	k _{E chosen} S _{wet} / S _w A E _{max}	13,3 9,1 34,8 (from sheet 1) 26,09	<<< Choose according to task S _{wet} / S _w = 6,0 6,2
Estimation of max. glide ratio in cruise, E _{max} Factor Relative wetted area Aspect ratio Max. glide ratio	k _{E chosen} S _{wet} / S _w A E _{max} or	13,3 9,1 34,8 (from sheet 1) 26,09	<

3.) Preliminary Sizing II Calculations for cruise, matching chart, fuel mass, operating empty mass

and aircraft parameters $m_{\text{MTO}},\,m_{\text{L}},\,m_{\text{OE}},\,S_{\text{W}},\,T_{\text{TO}},\,...$

Parameter			Value			Parameter	Value				
By-pass ratio	BPR		15,5			V/V _m	1,316074013	Jet, The	ory, Optimum:	1,316074013	1
Max. glide ratio, cruise	E _{max}		26,09 (a	us Teil 2)		$C_L/C_{L,m}$	0,577	C / C	= 1 / (V / V)	$()^2$	
Aspect ratio	А		34,8 (a	us Teil 1)		CL	0,823	$C_L + C_{L,m}$	- 1 / (/ / /	m)	
Oswald eff. factor, clean	е		0,68 🗖			E	22,596			2	
Zero-lift drag coefficient	C _{D,0}		0,0273	$T = \frac{\pi}{2}$	$\cdot A \cdot e$			$E = E_{\text{max}}$	·1	$\left(\begin{array}{c} C \end{array}\right)$	
Lift coefficient at Emax	$C_{L,m}$		1,42	$4 \cdot \frac{1}{2}$	E_{max}^2				$\frac{1}{\left(\begin{array}{c} \end{array}\right)}$	$+ \left \frac{C_{l}}{C_{l}} \right $	
Mach number, cruise	M_{CR}		0,55	$C_{L,m} = \sqrt{C_{D,0}} \cdot$	$\pi \cdot A \cdot e$				$\left(\frac{C_{l}}{C_{l,m}} \right)$	$\left(\begin{array}{c} \mathbf{C}_{l,m} \end{array} \right)$	
Constants											
Ratio of specific heats, air	γ		1,4								
Earth acceleration	g		9,81 m	$/s^2$ T_{TO}		1	$m_{MTO} = C_L \cdot M$	$\gamma^2 \gamma$			
Air pressure, ISA, standard	p ₀		101325 Pa	a $\frac{10}{m_{\rm MTO}}$	$\overline{f} = \overline{\left(T_{au} / T_{a} \right)}$	(L/D)	$\frac{-MIO}{S} = \frac{-L}{\sigma}$	$-\cdot \frac{1}{2} \cdot p(h)$			
Euler number	е		2,718282	MIO	$S \left(\frac{1}{CR}, \frac{1}{20} \right)$	(2, 2) max	~ W 8	_			
	A 1/1/		<u> </u>						T . L		
	Altitude	1. 503		T / m * m		► / C [[(a/m ²]	2nd Segment	Missed appr.			Landing
	n [Km]	η [π]			p(n) [Pa]	^{III} _{MTO} / S _W [kg/III ⁻]	1 _{TO} / III _{MTO} 9	т _{то} / пі _{мто} у	т _{то} / пі _{мто} у	т _{то} / пі _{мто} у	т _{то} / пі _{мто} 9
	0	0	0,328	0,135	101325	179	9 0,194	0,172	0,50	0,13	
	2	6562	0,309	0,143	79493	109	0,194	0,172	0,45	0,14	
	3	9843	0.269	0,160	70105	124	5 0.194	0,172	0.35	0,16	
	4	13124	0,250	0,177	61636	109	4 0,194	0,172	0,31	0,18	
	5	16405	0,230	0,192	54015	95	9 0,194	0,172	0,27	0,19	
	6	19686	0,211	0,210	47176	83	8 0,194	0,172	0,23	0,21	
	7	22967	0,191	0,231	41056	72	9 0,194	0,172	0,20	0,23	
	8	26248	0,172	0,258	35595	63	2 0,194	0,172	0,18	0,26	
	9	29529	0,152	0,291	30737	54	6 0,194	0,172	0,15	0,29	
	10	32810	0,133	0,334	26431	46	9 0,194	0,172	0,13	0,33	
	11	36091	0,113	0,391	22627	402	2 0,194	0,172	0,11	0,39	
	12	39372	0,094	0,473	19310	34-	0,194	0,172	0,10	0,47	
	13	42055	0,074	0,598	10490	29	0,194	0,172	0,08	0,00	
	15	49215	0.035	1,270	12035	21	4 0,194	0,172	0,07	1.27	
		10210	0,000	1,210	12000	97:	3	0,112	0,00	.,	0
						974	4				0,5
	Remarks:	1m=3,281 ft	T _{CR} /T _{TO} =	GI.(5.27)	Gl. (5.32/5.33)	Gl. (5.34) from sheet 1.)	from sheet 1.)	from sheet 1.	Repeat	from sheet 1.
			f(BPR,h)							for plot	

3.) Preliminary Sizing II

Wing loading	m _{MTO} / S _W	973 kg/m²	<<<< Read desi	ign point from mate	ching chart!		
Thrust-to-weight ratio	Т _{то} / (m _{мто} *g)	0,272	<<<< Given data	a is correct when tak	e-off and landin	ig is sizing the aircraft at the same	e time.
Thrust ratio	(T _{CR} /T _{TO}) _{CR}	0,163					
Conversion factor	m -> ft	0,305 m/ft					
Cruise altitude	h _{CR}	8465 m					
Cruise altitude	h _{CR}	27772 ft					
Temperature, troposphere	T _{Troposphäre}	233,13 K	T _{Stratosphäre}	216,65	К		
Temperature, h _{CR}	T(h _{CR})	233,13					
Speed of sound, h _{CR}	а	306 m/s					
Cruise speed	V _{CR}	168 m/s					
Conversion factor	NM -> m	1852 m/NM					
Design range	R	1510 NM					
Design range	R	2796520 m					
Distance to alternate	S _{to_alternate}	200 NM	D	P. (
Distance to alternate	S _{to_alternate}	370400 m	Reserve flight c	listance:		1	
Chose: FAR Part121-Reserves?	domestic	yes	FAR Part 121	S _{res}			
Extra fuel for long range	International	no 10%	domestic	370400	m m		
		10 %	International	030032	111	l	
Extra flight distance	S _{res}	370400 m					
Spec.fuel consumption, cruise	SFC _{CR}	1,03E-05 kg/N/s	typical value	1,60E-05	kg/N/s		
			Extra time:			_	
Breguet-Factor, cruise	Bs	37653593 m	FAR Part 121	t _{loiter}			
Fuel-Fraction, cruise	M _{ff,CR}	0,928	domestic	2700	s		
Fuel-Fraction, extra fliht distance	$M_{ff,RES}$	0,990	international	1800	s		
Loiter time	t _{loiter}	2700 s					
Spec.fuel consumption, loiter	SFC _{loiter}	1,03E-05 kg/N/s					
Breguet-Factor, flight time	Bt	223631 s					
Fuel-Fraction, loiter	M _{ff,loiter}	0,988					
			Phase	M _{ff} per flight phas	ses [Roskam]	1	
				transport jet	business jet		
Fuel-Fraction, engine start	M _{ff,engine}	1,000 <<<< Copy	engine start	0,990	0,990		
Fuel-Fraction, taxi	M _{ff,taxi}	<mark>0,997</mark> <<<< values	taxi	0,990	0,995		
Fuel-Fraction, take-off	$M_{\rm ff,TO}$	<mark>0,994</mark> <<<< from	take-off	0,995	0,995		
Fuel-Fraction, climb	M _{ff,CLB}	0,994 <<<< table	climb	0,980	0,980		
Fuel-Fraction, descent	M _{ff,DES}	0,994 <<<< on the	descent	0,990	0,990		
Fuel-Fraction, landing	$M_{\rm ff,L}$	<mark>0,994</mark> <<<< right !	landing	0,992	0,992		

Short- and Medium Range

93,0

Delta 2,0%

1,3%

11,2%

1,7%

Long Range

97,5

span, b_w

Fuel-Fraction, standard flight	M _{ff,std}	0,906		
Fuel-Fraction, all reserves	M _{ff,res}	0,967		
Fuel-Fraction, total	M _{ff}	0,876		
Mission fuel fraction	m _F /m _{MTO}	0,124		
Realtive operating empty mass	m _{OE} /m _{MTO}	0,513	acc. to Loftin	
Realtive operating empty mass	m _{OE} /m _{MTO}	XXX	from statistics (if given the statistics of the	ven)
Realtive operating empty mass	m_{OE}/m_{MTO}	0,590	<<<< Choose acco	ording to task
Choose: type of a/c	short / medium range long range	yes no	<<<< Choose acco	ording to task
Mass: Passengers, including baggage	m _{PAX}	93,0 kg	in kg	Short- and
Number of passengers	n _{PAX}	180	m _{PAX}	
Cargo mass	m _{cargo}	2516 kg	<u> </u>	
Payload	m _{PL}	19256 kg		
			From DGLR F	Presentation
Max. Take-off mass	m _{MTO}	67308 kg	66000 kg	
Max. landing mass	m _{ML}	61923 kg		
Operating empty mass	m _{OE}	39712 kg	39200 kg	
Mission fuel fraction, standard flight	m _F	8340 kg	7500 kg	
Wing area	S _w	69,1 m²	68,0 m ²	2
Take-off thrust	T _{TO}	179700 N	all engines togeth	er
T-O thrust of ONE engine	T _{TO} / n _E	89850 N	one engine	
T-O thrust of ONE engine	T _{TO} / n _E	20198 lb	one engine	
Fuel mass, needed	m _{F,erf}	8517 kg		
Fuel density	ρ _F	800 kg/m³		
Fuel volume, needed	$V_{F,erf}$	10,6 m³	(check with tank ge	ometry later on)
Max. Payload	m _{MPL}	19256 kg		
Max. zero-fuel mass	m _{MZF}	58968 kg		
Zero-fuel mass	m _{ZF}	58968 kg		
Fuel mass, all reserves	m _{F,res}	2247 kg		
Check of assumptions	check:	m _{ML}	>	m _{ZF} + m _{F,res}
		61923 kg	>	61214
			yes	

page 17

Aircraft sizing finished!

m_{ZF} + m_{F,res} ?

61214 kg

49,1 m

Matching Chart

Task 2.2

phi_25 = LN(1/0,45)*(-1/0,037) =

-21,6 °
$$\lambda_{opt} = 0.45 \cdot e^{-0.0375\varphi_{25}}$$

1,9 •
$$\Gamma = \frac{\partial \Gamma}{\partial k_{Z,W}} \cdot k_{Z,W} + \frac{\partial \Gamma}{\partial \varphi_{25}} \cdot \varphi_{25} + \Gamma_0$$

Table 2.20	Values for the derivatives in Equation (2.80)			
	Own	Raymer		
$\frac{\partial \Gamma}{\partial k_{Z,W}}$	- 7.46°	- 7°		
$\frac{\partial \Gamma}{\partial \varphi_{25}}$	- 0.115	- 0.1		
Γ ₀	6.91°	6°		

e =	0,747	$e = e_{theo} \cdot k_{e,F} \cdot k_{e,D_0} \cdot k_{e,M}$
e_theo =	0,868	$e_{theo} = \frac{1}{1 + f(\lambda - \Delta\lambda) \cdot A}$

$$f(\lambda) = 0.0524 \ \lambda^4 - 0.15 \ \lambda^3 + 0.1659 \ \lambda^2 - 0.0706 \ \lambda + 0.0119$$

f(lam - DEL_lam) =	0,004356422	
lam - DEL_lam =	0,157	0.02
DELTA_lambda =	0,093	$\Delta \lambda = -0.357 + 0.45 \cdot e^{0.0375\varphi_{25}}$

 $d_F = 4 m and$

0,987

$$k_{e,F} = 1 - 2 \left(\frac{d_F}{b}\right)^2$$

Table 2.4 $k_{e,F}$ and k_{e,D_0} factors for each aircraft category

	Aircraft category	d_F/b	k _{e,F}	k_{e,D_0}	
	All	0.115	0.974	-	
M = 0.55 =>	Jet	0.116	0.973	0.873	

$$k_{e,M} = \begin{cases} a_e \left(\frac{M}{M_{comp}} - 1\right)^{b_e} + 1, & M > M_{comp} \\ 1, & M \le M_{comp} \end{cases}$$

$$a_e = -0.001521 \\ b_e = 10.82 \end{cases}$$

 M_{comp} stands for compressibility Mach number and has the constant value of 0.3.

k_e,M = -0,001521*(0,55/0,3 - 1)^10,82 + 1 = 0,99979

Task 2.4

$$C_{D0} = \sum_{c=1}^{n} C_{f,c} \cdot FF_{c} \cdot Q_{c} \cdot \frac{S_{wet,c}}{S_{ref}}$$

