KATEDRA AWIONIKI I STEROWANIA

Tomasz Rogalski In-Flight Tests in Students Projects

EWADE & READ 2018 EWADE 2018 - 14th European Workshop on Aircraft Design Education Brno University of Technology, Czech Republic 7th to 9th November 2018

> EWADE Session 08.11.2018, 14:10 to 15:50 http://Presentations2018.AircraftDesign.org

KATEDRA AWIONIKI I STEROWANIA

Origins of Flight Tests...

Aviation, science, education, flying laboratories for inflight tests existed at Mythic Age already

KAI

KATEDRA AWIONIKI I STEROWANIA

Flying Laboratories all over the World

There are lots of flying laboratories used in science and aducation activities in the World at present

aircraft

KAI

- balloons
- rockets
- helicopters
- and many others

KATEDRA AWIONIKI I STEROWANIA

Flying Laboratories all over the World

There are lots of flying laboratories used in science and education activities in the World at present

Cranfield University

- Delft University of Technology
- Technical University of Munich
- Technical University of Pensylvania
- and many others

KATEDRA AWIONIKI I STEROWANIA

Why Do They Use Flying Laboratories?

KATEDRA AWIONIKI I STEROWANIA

What Fields Can We Use it On?

KATEDRA AWIONIKI I STEROWANIA

Where in Education Can We Use it to Conduct In-Flight Tests?

KATEDRA AWIONIKI I STEROWANIA

Scope of the Presentation

- present structure of flying laboratories
- present their development process
- answer the question: how, when, where, who developed them.

- give specific samples of usage flying laboratoriesi in flight tests in education
- present possibilities their applications
- familiarization with flying laboratories

AND

Not to

To

to down some myths

KATEDRA AWIONIKI I STEROWANIA

Some Myths Should be Downed

In-flight tests are always very expensive

KAI

Flying laboratory is always very sophisticated facility

In-flight tests require staff having extraordinary skill

There is no possibility to involve them into standard student courses

KATEDRA AWIONIKI I STEROWANIA

Let's Start from the General Structure ...

KATEDRA AWIONIKI I STEROWANIA

... and Proceed to Details

KATEDRA AWIONIKI I STEROWANIA

Optionally Piloted Vehicle

• MTOW 495kg

- Max. Airspeed (Vne) 270 km/h
- Min. Speed 65 km/h
- 2 seats

KATEDRA AWIONIKI I STEROWANIA

Optionally Piloted Vehicle

Research and education

KAI

- flight tests of control laws for ultralight aircraft
- tests of heavier onboard equipment
- activities for 4 students at the same time two person on board the aircraft and two persons in the car (ground station)
- relatively low operating costs

Limits

only two students on board

KATEDRA AWIONIKI I STEROWANIA

Optionally Piloted Vehicle – Diploma Project

Title	 Aircraft handling qualities assesment in selected flight phases 		
Author	 student of Aviation Faculty 		
Objectives	 in-flight test maneuvers preparation In-flight experiments and data analyzes 		
Content	 Handling characteristic during typical flight phases (horizontal flight, coordinated turn). Static and dynamic stability tests. Aircraft characteristics during landing at different configurations. 		

KATEDRA AWIONIKI I STEROWANIA

Optionally Piloted Vehicle – Diploma Project

Longituidal Stability Tests

KATEDRA AWIONIKI I STEROWANIA

General Aviation Plane

Piper Seneca V

KAIS

- MTOW: 2155 kg
- Never exceed speed: 378 km/h

6 seats

KATEDRA AWIONIKI I STEROWANIA

General Aviation Plane

Research and education

- flight tests of control laws for general aviation planes
- tests of heavier onboard equipment
- activities for small group of students six persons on board the aircraft

Limits

KAI

- the higher operating cost
- MEP(L) pilots rate required

KATEDRA AWIONIKI I STEROWANIA

General Aviation Plane – Diploma Project

Title	Investigation of general aviation aircraft performances		
Author	student of Aviation Faculty		
Objectives	 in-flight test maneuvers preparation In-flight experiments and data analyzes 		
Content	 Max speed at horizontal flight investigation Climb rate investigation Stall speed investigation. 		

KATEDRA AWIONIKI I STEROWANIA

General Aviation Plane – Diploma Project

Climb Rate Tests

	Pomiar co 30 sek.	Pomiar w odstępach 1-minutowych, lewy i prawy silnik		awy silnik	
Czas	Wysokość	Obroty	Ciśnienie	Temperatura na	Temperatura
		silnika	ladowania	wlocie silnika	otoczenia
min.	€t.	RPM	in. Hg	°F	°F
0	2000	2500	32	1311	32
	5000	2500	32	1283	32
¹ / ₂	3540				
1	1000	2495	32	1301	26.6
	4000	2500	31.5	1280	20.0
$1 \frac{1}{2}$	4620				
2	5090	2500	31.5	1278	24.8
	5080	2500	31.5	1264	
$2^{1}/_{2}$	5520				
3	6000	2495	31.5	1271	24.9
		2505	32	1261	24.8
$3\frac{1}{2}$	6520				
4	6980	2500	315	1266	24.9
		2510	32	1258	24.0
$4^{1}/_{2}$	7440				
5	7900	2505	31.5	1264	21.2
		2510	32	1254	21.2
5 ¹ / ₂	8360				
6	8860	2505	31.5	1263	10.4
		2510	32	1251	17.4
6 ¹ / ₂	9040				

KAIS

Original recorded data

KATEDRA AWIONIKI I STEROWANIA

Gliders

Gliders

• MTOW: about 500 kg

- Never exceed speed above 200 km/h
- 1 or 2 seats

KATEDRA AWIONIKI I STEROWANIA

Gliders

Research and education

- flight characteristics investigation
- portable devices tests

KAIS

· low operational costs - cheap in use

Limits

- only one student on board
- non complex devices applied

. Symbols pointing airbrakes positions (PW-6)

KATEDRA AWIONIKI I STEROWANIA

Gliders – Diploma Project

Title	Investigation of airbrakes efficiency		
Author	 student of Aviation Faculty 		
Objectives	 Investigation of airbrakes eficiency In-flight experiments and data analyzes 		
Content	 Investigation of airbrakes efficiency during flight at different airspeeds Tests done for different types of gliders Reports about test flights 		

KATEDRA AWIONIKI I STEROWANIA

Gliders – Diploma Project

Title	 Investigation of G-force during glider aerobatic flight. 		
Author	student of Aviation Faculty		
Objectives	 Investigation of G-force magnitude In-flight experiments and data analyzes 		
Content	 Problem statement Equipment development In-flight tests done Reports about test flights preparation 		

KAIS WYDZIAŁ BUDDWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA UL. POWSTANCÓW W-WY B 35-959 RZESZÓW KATEDRA AWIONIKI I STEROWANIA Gliders – Diploma Project

Results of Flight Tests

KATEDRA AWIONIKI I STEROWANIA

Non Complex RPAS Sets

KATEDRA AWIONIKI I STEROWANIA

Non Complex RPAS Sets

KATEDRA AWIONIKI I STEROWANIA

Non Complex RPAS Sets

Research and education

- flight tests of control laws for small unmanned aerial vehicles
- identification and verification of a mathematical model of small flying constructions
- tests of small onboard equipment
- flight tests of remotely piloted systems in high-risk situations
- activities for big group of students
- training operators of unmanned aerial vehicles
- very low operating costs

Limits

KAI

- strong dependency on weather conditions
- too little space for additional equipment

KATEDRA AWIONIKI I STEROWANIA

Non Complex RPAS Sets - Regular Lessons

KAIS

Courses:

- aircraft control systems
- flight recorders and data analyses
- aviation radio systems
- In-flight tests
- aerodynamics

KATEDRA AWIONIKI I STEROWANIA

Conclusion

29

For these reasons flying labs are welcome solutions

