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Abstract

Engineers always look for new methods to speed-up the aircraft design process. Aerody-
namic analysis are often the most costly in terms of computational time. Machine learning
techniques as surrogate modeling are more and more used in this domain, as well as for
optimisation workflows.

CEASIOMpy is an open source conceptual aircraft design software written in Python
and using the CPACS standard, an XML data definition for aircraft. CEASIOMpy includes
modules which cover several of the main aircraft design disciplines. These modules can be
connected and executed in an order defined by the user depending on his needs. CEA-
SIOMpy includes aircraft geometry CAD, Weight & Balance estimation, aerodynamics (Vor-
tex Lattice Methods and SU2), and stability analysis modules. The aerodynamic modules of
CEASIOMpy are being used and further developed in the framework of the H2020 project
AGILE4.0 in collaboration with other European partners in order to run Multidisciplinary
Design Analysis and Optimization (MDAO) on aircraft design cases.

Surrogate modeling was implemented in CEASIOMpy using the SMT libraries. First, a
few high fidelity Euler calculation are performed for different flight state parameters (angle
of attack, Mach number and altitudes), then these results are used to train a surrogate
model that can be used to generate a more complete aerodynamics database or replace costly
aerodynamic calculations in an optimisation workflow.

In this paper we will describe the different parameters that are used to create and employ
surrogate models efficiently in CEASIOMpy. Accuracy testing will be performed on different
test cases. We will also evaluate the possibility to add geometry parameters (such as wing
span, fuselage length, etc.) in a surrogate model to make it suitable for a real optimisation
workflow.
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1 Introduction

Aircraft design is a long process that requires a lot of knowledge and computational tools in many different
disciplines. Machine learning techniques are increasingly used in the field of aircraft design to speed up the
design process. Surrogate modeling is one of the most commonly used methods, being particularly useful
to interpolate data that has not been calculated before. In aircraft design, the generation of aerodynamic
databases is generally the most computationally expensive discipline and various techniques including
surrogate modeling are being developed to reduce these costs [1].

1.1 CEASIOMpy environment

1.1.1 CPACS format

CPACS [2] is an XML data definition that permits to describe in a structured, hierarchical manner the
characteristics of the aircraft as its geometry, engines, performances and many other discipline specific
data. The CPACS format has been developed for more than 10 years at DLR in Germany.

Among other data the CPACS format can store one or several aerodynamic databases, called aeroMaps.
These aeroMaps are useful to save all the different flight state parameters (Mach number, altitude, angle
of attack, angle of side slip) and the corresponding aerodynamic coefficients (3 for the forces and 3 for the
moments). The atmospheric model used - the International Standard Atmosphere (ISA) in our case - is
also saved.

Figure 1: Example of an aeroMap in a CPACS file

1.1.2 CEASIOMpy framework

CEASIOMpy [3] is an open source conceptual aircraft design environment. CEASIOMpy can be used
to set up complex design and optimization workflows, both for conventional and unconventional aircraft
configurations. It provides tools for various disciplines in aircraft design, like: weight and balance, aero-
dynamics, structures, mission analysis and stability analysis.

CEASIOMpy is a collection of domain specific modules which can be connected together in differ-
ent order depending on the application. CEASIOMpy uses the CPACS format to store and exchange
information between the modules.

One of the main use of CEASIOMpy, for now, is to generate aerodynamic databases for preliminary
aircraft design. It has been extensively use in the framework of the European project AGILE [4, 5, 6] and
today in the follow-up project AGILE4.0 [7].

1.2 Surrogate model

With the ever-increasing amount of data at disposal and the higher complexity of today’s models for
various systems, machine learning that exploits those data to make predictions for a given problem without
directly solving a large system appears as an interesting candidate to be used in industry.

Many machine learning methods are already being used in various sub-domains of aircraft design,
and one of the most commonly used methods in the domain of aircraft design appears to be surrogate
modeling [8].

By providing a training data-set containing inputs and their corresponding outputs, a surrogate model
can be trained and used to predict an output value for new input points. A surrogate model can be
considered as a black box as the user can specify which parameters shall be taken as inputs and outputs.
Thus one can create a model based on a workflow by including all the desired modules.
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One approach that can be adopted is to make a first search using a surrogate model, which can be
used to extrapolate a result based on a set of predefined data for which the output is already known. In
the domain of CFD, such model could become particularly handy in order to guess an initial solution to
a problem based on previous simulations results and so converging to a solution faster than without an
initial guess.

The implementation of surrogate models in CEASIOMpy has been made using the Surrogate Modelling
Toolbox (SMT) [9] which is an open-source Python package consisting of libraries of surrogate modeling
methods. The methods that were implemented in CEASIOMpy are different forms of the Kriging model
and a least-square approximation. These methods and others are described in detail on the SMT website
[10].

1.3 OPTIMALE aircraft

The unmanned aerial vehicle OPTIMALE is a Medium Altitude Long Endurance (MALE) conventional
low wing configuration with a T-tail. Aircraft and mission specifications used for this study are given in
Table 1.

Semi-span 16.2 m
Reference area 55 m2

Cruise speed 150 m/s
Dive speed 180 m/s

Cruise altitude 15′500 m
Ceiling altitude 18′000 m

Table 1: OPTIMALE specifications

The OPTIMALE configuration has been developed during the German AeroStruct research project
[11]. This aircraft has been used in several European project as for example AGILE [5, 12, 6]. A
visualization of the model (without engines and tanks) using the CPACS visualization and modification
tool CPACSCreator [13] is shown in Figure 2.

Figure 2: OPTIMALE CPACS configuration in CPACSCreator
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2 Implementation

2.1 Data generation

To create a surrogate model one needs to first generate initial data (aerodynamic data in our case). In
CEASIOMpy different possibilities can be used to generate aerodynamic data.

2.1.1 PyTornado (VLM)

PyTornado [14] is an implementation of the vortex lattice method (VLM). The VLM, based on potential
flow theory, is the simplest general method for 3D aerodynamic analyses of aircraft. The method requires
only a coarse definition of the aircraft geometry and the flight state. The mesh is created from the CPACS
definition during the initialisation of PyTornado.

Owing to the low number of input parameters, analyses can be set up with little effort and they are
computationally inexpensive. PyTornado is an ideal tool for conceptual aircraft design. Short computa-
tion times makes it possible to easily obtain estimates of aerodynamic loads and to benchmark different
concepts.

VLM methods also contain some drawbacks, among them: the effect of the fuselage is neglected, and
the thickness of airfoils is not taken into account. Generally the lift is well predicted by these methods,
especially for low angle of attack, however, the drag is underestimated.

In Figure 3, we can see how PyTornado can be used in a CEASIOMpy workflow. A CPACS file is
provided as input, it contains the aircraft geometry and the flight state to calculate. Then, PyTornado
calculates the aerodynamic coefficients for all the flight states and stores them in an aeroMap. Finally
the updated CPACS file can be sent to another module, in this case ’PlotAeroCoef’, which generates
automatically several plots of the aerodynamic coefficients.

Figure 3: CEASIOMpy workflow to generate an aerodynamic database with SU2

2.1.2 SU2 (Euler)

From a CPACS geometry, an unstructured tetrahedral mesh can be generated automatically with the open-
source mesh generator SUMO [15]. A CEASIOMpy module called ’CPACS2SUMO’ allows to convert a
CPACS XML geometry format into a SUMO XML geometry format. SUMO is able to mesh automatically
the aircraft by first creating a surface triangular mesh and then a volume tetrahedral mesh by using Tetgen
[16].

Configuration files are also generated automatically from the aircraft parameters and flight conditions
stored in the CPACS file. These configuration files are run automatically with the CFD solver SU2 [17].
The SU2 software suite from Stanford University is an open-source, integrated analysis and design tool
for complex, multi-disciplinary problems on unstructured computational grids. In SU2, we use the Euler
equations solver, as the mesh generated by SUMO does not contain enough cells in the boundary layer
and is not suited for Navier-Stokes equations. The drawback of this method is that the friction drag is
not taken into account and must be added later (see section 2.1.3), however it is faster than using the
Navier-Stokes equations solver both to generate the mesh and to solve the equations.

Figure 4: CEASIOMpy workflow to generate an aerodynamic database with SU2

The mesh refinement can be easily changed with the module ’SUMOAutoMesh’, with a parameter
called Refinement Level (RL). Meshes with different refinement have been created and used with SU2
to check the mesh convergence. The flight condition was AoA=0, M=0.3 @ sea level. The refinement
level used for the rest of the paper has been chosen after a convergence analysis with a trade off between
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accuracy and the available computation time to performe the calculations. In Figure 5, we can see that a
mesh with approximately 6-8 million cells gives a satisfactorily result and is used in the rest of this study.

Figure 5: Mesh convergence with CL and Cm coefficients

2.1.3 Skin friction

In both methods mentioned above the effects of the skin friction (friction drag) are neglected. In order
to get a better approximation of the total drag, in CEASIOMpy, there is the possibility to use the
’SkinFriction’ module. It allows to estimate using empirical methods [18] the drag due to skin friction.
The only input parameters required are the wing span, the wetted area and the Reynolds number. This
module can be used either after the creation of the aerodynamic database with PyTornado or SU2 or after
a surrogate model prediction if the surrogate have been trained without skin frictions.

2.2 Surrogate model

To use a surrogate model in CEASIOMpy, two new modules have been created, one to train the surrogate
model and one to predict values from an existing surrogate model, see section 2.2.2. Both modules can
be used independently from each other.

2.2.1 Training

As a start, the ’SMTrain’ module in CEASIOMpy requires a CSV file with a list of inputs and outputs,
that will serve as the model data set for training and optional validation. In the case of parameters which
can all be found in an CPACS aeroMap the CSV file does not need to be specified. The module generates
a model which is saved as a binary file, along with the information of the inputs and outputs that the
model takes.

SMT contains different surrogate modeling methods and some of them have been implemented and
are available in ’SMTrain’:

• Kriging

• Least-squares

• KPLS

• KPLSK

2.2.2 Predicting

After a surrogate model has been generated, it can be used with the ’SMUse’ module and run within any
workflow. The particularity of this module comes from the entries that the surrogate will take, which will
change depending on the model that is used. It is necessary to make a distinction here between the inputs
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and outputs of the ’SMUse’ module and the inputs and outputs of the surrogate model, which is used by
the module.

Once the surrogate has been trained, as explained in section 2.2.1, aerodynamic coefficients can be
predicted for different values of the AoA, Mach number or geometry parameter. In Section 3, we will
compare predicted values with some calculated ones and try to find which surrogate method and parameter
distribution is best suitable to predict new data with the minimum amount of computation time to train
the surrogate model.

6



3 Applications

3.1 Aerodynamic databases

3.1.1 Angle of Attack

The first test we performed with the surrogate model was to the predict aerodynamic coefficients for not
calculated Angles of Attack (AoA). To evaluate the performance, different types of surrogate models and
different number of training points were used. This first test was performed with aerodynamic data from
PyTornado using the following workflow:

Figure 6: CEASIOMpy workflow to train and use the surrogate model for AoA prediction

To test the minimum number of points required to get a satisfactory surrogate model, we trained a
simple Kriging model with different training sets (from 17 to only 3 different AoA). Then, we compared
the predicted value of the surrogate model at two other AoA (1.5 and 6.5 degrees) with values calculated
using PyTornado.

Figure 7 shows the error between the values predicted by trained surrogate model using different
number of points, and the ”real” value calculated by PyTornado. Note that the validation point used for
this test was not in the training set of points. For this simple application we can see that a surrogate
model trained with only 5 points gives an error in the prediction of the aerodynamic coefficients of less
than 0.1%, which is totally acceptable.

Figure 7: Error in prediction of Cd @AoA = 6.5◦

3.1.2 Angle of Attack and Mach number

This case is closer to our intended use of surrogate models for real life applications. That is to say, given
a few points at different AoA, Mach number and altitude, predict as accurately as possible all the points
within the domain of these input values. This could, for example, be useful to generate aerodynamic
databases for stability or mission analysis. A small number of points is used to generate the surrogate
model, and then aerodynamic coefficients can be queried across the whole domain during the analysis
without loosing time to wait for a new aerodynamic results.

For this test 25 training points have been calculated with SU2. The distribution of all the training
points can be seen on the Figure 8 and the aerodynamic coefficient obtained are shown in Figure 9. The
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surrogate model has been trained using the Kriging method, the three other implemented methods did
not give as good results.

Figure 8: Distribution of AoA and Mach number values for the training set

Once the surrogate model is trained, it becomes easy and very fast to produce aerodynamic coefficients
across the whole the domain. In Figure 10, we can see an example of aerodynamic coefficients plotted
at different Mach numbers, which were not included in the training data set. Drag coefficients show the
expected behaviour, however we can see that lift and pitch coefficients are not as linear as calculated data.
This is due to the intrinsic definition of Kriging model and the few number of training points used in this
case.

In Table 2 we can see a numerical comparison between the coefficients CL, CD, Cm predicted by
the surrogate model and the actual data computed by SU2. The differences are generally lower than 5%
but tend to increase when point are further away from the train dataset point. This problem could be
overcome by using more points (which is longer) or using the same number of point but distributed with
a different method like for example the Latin hypercube sampling method.

Mach AoA [◦] source CL CD Cm
0.35 3 SU2 0.779 0.0360 0.0190

Predicted 0.778 0.0372 0.0185
Error [%] 0.1 -3.3 2.8

0.45 -3 SU2 0.0711 0.0329 0.0806
Predicted 0.0728 0.0315 0.0794
Error [%] -2.4 4.1 1.4

0.55 -3 SU2 0.0851 0.0343 0.0804
Predicted 0.0940 0.0345 0.0770
Error [%] -10.4 -0.5 4.1

Table 2: Comparison between aerodynamic coefficients predicted by the surrogate model and
calculated using SU2

3.2 Aerodynamic database and geometry parameter

Another example of application of surrogate models in aircraft design is a case which implies the variation
of one or more geometrical parameters. The main advantage of this technique is to pre-calculate a surrogate
model from a Design of Experiment (DoE) and then to query the surrogate prediction (which is almost
instantaneously) during an optimisation process to avoid time latency to get aerodynamic results.
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Figure 9: Aerodynamic coefficients calculated by SU2 and used to train the surrogate model

In this example we used PyTornado to generate the aerodynamics database, in real life applications the
use of a surrogate model would be much more interesting when SU2 is used to generate the aerodynamic
database because calculation times with SU2 could be very long, thus the time savings will be significant.

In this case, the design variable is the angle of attack, the angle of side slip and the span of the aircraft.
A full factorial matrix with 5 values for each parameter has been used (125 in total), with the following
lower and upper bounds:

• Angle of attack: from -4 to 4 ◦

• Angle of side slip: from -5 to 5 ◦

• Wing span: from 10 to 20 m

Then, the surrogate model has been used to predict the aerodynamic coefficients for a wing span of
14m and an angle of side slip of 1 degree and the results are compared with the results of a calculation
using PyTornado. The results are shown in Figure 11, and one can observe an almost perfect prediction
of the surrogate model in this case. The surrogate model works well for this case because it has a large
number of training points.
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Figure 10: Example of predicted aerodynamic coefficients

4 Conclusions

In order to speed up the aerodynamic database creation during the conceptual aircraft design, we imple-
mented a surrogate modeling tool in CEASIOMpy. Two modules have been added to CEASIOMpy, a
surrogate modeling tool creation ’SMTrain’ and a surrogate modeling prediction tool ’SMUse’. Both can
be used with data provided by the already available aerodynamic tools PyTornado and SU2.

In this paper we showed how these tools can be used and which parameters should be chosen. Three
different applications of the surrogate model in CEASIOMpy were shown. The first one was a simple case
in which the only design variable was the angle of attack. We showed that with only five input points for
the surrogate model (SMTrain) it was possible to get very accurate results.

In the second case, two design variables were used, the Mach number and the angle of attack. The
results obtained with the surrogate model was compared to the ”true” value calculated by SU2, and
showed a reasonable agreement. But it, could still be improved by using a better sampling distribution.

The last case was a demonstration of the use of the surrogate model to predict aerodynamic coefficients
with a modification of the angle of attack, angle of side slip and aircraft wing span. It showed that
geometrical parameters can also be used to create a surrogate model, which makes this method very
efficient when it is used in an optimisation process. We also observed that a larger number of training
points leads to better predictions for complex cases.

Finally, more tests should be carried to find the best trade off between the number of training points
and the accuracy of the surrogate model for more complex cases. With more experience on the use of
these tools in CEASIOMpy, it has the potential to become a powerful tool that can be used in many
different aircraft design optimisation studies.
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Figure 11: Comparison between predicted and calculated by PyTornado aerodynamic coefficients
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