
CMDOWS: A Proposed New Standard To Store And Exchange MDO Systems

Imco van Gent
Faculty of Aerospace Engineering, Delft University of Technology

Ph.D. Student
Kluyverweg 1, 2629 HS, Delft, The Netherlands

Gianfranco La Rocca
Faculty of Aerospace Engineering, Delft University of Technology

Assistant Professor

Maurice F. M. Hoogreef
Faculty of Aerospace Engineering, Delft University of Technology

Postdoc Researcher

ABSTRACT

This paper proposes a new format to store and exchange multidisciplinary design optimization (MDO) sys-
tems. Here, the generic term MDO system refers to the organized set of disciplinary tools, and their ex-
changed data and the process connections that, all together, define an MDO computational setup. In the
process leading to the formal specification of such a computational system, i.e. starting from a repository of
disciplinary tools, down to the specification of the actual optimization problem and finally to the implementa-
tion of a specific MDO architecture, the aforementioned set of tools, data and connections evolves, until the
complete MDO system formulation (thus not yet executable) is reached. The proposed new standard, called
CMDOWS (Common MDO Workflow Schema), has been developed to enable this process by providing a
means to store and exchange any MDO system and its associated information in a neutral format. Further-
more, CMDOWS provides the starting point to translate any MDO system formulation into an executable
computational workflow, by means of a Process Integration and Design Optimization (PIDO) tool of choice.
To the authors’ knowledge, such an exchange format does currently not exist, notwithstanding the enormous
potential it would have for the exploitation of large-scale MDO in industry. CMDOWS is one of the outcomes
of the EU project AGILE, where one of the main goals is to reduce the development time of distributed MDO
workflows created by large and heterogeneous teams of experts. CMDOWS is an XML schema (XSD) that,
in its set-up and structure, shows similarities with the Common Parametric Aircraft Configuration Schema
(CPACS) developed by the German Aerospace Center (DLR), which is becoming a de-facto standard to store
and exchange aircraft design and performance data. Whereas CPACS allows the user to store aircraft data in
a standard format, CMDOWS enables the storing the specification of a full system of multidisciplinary tools,
including the data and process links between its various operating blocks (e.g. disciplinary tools, objective
and constraint functions, optimizers, convergers, etc.). The key aspect of this proposed format for MDO sys-
tems is its neutral XML-based data representation, which is both human-readable and machine-interpretable,
making any stored MDO system exchangeable between the design team members and the applications de-
veloped to support the team in setting up the MDO system. The latter form of exchangeability is a key
enabler for the creation of a versatile MDO framework that includes applications such as tool repositories,
MDO system formulation platforms, visualization packages, and collaborative workflow execution platforms.
The CMDOWS definition is available, including examples, through a publicly available software repository.
Although the schema is under continuous development within the AGILE project, a case study demonstrating
the use of CMDOWS version 0.7 in the AGILE MDO framework is presented in this paper. Based on this
case study, it can be concluded that the current version of CMDOWS already provides a robust standard to
exchange MDO systems between MDO framework applications. The schema will be extended to meet future
developments and promote its adoption as a recognized standard in the broader MDO community.

KEYWORDS: MDO, CMDOWS, standard format, workflow schema, XML, MDO framework

CEAS 2017 paper no. 969
CMDOWS: A Proposed New Standard To Store And Exchange MDO Systems

Page | 1
Copyright c© 2017 by author(s)

NOMENCLATURE

AGILE: Aircraft 3rd Generation MDO for In-
novative Collaboration of Heteroge-
neous Teams of Experts

CMDOWS: Common MDO Workflow Schema
CPACS: Common Parametric Aircraft Configu-

ration Schema
DLR: German Aerospace Center
DSM: Design Structure Matrix
DUT: Delft University of Technology
IDEaliSM: Integrated & Distributed Engineering

Services framework for MDO
KADMOS: Knowledge and graph-based Agile

Design for Multidisciplinary Optimiza-
tion System

InFoRMA: Integration, Formalization and Rec-
ommendation of MDO Architectures

MDO: Multidisciplinary Design Optimization
MDF: MultiDisciplinary Feasible
NLR: Netherlands Aerospace Centre
PIDO: Process Integration and Design Opti-

mization
RCE: Remote Component Environment
SMR: Surrogate Model Repository
UID: Unique IDentifier
VISTOMS: VISualization TOol for MDO Systems
XDSM: eXtended Design Structure Matrix
XML: eXtensible Markup Language
XSD: XML Schema Definition

1. INTRODUCTION

Multidisciplinary Design Optimization (MDO) is a design methodology aimed at capturing and exploiting dis-
ciplinary interactions to improve multidisciplinary designs by using special mathematical formulations and
computational structures. Within the aeronautic community, MDO is considered an extremely high potential
discipline, both for improving the performance of current aircraft designs and supporting the development
of future configurations. However, so far, MDO has primarily been demonstrated in literature on academic
problems [1–5], while both technical and non-technical barriers [6–10] have limited its adoption by design
engineers in industry.
The transformation of MDO from a high-potential discipline into a widespread commodity design method in
an industrial setting entails a paradigm shift to which it can be hard to adapt, especially when this would affect
the modus operandi of large and heterogeneous design teams. Whereas most of the current design meth-
ods allow the autonomous analysis of different disciplines (by manually updating values coming from other
disciplines), MDO requires the different disciplines to be coupled together in one automated multidisciplinary
analysis chain [11]. It is the creation and management of this automated chain, going outside (and often off-
sight) the conventional boundaries of discipline competence, that forms a big hurdle in the application of MDO
in a collaborative environment. In a survey [12] of their collaborative MDO projects over the past decade, the
German Aerospace Center (DLR) found that around 60-80% of the project was generally used to set up the
automated chain, which did not include any optimization yet. Several other literature sources [11,13] confirm
that the so-called formulation phase is consuming the most project resources and is the most complex to
handle, rather than the actual execution of the numerical optimization. The main stages within the formula-
tion and execution phases of a typical MDO project are summarized in Fig. 1, which will be used throughout
this paper to provide context to the addressed research developments.

Tool
repository

MDO
problem

MDO solution
strategy

Collaborative
work�ow

MDOptimized
design

triggers
iteration

Formulation phase Execution phase

Figure 1: Different stages of the MDO system in a typical MDO project. In the formulation phase (left) the
system is specified by going from a repository of tools to a strategy to solve the MDO problem. The execution
phase (right) contains the executable instance of the formulated solution strategy and its result. Usually, the
found optimal design triggers an iteration which requires an adjustment of the MDO system at one of the
earlier steps to further improve the design.

CEAS 2017 paper no. 969
I. van Gent, G. La Rocca, M.F.M. Hoogreef

Page | 2
Copyright c© 2017 by author(s)

One of the most interesting outcomes from a survey of recent MDO literature is that, despite the critical hurdle
provided by the formulation phase of an MDO system, most of the research seems rather concerned with the
execution phase of the MDO system development process. Plenty of literature is also available assessing
the benefit of the MDO methodology in different application areas, ranging from aircraft design [14–17] to
spacecraft design [18,19] and the design of wind turbines [20–22].
Many recent publications are also available on new optimization algorithms and in particular on the develop-
ment of advanced computation infrastructures to exploit distributed computing power, e.g. cloud computing.
A limited amount of recent developments relevant to the formulation phase of MDO systems can be found in
literature. These include the derivation of new MDO architectures, such as [23, 24], that are not included in
the exhaustive overview published by Martins and Lambe [25]. On the other hand, it is peculiar to observe
that no new developments can be found in any of the commercial process integration and design optimization
(PIDO) platforms (the commodity tools for the execution of MDO workflows), for what concerns their capa-
bility to support users in the formulation of MDO problems. As identified by Hoogreef [26], there is no PIDO
system that is able to advice or support in the selection of an appropriate MDO architecture for the problem
at hand, the problem formulation according to this architecture, nor in the automatic integration of executable
MDO workflows according to a given MDO architecture.
A limited amount of literature has been found on specific research to support the formulation of MDO problems
and their reconfiguration according to different architectures. Some dedicated languages and grammar have
been proposed such as REMS by Alexandrov & Lewis [27, 28] and Ψ by Tosserams [29]. Additionally, a few
frameworks exist that support the modelling process of MDO architectures, such as πMDO by Marriage [30]
and the more recent and popular open-source suite OpenMDAOa.
The outcome of this investigation on recent research developments and state-of-the-art tools to support the
development of MDO systems is summarized in Fig. 2. It can be concluded that nothing is available to support
the automatic execution (but not even some form of smooth integration) of all the stages specified in Fig. 1.
As a consequence, a significant amount of manual, error-prone, time-consuming and repetitive work is left to
MDO specialists and system integrators to set up a working MDO system, with the consequences discussed
at the beginning of this section.

Tool
repository

MDO
problem

Formulation phase

MDO solution
strategy

Collaborative
workflow

MDOptimized
design

Execution phaseStages of the
MDO system in
a typical MDO
project

Mainstream
research topics

State-of-the-art
solutions for
supporting MDO
system
development

Standard product
data model format
to enable multi-
disciplinary tool
interoperability
(e.g. CPACS)

Design languages and grammars for
MDO problem formulation New optimization

algorithms
Distributed and
cloud computing

New MDO
architectures

•

•

PIDO tools with
distributed
computing capa-
bilities
CAD and KBE
tools to enable
generative design

•

•

Increasing appli-
cation areas:
•
•
•
•

Aeronautics
Space
Automotive
Wind energy

•
•
•
•

πMDO
Ψ
REMS
OpenMDAO

Figure 2: Mapping of the mainstream research topics and state-of-the-art solutions in the field of MDO on the
MDO system development process in Fig. 1

1.1. New initiatives to support the development of MDO systems

DUT is currently involved in two international research projects that aim at supporting the development of
MDO systems by strongly reducing their set-up time. One is the EU-funded project AGILEb (Aircraft 3rd Gen-
eration MDO for Innovative Collaboration of Heterogeneous Teams of Experts), where one of the main goals
is to reduce by 40% the formulation phase of large collaborative MDO systems for aircraft design. Similar ob-
jectives are being pursued within the ITEA project IDEaliSMc (Integrated & Distributed Engineering Services

aNASA Glenn Research Center - OpenMDAO, http://openmdao.org, Accessed on 11 July 2017
bSee: http://www.agile-project.eu for more information
cSee: https://itea3.org/project/idealism.html

CEAS 2017 paper no. 969
CMDOWS: A Proposed New Standard To Store And Exchange MDO Systems

Page | 3
Copyright c© 2017 by author(s)

framework for MDO), where partners, from both the aeronautic and automotive supply chain, are develop-
ing tools and methods to enable the integration of distributed and collaborative MDO frameworks. In both
projects, MDO support frameworks are being developed, which include various and different applications,
that can be grouped according to the following five categories:

Tool repositories A tool repository is a database that contains the definitions of a collection of design and
analysis tools which can be made available to the design team to perform MDO. The repository does not
necessarily contain the tools themselves, as the sharing of the tool might be prohibited by intellectual
property restrictions. In that case, a repository contains the specification of the (interlinked) inputs
and outputs of the tools and the way in which each tool can be (remotely) executed. In AGILE, a
very convenient approach to assemble large tool repositories, also with tools with many inputs and/or
outputs, has been devised based on the use of a central data schema to which each tool input and
output is interlinked. Being the focus of AGILE on aircraft design, the DLR standard data model for
aircraft CPACS [31] has been adopted as central data schema. Using this approach, multiple tool
repositories (e.g. a repository containing disciplinary analysis tools and a second repository containing
surrogate models) can be combined in a single workflow schema file (so-called repository connectivity
graph; details later in this paper), as long as the interlinking is valid. Remote execution of the tools is
supported by the collaborative architecture developed in AGILE. [32]

MDO system formulation applications The platforms InFoRMA (Integration, Formalization and Recom-
mendation of MDO Architectures) [26] and KADMOS (Knowledge- and graph-based Agile Design for
Multidisciplinary Optimization System) [33], both developed by DUT within the IDEaliSM and AGILE
projects respectively, provide two innovative approaches to address the aforementioned challenges of
automatic MDO architecture (re)configuration and integration into PIDO software, based on the specifi-
cation of the general MDO problem definition. Although the implementation and backbone technologies
differ drastically for both platforms (KADMOS is Python-based and uses the NetworkX graph package,
while InFoRMA is Java-based and uses semantic web technologies), they both use essentially the
same construct to represent an MDO system throughout the formulation phase: graphs. [13,34] Earlier
work [26, 35] in IDEaliSM has shown that the use of an MDO system formulation platform, such as
InFoRMA, can result in a significant set-up time reduction, even larger than 90%.

Visualization packages The visualization of large MDO systems can be challenging, but is crucial to share
and discuss the design developments within the heterogeneous team of experts. A visualization pack-
age to inspect and communicate the workflow schema files produced by the MDO system formulation
applications described above can also contribute to decreasing the set-up time [37] and definitely in-
creases the trust of the design team in the large, complex automated analysis chain that is being built.
Many different forms of visualizations suitable to MDO developments exist, as discussed by Aigner et
al. [36], including, for example the well-known XDSM (Extended Design Structure Matrix). Although
both KADMOS and InFoRMA provide some static MDO visualization capabilities, in AGILE a dedicated
web-based visualization tool, called VISTOMS has been developed, which can provide various dynamic
and scalable visualizations [36] via web pages.

Collaborative workflows These workflows are the top-level executable instances of the MDO solution strat-
egy produced during the MDO system formulation phase (Fig. 1). The term collaborative is used to
express the fact these workflows combine different disciplinary subworkflows from the tool repository,
which are owned by different disciplinary experts (or teams), into one optimization workflow. The com-
bination of such subworkflows can be very challenging, especially when the disciplinary teams are
distributed either geographically, digitally (i.e. subworkflows running on different server domains), or
both. Two main PIDO tools are used in AGILE and IDEaliSM to assemble the executable MDO work-
flows: Optimus by Noesis Solutionsd and the Remote Component Environment (RCE)e by DLR [37].
Both platforms have been specifically augmented in these projects to enable the automatic genera-
tion of executable workflows based on the MDO solution strategy graph produced by KADMOS and
InFoRMA [26, 38]. Within AGILE the interoperability of cross-organizational tools (with access restric-
tions due to IP) in the same executable workflow is supported by the NLR tool BRICS [39].

Schema operations library This category contains the collection of useful methods to inspect, check, or
analyze the workflow schema file produced by the MDO system formulation applications. It contains
functions to check files for their validity (e.g. with respect to the schema definition), to determine key

dSee: https://www.noesissolutions.com/our-products/optimus
eSee: http://rcenvironment.de

CEAS 2017 paper no. 969
I. van Gent, G. La Rocca, M.F.M. Hoogreef

Page | 4
Copyright c© 2017 by author(s)

values (e.g. number of tools, number of parameters), and to edit instances of the schema file (e.g. by
removing or adding tools and parameters). In AGILE most of these libraries are provided by KADMOS
and they are equivalent to some of the functions in the TiXIf and TiGLg libraries used to inspect and
adjust CPACS files.

All the new developments discussed so far are summarized in Fig. 3, where, similarly to Fig. 2, each one of
the presented MDO support framework applications is positioned with respect to the five main stages of the
MDO system development process presented in Fig. 1.

Tool
repository

MDO
problem

Formulation phase

MDO solution
strategy

Collaborative
workflow

MDOptimized
design

Execution phaseStages of the
MDO system in
a typical MDO
project

AGILE and
IDEaliSM
research areas

Project
solutions for
supporting
MDO system
development

Engineering
(tool)
library

CPACS-based
multidisciplinary
tool repository

Solutions for the automatic formulation, integration and execution of
complex and distributed MDO systems

PIDO tools
with

“scriptable”
workflow
definition

Application areas:
•

•
•

Conventional &
novel aircraft
Aircraft systems
Automotive
systems

InFoRMA: semantic web
technologies-based tool to

advice, formalize and
integrate MDO architectures

KADMOS: graph manipulation-
based tool to formulate and

integrate collaborative
MDO systems

•

•

PIDO tools with
automatic
workflow defini-
tion based on a
standard ex-
change format

BRICS tool to
support cross-
organizational
tool interopera-
bility

I
D
E
a
l
i
S
M

A
G
I
L
E

VISTOMS: visualization package to support debugging and
information sharing or complex MDO system formulations

KE-chain: platform for overall MDO system development
process integration

CMDOWS: standard exchange format to store and
exchange MDO systemsCMDOWS

CMDOWS CMDOWS

CMDOWS

CMDOWS

Figure 3: Mapping of the research activities within the projects AGILE and IDEaliSM on the MDO system
development process in Fig. 1

1.2. Origins of CMDOWS: why a standard to store and exchange MDO systems?

In the early phases of the AGILE and IDEaliSM project, the various applications used to support the devel-
opment of an MDO system (from the five categories discussed in the previous section), were coupled in the
way illustrated in Fig. 4a. Indeed most of the applications had to communicate directly with each other, with
obvious problems of flexibility and maintainability of the overall MDO support framework, due to the many
ad-hoc interfaces. Besides, it was realized that the benefits (in terms of overall MDO system set-up time
reduction) of the vendor-neutral graph-based representations of the MDO workflows produced by KADMOS
and InFoRMA were limited without the possibility to automatically generate the executable workflows using a
PIDO tool of choice. Also, the investment in the development of the visualization packages would not have
been worth it for one specific MDO system formulation tool. On the other hand, the ad-hoc development of
visualization capabilities both inside InFoRMA and KADMOS was also not feasible within the project time
frame.
Eventually, also on the basis of the evident benefit provided by the CPACS-based central data repository,
the authors developed the conviction that a dedicated standard format to define, store and exchange MDO

fhttps://software.dlr.de/p/tixi/home
ghttps://software.dlr.de/p/tigl/home

CEAS 2017 paper no. 969
CMDOWS: A Proposed New Standard To Store And Exchange MDO Systems

Page | 5
Copyright c© 2017 by author(s)

Tool
repository

Visualization
package

Collabora-
tive

workflow

MDO
system

formulation

(a) Direct coupling approach

work�ow
schema

Tool
repository

Visualization
package

Collabora-
tive

workflow

MDO
system

formulation

Schema
operations

library

(b) Central workflow schema approach

Figure 4: Links between the MDO system formulation platform and other MDO framework categories with
two different approaches

systems would provide a key enabler for the automation of the entire formulation and execution phase of any
large collaborative MDO system.
The need of such an exchange format was first advocated within IDEaliSM to facilitate the translation of the
MDO system formalization generated by InFoRMA into executable workflows in Optimus. To this purpose a
prototype neutral format was defined by Hoogreef [26]. However, it is in AGILE that the full development of a
neutral format for storage and exchange of MDO systems is taking place. The result is the CMDOWS format,
which stands for Common MDO Workflow Schema and is the main subject of this paper (see also Fig. 3,
bottom).
Thanks to the definition of CMDOWS, the current of the MDO support framework being developed in AGILE
has changed from what is shown in Fig. 4a to the new flexible structure shown in Fig. 4b. The graph-based
files generated by KADMOS can be stored first as CMDOWS files and then translated into executable work-
flows by any PIDO tool able to interpret such standard. With the same level of flexibility, the interconnected
tool repositories introduced above can be translated into CMDOWS files, which can then be adjusted and en-
riched by KADMOS, in order to produce MDO problem graphs (storable again using the CMDOWS standard)
and finally MDO solution strategy graphs based on given architectures (again storable using CMDOWS).
Eventually, the visualization package, rather than accessing the different internal data structures of KADMOS
and InFoRMA, can read and visualize their produced CMDOWS files and help inspecting and monitoring the
state of the MDO system during the three stages of the formulation phase.
The five support application categories depicted in Fig. 4b can have bidirectional links to the workflow
schema, however, for all of them a primary and a secondary link direction can be identifiedh, as is illustrated
in Fig. 5. For example, the visualization package has the primary link of being able to open any workflow
schema file and depict the visualizations. A secondary link would be in place, if the visualization package
would offer users also the possibility to manually edit the visualized CMDOWS file. Generally, the primary link
is the one that is most directly useful and, most of the time, also easiest to develop for the category at hand.

1.3. Structure of this paper

This paper is structured as follows: the proposed schema is described in full detail starting from the list of
functional requirements in Section 2. A CMDOWS files generated for a classic MDO benchmark problem
is used as example to illustrate the main branches of the schema. The capability of the proposed schema
to support the full development of a complex collaborative MDO system are demonstrated in Section 3.
This case study reaches from the tool repository definition to the generation of executable workflows for two
different PIDO tools based on CMDOWS, involving the aerostructural optimization of an aircraft wing using
the AGILE MDO framework. Finally, the main conclusions and an outlook on future developments are given
in Section 4.

hN.B. This ordering of the links can be considered subjective and here the ordering is done based on the perspective of the MDO
system integrator.

CEAS 2017 paper no. 969
I. van Gent, G. La Rocca, M.F.M. Hoogreef

Page | 6
Copyright c© 2017 by author(s)

work�ow
schema

Tool
repository

Visualization
package

Collabora-
tive

workflow

MDO
system

formulation

Schema
operations

library

primary link

secondary link

 export
 �le of
 repository

import
�le

 export �le of
 MDO problem
and solution strategy

export schema
 �le of any work�ow

parse
�le with
MDO solu-
tion strategyread / write

�le

 visualize
 �le contents

adjust �le contents
 (GUI)

Figure 5: Primary and secondary links between the workflow schema and the MDO framework application
categories

2. CMDOWS

In this section the full CMDOWS definition is described starting from the functional requirements.

2.1. CMDOWS functional requirements

The proposed schema is based on the following nine main functional requirements:

I. Machine-interpretable The format in which the MDO system is stored should be machine-interpretable
up to the finest level of detail.

II. Human-readable Human-readability should be supported in two forms. First of all, the format of the
schema should support human-readability of file instances, though, for large files, this would be limited
to basic inspections of the file contents and top-level correctness. Secondly, the schema and its stored
information should be easily understandable by users and developers with a background in design
engineering or computer science. This level of human-readability is important to enable the use of the
schema by a wider community and to make connecting new MDO framework applications easy.

III. Neutral The schema should not contain elements that are specific to any project, MDO framework
application, or developed product. However, the schema should accommodate the storage of any such
additional information at specific locations to meet practical issues of certain projects, applications, or
products, thereby allowing project-specific additions to the schema file at the dedicated file locations.

IV. Validation File instances that are based on CMDOWS, should be easily validated against the schema
definition.

V. Adaptable From one version release to another, the schema should always be flexible enough to
provide room for extensions and enrichment, while at the same time its basic structure should not
change too drastically to keep any existing framework application links easily (with a small developing
effort) compliant with the release of each new version.

VI. Balance of redundant information Data representation in the schema should aim at minimum re-
dundancy, however, in special cases this redundancy guideline can be violated for convenience (i.e. to
facilitate the link with certain applications that lack the capability to automatically derive the required
input based of the information stored in the format). Such redundancies bring the risk of generating

CEAS 2017 paper no. 969
CMDOWS: A Proposed New Standard To Store And Exchange MDO Systems

Page | 7
Copyright c© 2017 by author(s)

inconsistencies in file instances and therefore a balance should be found between information that can
be implicitly and explicitly stored in the file.

VII. Support all MDO system stages The schema should support the storage of the MDO system in the
three different stages of the formulation phase indicated in Fig. 1.

VIII. Support all MDO framework categories The schema should accommodate all information that is
required to enable the links with the five different MDO framework application categories depicted in
Fig. 5.

IX. Support tool heterogeneity A broad range of analysis tools from the tool repository, including their ex-
ecution methods, should be stored in the schema, such as simple mathematical expressions, remotely
executed ‘black boxes’, and surrogate models.

With the requirements listed above in mind the CMDOWS version 0.7 has been completed and tested for a
realistic aircraft MDO case.

2.2. CMDOWS definition

header

problemDefinition

executableBlocks

parameters <...>

architectureElements

workflow

Nodes

Connections

Information

Figure 6: Top-level elements of CM-
DOWS and the three main element
categories

The extensible markup language (XML)i has been selected as the
syntax to store the schema definition. This definition is stored using
the XML Schema Definition (XSD)j format and this XSD definition
of CMDOWS can be used to validate any CMDOWS XML instance,
thereby meeting requirement IV (req-IV) on validation in Section 2.1.
XSD also meets req-I and req-II stated in Section 2.1, as it is both
human-readable and provides machine-interpretability. In addition,
the XML format is independent of the programming language used.
Many programming languages actually include advanced modules to
work with the XML format, thereby supporting the human-readability
requirement in the sense that many users can easily familiarize
themselves with CMDOWS within their preferred programming en-
vironment. Another argument for the use of XML is the recent adop-
tion of the XML-based CPACS in the MDO community, meaning that
many people are already familiar with the use of XML as a sharable
storage format.
The CMDOWS definition (see Fig. 6) is structured in six top-level
elements, grouped in three basic categories:

• Information

• Nodes

• Connections

This categorization is based on the assumption that any MDO system can be modeled as a graph, as was
discussed in Section 1.1. Graph objects are built up from nodes and the connections between them (also
referred to as edges). In the elements of the information category additional information about the graphs is
stored. Each category will be discussed in a separate section.k

An important concept that is used at different locations in the schema is the separation between parameters
and executable blocks. Any node element describing a tool repository, MDO problem, or MDO solution strat-
egy (see Fig. 1) will fall under one of these two groups. The parameters group refers to all the elements inside
an MDO system that are assigned a certain value. Parameters are the inputs and/or outputs of the executable
blocks, such as the actual optimization parameters (whose values remain constant during optimization) and
the design variables (including both actual design variables and the copy or surrogate variables introduced by
different MDO strategies). The executable blocks are defined as elements that take certain inputs, perform
an operation, and finally produce certain outputs. Since the distinction between parameters and executable
blocks is a key aspect, the element names parameters and executableBlocks appear at different levels of
the schema.

iSee: https://www.w3schools.com/xml/default.asp
jSee: https://www.w3schools.com/xml/schema_intro.asp

kN.B. For brevity, the description in this paper is limited to the top-level elements of the schema up to level 4 (when the root element
is considered to be at level 0), but the full schema, which has elements up to level 7, can be inspected at the open-source repository,
see: http://cmdows-repo.agile-project.eu.

CEAS 2017 paper no. 969
I. van Gent, G. La Rocca, M.F.M. Hoogreef

Page | 8
Copyright c© 2017 by author(s)

2.2.1. Top-level elements

The six top-level elements from Fig. 6 are discussed in more detail in this section.

Elements in the information category

The information elements of CMDOWS are header and problemDefinition. Lower level elements of the
information elements are shown in Fig. 7. The header element contains metadata relative to the CMDOWS
file itself, such as the creator, a description, the schema version used, etc.
The definition of the MDO problem to be solved can be stored in the problemDefinition element. This
element can get a unique identifier (UID) assigned as an attribute (indicated with the @ sign in Fig. 7) so that
it can be referred to in other parts of the schema. The other two main elements of the problem definition are
problemRoles and problemFormulation. In the problemRoles branch all the special parameters of the
MDO system get their roles assigned, such as design, objective, constraint, or state variable, including certain
parameter settings for the problem at hand (i.e. upper and lower bounds, constraint types). All executable
blocks also get a problem role, based on their connections with other blocks and their position with respect to
the design variables, see preDesvarsBlocks and postDesvarsBlocks in Fig. 7. The second branch of the
problem definition is the problemFormulation, where the specification of the MDO architecture that should
be imposed on the MDO problem and the logical order of the executable blocks are stored. This logical
order is required to determine (among others) the feedback between different blocks and can also be used
to automatically determine problem roles of the executable blocks.

Information

header

creator

description

timestamp

fileVersion

cmdowsVersion

updates <...>

problemDefinition

@uID

problemRoles

parameters

designVariables <...>

designVariable

parameterUID

lowerBound

upperBound

nominalValue

...

objectiveVariables <...>

constraintVariables <...>

constraintVariable

parameterUID

constraintType

constraintOperator

referenceValue

requiredEqualityPrecision

stateVariables <...>

executableBlocks

preCouplingBlocks <...>

coupledBlocks <...>

postCouplingBlocks <...>

preDesvarsBlocks <...>

postDesvarsBlocks <...>

problemFormulation

mdaoArchitecture

convergerType

doeSettings

executableBlocksOrder <...>

...

Figure 7: Elements in the CMDOWS category Information

CEAS 2017 paper no. 969
CMDOWS: A Proposed New Standard To Store And Exchange MDO Systems

Page | 9
Copyright c© 2017 by author(s)

Elements in the nodes category

Nodes

executableBlocks

mathematicalFunctions <...> mathematicalFunction

designCompetences <...> designCompetence

parameters <...>

parameter

@uID

label

note

description

unit

dataType

architectureElements

parameters

instances <...>

initialGuessCouplingVariables <...>

finalCouplingVariables <...>

couplingCopyVariables <...>

initialGuessDesignVariables <...>

finalDesignVariables <...>

finalOutputVariables <...>

consistencyConstraintVariables <...>

doeInputSampleLists <...>

doeOutputSampleLists <...>

executableBlocks

coordinators <...>

optimizers <...>

convergers <...>

does <...>

consistencyConstraintFunctions <...>

preCouplingAnalyses <...>

preIteratorAnalyses <...>

postIteratorAnalyses <...>

coupledAnalyses <...>

postCouplingAnalyses <...>

...

Figure 8: Elements in the CMDOWS category Nodes

The node elements all represent either parameters
or executable blocks and are separated into three
subelements: executableBlocks, parameters,
and architectureElements. Their subelements
are depicted in Fig. 8. The executableBlocks el-
ement contains the function blocks that are stored
in the tool repository. Two main types of executable
blocks can be stored inside this element: mathemat-
ical functions and design competences. The math-
ematical functions are simply executable blocks that
evaluate analytic expressions to determine the value
of the outputs. These expressions can be stored
directly in the mathematicalFunction element,
thereby storing the full definition of that executable
block. Hence, the actual operation performed by
the block is stored for mathematical functions. Con-
trary to this, design competences represent more
complex executable blocks where the operation per-
formed by the block is unknown (or at least can-
not be stored as simple mathematical expressions).
The designCompetence element therefore stores a
block that performs an unknown operation (it acts as
a so-called ‘black box’). Instead of storing the op-
eration itself, the schema of the designCompetence
element can accommodate a range of specifications
for executing the tool. For example, a design compe-
tence can be an integrated analysis tool on the local
system, a remotely called execution using a special
server integration, a surrogate model, or any other
form of computational module present in a collabo-
rative workflow.
The second node element is the parameters ele-
ment. This element contains all the inputs and out-
puts of the executable blocks stored in the main
executableBlocks element. If the executable
blocks are integrated using a central data schema
approach (i.e. CPACS), then the parameters ele-
ment will contain all the unique elements that are used from that data schema as separate parameters.
Additional information about the parameters can also be stored, such as a label, description, unit, and data
type (real, float, list, etc.).
The last node element is architectureElements. This element includes both parameters and executable-
Blocks. The parameters stored here differ from those stored in the top-level parameters element because
they are the additional elements created when an MDO architecture is imposed on a specified MDO problem.
These additional parameter elements can be initial guesses of design variables, final values of the objective
and constraints, etc. (see Fig. 8 for the full list). Similarly, the executable blocks stored here are also additional
elements such as optimizers, convergers, and consistency constraint functions that need to be added when
an MDO architecture is imposed. In addition, the original executable blocks are also grouped into different
types of analyses by referring to their UID. This categorization can, for example, be used for assigning colors
in the visualization of the CMDOWS file or when parsing the file to create an executable workflow.

CEAS 2017 paper no. 969
I. van Gent, G. La Rocca, M.F.M. Hoogreef

Page | 10
Copyright c© 2017 by author(s)

Elements in the connections category

Connections

workflow

problemDefinitionUID

dataGraph

name

edges <...>

metadata

processGraph

name

edges <...>

nodes <...>

metadata

...

Figure 9: Elements in the CM-
DOWS category Connections

CMDOWS contains a single element for storing the connections:
workflow. In this element two different types of graphs can be stored:
data graphs and process graphs. The combination of these two graphs
constitutes the neutral definition of a workflow that needs to be executed
to solve an MDO problem: the MDO solution strategy. The dataGraph
element contains a data graph by storing the connections (or edges) be-
tween parameters and executable blocks of the node elements from Fig. 8
according to their input/output relations. This data graph can be stored for
any stage of the MDO system in Fig. 1. The processGraph element is
only used for the MDO solution strategy to store the process steps for run-
ning the different executable blocks. Metadata about the graphs can also
be stored, such as the amount of nodes and edges, and the nesting of the
process steps for the process graph.

2.2.2. Illustrative example: storing the Sellar MDO system

The Sellar problem [40], a classical benchmark MDO problem widely used
in MDO literature, was selected to demonstrate the use of CMDOWS as a
schema to store the three different stages of the MDO system during the
formulation phase. As these stages (see Fig. 1) enrich the CMDOWS file
step by step, the way in which each stage should be stored is described
here to give the reader a clearer understanding of the different elements
of the schema. The way this enrichment is performed is out of the scope
of this paper, but the interested reader is referred to Van Gent et al. [33],
where this process is discussed in detail using the MDO system formula-
tion tool KADMOS.

Stage I: Tool repository

The tool repository for the Sellar problem consists of eight different tools. The original Sellar problem actually
contains only five tools, but here, three additional tools (A, D3, and F2) are added to demonstrate how an
MDO problem can be based on a subset of tools from the repository. In the top right of Fig. 10 a design
structure matrix (DSM) of the repository is shown, with the eight tools represented by the blocks on the di-
agonal. The only elements from the schema needed to store a tool repository are the designCompetences,
parameters, and workflow/dataGraph. As shown in Fig. 10, the different executable blocks are integrated
differently: for the functions A, F1, F2, G1, and G2 mathematical expression are available, while the disci-
plinary analyses D1, D2, and D3 are design competences, meaning that the mathematical expressions to
be executed are assumed to be unknown (for illustration purposes). For all executable blocks the inputs and
outputs of each block are defined by referring to the right elements from the parameters list using the relative
parameter UID (as is shown for parameters z2 and f in the figure). Finally, the dataGraph element contains
the full graph, as illustrated in the lower right corner of the figure, by listing the edges between all executable
blocks and parameters. The storage of the edge x1→ F1 is illustrated in the figure.

Stage II: MDO problem

One additional element is required to store the MDO problem in a CMDOWS file: problemDefinition, see
Fig. 11. In this element, the problem roles and problem formulation are indicated. As shown in Fig. 11, the
parameters z1, z2, and x1 get the special role of design variable. Similarly, f is assigned the role of objective
for the optimization. The roles of the executable blocks are also specified and only the tools strictly needed to
solve the MDO problem have been selected from the tool repository, as the tools F2 and D3 are not present
in the data graph in Fig. 11 anymore.

Stage III: MDO solution strategy

When the problem formulation has been set, in this example to a Multidisciplinary Feasible (MDF) architecture
with a Jacobi type converger, the full schema is used to store the MDO solution strategy, as depicted in
Fig. 12. This strategy is automatically imposed on the MDO problem using the MDO system formulation

CEAS 2017 paper no. 969
CMDOWS: A Proposed New Standard To Store And Exchange MDO Systems

Page | 11
Copyright c© 2017 by author(s)

N
odes

Connections

Inform
ation

H
EAD

ER

W
O

RKFLO
W

dataG
raph

edges

nam
e

edges

edge
from

Param
eterU

ID
: /data_schem

a/variables/x1

toExecutableBlockU
ID

: F1

edge

edge

...

m
etadata

EXECU
TA

BLE BLO
CKS

designC
om

petences <...>
D1D2D3

m
athem

aticalFunctions

AF1

@
uID: F1

label: F1

inputs <...>

input
param

eterU
ID

: /data_schem
a/variables/x1

equationLabel: x1

input
param

eterU
ID

: /data_schem
a/analyses/y1

equationLabel: y1

input
param

eterU
ID

: /data_schem
a/analyses/y2

equationLabel: y2

input
param

eterU
ID

: /data_schem
a/variables/z2

equationLabel: z2

outputs <...>
output

param
eterU

ID
: /data_schem

a/analyses/f

equation: x1**2+z2+y1+m
ath.exp(-y2)

@
language: Python

m
etadata

F2

G
1

G
2

PA
RA

M
ETERS <...>

af

@
uID

: /data_schem
a/analyses/f

label: f

g1g2x1

@
uID

: /data_schem
a/variables/x1

label: x1

y1y2z1z2

@
uID

: /data_schem
a/variables/z2

label: z2

c

aA
c

c

D
1

y
1

y
1

y
1

y
1

y
2

D
2

y
2

y
2

y
2

x
1

z
2

z
1

z
2

z
1

D
3

x
1

z
2

x
1

z
2

z
1

f
F
1

f
F
2

g
1

G
1

g
2

G
2

D
1

x1

z1

z2

y1 y2
c

f

G
1

G
2 D

2

F1F2

D
3

g1
g2

A
a

D
ata graph

D
esign structure m

atrix

Figure
10:Illustration

ofthe
storage

ofthe
S

ellartoolrepository
in

a
C

M
D

O
W

S
file.O

n
the

rightside
tw

o
visualizations

ofthe
data

stored
in

the
file

are
show

n:the
design

structure
m

atrix
and

a
directed

data
graph

CEAS 2017 paper no. 969
I. van Gent, G. La Rocca, M.F.M. Hoogreef

Page | 12
Copyright c© 2017 by author(s)

Connections

Nodes

Information

HEADER

PROBLEM FORMULATION

@UID: SellarProblem

problemFormulation

...

executableBlocksOrder

executableBlock: A

executableBlock: D1

executableBlock: D2

executableBlock:F1

executableBlock: G1

executableBlock: G2

problemRoles

parameters

designVariables

designVariable
x1

lowerBound: -10

upperBound: 10

designVariable z1

...

designVariable z2

...

objectiveVariables
objectiveVariable

f

constraintVariables

constraintVariable

g1

constraintType: inequality

constraintOperator: >=

referenceValue: 0.0

constraintVariable g2

...

executableBlocks

preCouplingBlocks A

coupledBlocks
D1

D2

postCouplingBlocks

F1

G1

G2

PARAMETERS <...>

EXECUTABLE BLOCKS

WORKFLOW
dataGraph

D1x1

z1

z2

y1

y2 c

f

G1

G2

D2

F1

g1
g2

Aa

a

x1

z2

z1

z2

z1

x1

z2

A c c

D1 y1 y1 y1

y2 D2 y2 y2

f F1

g1 G1

g2 G2

Design structure matrix

Data graph

Figure 11: Illustration of the storage of the Sellar MDO problem in a CMDOWS file

CEAS 2017 paper no. 969
CMDOWS: A Proposed New Standard To Store And Exchange MDO Systems

Page | 13
Copyright c© 2017 by author(s)

platform KADMOS [33]. Two new elements are added to the file with respect to the MDO problem definition:
the architectureElements and the workflow/processGraph. Actually, it is not just that these elements
are added, but all the elements in the CMDOWS file are updated when the MDO architecture is imposed
on the MDO problem. For example, compare the data graphs depicted in Fig. 11 and Fig. 12 to see the
large amount of adjusted data connections. With the MDF architecture used in this example, the architectural
executable blocks optimizer and converger are added to the file, and a range of architectural parameters
are added, such as initialGuessDesignVariables and couplingCopyVariables.
This concludes a brief illustration of the use of CMDOWS for storing MDO systems at different stages. The
use of CMDOWS to store MDO systems has been illustrated here for the small Sellar MDO system. Naturally,
the schema was not created for such small cases, but rather to exchange large-scale MDO systems, as
discussed in the next section.

3. CASE STUDY: AGILE DEVELOPMENT PROCESS FOR AEROSTRUCTURAL WING DESIGN

In this case study, CMDOWS files have been created for a realistic wing aerostructural design case. The
power of CMDOWS is demonstrated by presenting the different MDO framework applications that have al-
ready been integrated using the central workflow schema approach in the AGILE project.

3.1. Description

Any standardized schema can be put to the test when the exchangeability it is supposed to support can
be assessed in a realistic case. This was done here by linking different applications of the AGILE MDO
framework through CMDOWS, as is conceptually shown in Fig. 5. In AGILE, the five stages shown in Fig. 1
are supported by a set of MDO framework applications, as was discussed in Section 1.1 (Fig. 3) and is more
elaborately discussed in earlier work [41]. The AGILE MDO framework is a hybrid framework where different
partners provide an application of their specialty with the aim to improve a part of the collaborative MDO
design process.
The developments in the AGILE project can be mapped directly on to the conceptual overview in Fig. 5 as is
shown in Fig. 13, where at least one application is available for each of the five categories:

• Tool repository:

KE-chain The KE-chain platforml is used in AGILE to integrate the complete MDO development pro-
cess, see reference [41]. With respect to CMDOWS, the platform includes a module where a
design team can add a collection of disciplinary tools in the browser and can export this online
tool repository as a CMDOWS file.

Surrogate model repository (SMR) A second type of tool repository is the SMR [42] developed by
the Netherlands Aerospace Centre (NLR). In the SMR a collection of surrogate models is stored
which can also be exported as a CMDOWS file.

• MDO system formulation:

KADMOS KADMOS is the only MDO system formulation platform that supports CMDOWS at the mo-
ment. KADMOS can import CMDOWS files at any stage, transform the MDO system to other
stages of the formulation phase, and export the CMDOWS file of an updated MDO system defini-
tion.

• Visualization package:

KADMOS Basic visualizations of CMDOWS files can be provided by KADMOS. This is restricted to
static PDF files and graphs, and is thereby only suitable for small MDO systems or to create a
top-level overview.

VISTOMS More sophisticated, dynamic visualizations can be created by opening a CMDOWS file
with the Visualization Tool for MDO Systems (VISTOMS). This tool enables the visualization of
MDO systems of any size in multiple dynamic overviews that can be inspected up to the finest
details. This package is discussed in full detail by Aigner et al. [36]. Note that the visualizations of
CMDOWS files can also be created online at the open-access CMDOWS interfacem.

lSee: https://www.ke-chain.com
mSee: http://cmdows.agile-project.eu

CEAS 2017 paper no. 969
I. van Gent, G. La Rocca, M.F.M. Hoogreef

Page | 14
Copyright c© 2017 by author(s)

Connections

Nodes

Information

HEADER

PROBLEM FORMULATION

problemFormulation

mdaoArchitecture: MDF

convergerType: Jacobi

executableBlocksOrder

...

PARAMETERS <...>

EXECUTABLE BLOCKS

ARCHITECTURE ELEMENTS

parameters

initialGuessDesignVariables
x1^0

z1^0

z2^0

finalDesignVariables
x1*

z1*

z2*

initialGuessCouplingVariables y1^{c0}

y2^{c0}

couplingCopyVariables y1^c

y2^c

finalCouplingVariables y1*

y2*

finalOutputVariables
f*

g1*

g2*

executableBlocks

coordinators
Coordinator

optimizers
Optimizer

convergers
Converger

preIteratorAnalyses
A

coupledAnalyses D1

D2

postCouplingAnalyses
F1

G1

G2

WORKFLOW

dataGraph

processGraph

name: MDO process MDF-J

edges

edge

fromExecutableBlockUID: A

toExecutableBlockUID: Optimizer

processStepNumber: 1

edge

...

nodes

node

referenceUID: A

processStepNumber: 1

diagonalPosition: 1

node

...

D1

x1

z1
z2

y1
y2

c

f

G1

G2

D2

F1

g1
g2

A
aCOOR

OPT

CONV

z1 z2

z1*

z2*

y2c0

y2*

y2c

g1*

g2*

f*

y1c0

y1c

y1*

XDSM

Process graph

D1

G1

G2

D2

F1

COOR

OPT
CONV

3

4

5

6

7

7

7

8

1

A
2

Data graph

Figure 12: Illustration of the storage of the Sellar MDO solution strategy according to the MDF-Jacobi archi-
tecture in a CMDOWS file

CEAS 2017 paper no. 969
CMDOWS: A Proposed New Standard To Store And Exchange MDO Systems

Page | 15
Copyright c© 2017 by author(s)

Tool repository

Visualization
package

Collaborative
workflow

MDO system
formulation

Schema
operations library

 export
 �le of
 repository

import
repository �le

 export �le of
 MDO problem
and solution strategy

read / write
�le

visualize �le
contents

CMDOWS

SMR KADMOS

KADMOS

KADMOS
& others

VIST MS

primary link

secondary link

parse
�le with
MDO solu-
tion strategy

Figure 13: The established links between CMDOWS and the AGILE MDO framework applications for the
wing design case study

• Collaborative workflow:

RCE RCE is an open-source development by DLR that is used to create collaborative workflows.
RCE’s latest version contains an extension to import CMDOWS files and directly create an ex-
ecutable workflow.

Optimus Optimus is a commercial workflow platform for which an extension has been created to import
CMDOWS files. This development is discussed in detail in a paper by Van Gent et al. [38].

• Schema operations library:

KADMOS At the moment KADMOS is the only platform that can both import and export CMDOWS
files. Therefore, it can also perform standardized operations on a CMDOWS file. The CMDOWS
module of KADMOS can be used to automatically adjust CMDOWS files or to request information
stored in the file, such as the amount of executable blocks, the MDO architecture used, etc.

General XML editors/libraries Instead of using KADMOS, general XML editors or libraries are also
used to inspect and adjust CMDOWS files. An example of such a library is the open-source XML
interface library TIXIn developed by DLR.

3.2. Results

The aerostructural wing design case used here to demonstrate the integrated platforms has been described in
other work [26,33,36,38]. In short, the MDO system in this case consists of a collection of CPACS-compatible
aircraft design and analysis tools from Delft University of Technology (DUT). From a tool repository of 29
executable blocks and more than 28,000 parameters, an MDO problem with eight executable blocks involving
281 parameters is composed. This MDO problem can then be solved using different solution strategies,
where in this case study the solution strategy demonstrated is the MDF architecture with a Jacobi iteration
scheme (as was also used in the Sellar case illustration in Section 2.2.2).
The CMDOWS-compatible framework applications shown in Fig. 13 are used for different stages of the MDO
system in Fig. 1. The use of the applications with respect to the first four stages of the MDO system from
Fig. 1 is summarized in Fig. 14.
The tool repository in the first step is provided through the KE-chain integration. The executable blocks are
defined by specifying their CPACS input and output files. KE-chain then interprets these files and creates the

nSee: https://software.dlr.de/p/tixi/home

CEAS 2017 paper no. 969
I. van Gent, G. La Rocca, M.F.M. Hoogreef

Page | 16
Copyright c© 2017 by author(s)

list of unique parameters. Additional information on the executable blocks (e.g. owner, fidelity level, etc.) is
provided through the browser interface. The CMDOWS file of the tool repository exported by KE-chain can
be visualized with the VISTOMS application. The VISTOMS application can actually be used for any stage of
the MDO system in the formulation phase, as is shown in Fig. 14.
Next, KADMOS is used to formulate the MDO problem that needs to be solved. The tool repository CMDOWS
file is imported by the MDO system formulation platform and KADMOS operations are used to transform the
repository data graph into the MDO problem representation (more details on this can be found in Van Gent et
al. [33]). KADMOS then exports the CMDOWS file of the MDO problem and VISTOMS can be used again for
detailed inspection of the problem formulation. This visualization is generally used to communicate the setup
of the MDO problem with the design team.
KADMOS is used a second time for composing the MDO solution strategy. Based on the MDO problem
CMDOWS file containing the problemFormulation element, KADMOS can impose the solution strategy
and provide the full workflow description. KADMOS adds architecture elements to specify the MDO solution
strategy according to the selected architecture and stores in the CMDOWS file both the adjusted data graph
and the newly generated process graph. At this last formulation stage the VISTOMS package can be used to
check the MDO solution strategy with the whole design team, for example using the XDSM shown in Fig. 14.
The ultimate test of the full schema now comes when the gap with the executable phase has to be bridged.
Within AGILE, both Optimus and RCE have been extended to enable automatic generation of executable
workflows based on CMDOWS files and both have been able to parse executable workflows for the wing
design case, as shown in the bottom of Fig. 14. Any other PIDO tool able to do the same, could directly be
used interchangeably in the AGILE MDO framework, without any modification to the other applications. The
parsing of Optimus workflows is discussed in [38]. With the availability of the executable workflows the role
of the CMDOWS format in the formulation phase is concluded.

3.3. Discussion

Looking back at the functional requirements described in Section 2.1, it is important to note that the exe-
cutable workflows created are truly hybrid workflows. Different types of tools are integrated in one top-level
collaborative workflow, thanks to the support of the CMDOWS format.
The first type is used by the three ‘blue’ tools in the MDO solution strategy in Fig. 14. These are local tools that
have been integrated directly in Optimus and RCE. Then the ‘green’ disciplinary analyses are of another type,
as these are subworkflows that need to be executed remotely because of intellectual property restrictions
(these tools cannot be distributed to run them locally). Therefore, these disciplinary analysis are integrated
using a Brics [39] component to run the actual tool on another server domain. Finally, the ‘red’ tools are simple
mathematical functions describing the objective and constraint functions. These mathematical functions are
parsed as native scripts in the PIDO tool, since this will result in the most efficient execution. The native scripts
run the mathematical expressions directly, without the need to integrate any tool in the collaborative workflow.
This collaborative workflow clearly shows that the schema supports the tool heterogeneity requirement IX
(req-IX) specified in Section 2.1.
Concerning the other requirements in Section 2.1, the wing design case study has shown the level of com-
pliance of the current schema. The XML CMDOWS instances support both human-readability (req-II) and
machine-interpretability (req-I). This human-readability is also proven by the fact that many of the developers
of AGILE framework applications have been able to connect to CMDOWS in a short time. The neutrality
of the schema (req-III) has been maintained, even when adding new elements to support the links with the
AGILE framework applications. Hence, there are no traces of application-specific elements like KADMOS,
KE-Chain, Optimus, etc. Moreover, the core structure of CMDOWS still allows adjustments (req-V), as the
schema was extended step by step to link different applications and more adjustments can be made to meet
future developments.
A key future improvement that was found concerns the redundancy of the content of the schema (req-VI).
Throughout its development, initial CMDOWS versions were always very lean in the information stored in
a CMDOWS file. Some of the application links demanded that certain information is stored explicitly in
the schema, even though this information can be interpreted from the information already stored. In future
developments, the links with applications will be checked for this type of information and per case it will be
decided whether to explicitly add the information in the schema.
The wing design case has shown that three MDO system stages (req-VII) are supported and even the bridge
to the execution phase can be made successfully. At the moment, not all links are made with the MDO
framework applications (req-VIII). The links in Fig. 14 are mostly primary links between CMDOWS and the
applications, as explained in Fig. 5. In future work, all applications will be extended and the secondary links
will also be developed to enhance the capabilities of the AGILE MDO framework.

CEAS 2017 paper no. 969
CMDOWS: A Proposed New Standard To Store And Exchange MDO Systems

Page | 17
Copyright c© 2017 by author(s)

0, 10:
Coordinator

1: 2 inp. 2: 7 inp. 3: 21 inp. 4: 9 inp. 5: 4 inp. 6: 20 inp. 6: 14 inp. 6: 3 inp. 8: 3 inp. 8: 8 inp.

1:
HANGAR

[AGILE DC1 WP6

wing startpoint]

3: 103 con. 4: 119 con. 6: 161 con. 6: 107 con. 6: 2 con.

10: 7 outp.
2, 9 � 3:
Optimizer

3: 7 con.

3:
SCAM-merged

[5modes]
4: 15 con. 6: 15 con. 6: 15 con.

4:
GACA-merged

[2modes]
6: 1 con. 8: 2 con.

5, 7 � 6:
Converger

6: 2 con. 6: 1 con. 6: 2 con.

10: 1 outp. 7: 1 con.

6:
Q3D[FLC]-

EMWET�seq

10: 1 outp. 7: 1 con.

6:
Q3D[VDE]-

SMFA�seq
8: 1 con.

10: 2 outp. 7: 2 con.
6:

MTOW
8: 1 con. 8: 1 con.

10: 1 outp. 9: 1 con.
8:

OBJ

10: 2 outp. 9: 2 con.

8:
CNSTRNT-merged

[2modes]

CMDOWS

Tool
repository

VIST MS

MDO
problem

MDO solution
strategy

Collaborative
work�ow

CMDOWS

CMDOWS

KADMOS

KADMOS

VIST MS

VIST MS

Export tool
repository

Export MDO
problem

Import MDO
problem

Export MDO
solution strategy

Parse collaborative
work�ow

Import tool
repository

Visualize

Visualize

Visualize

2 inp. 2 inp. 36 inp. 4 inp. 4 inp. 2 inp. 8 inp. 8 inp. 8 inp. 7 inp. 12 inp. 6 inp. 26 inp. 153 inp. 3 inp. 3 inp. 4 inp. 5 inp.

36 outp.

HANGAR

[AGILE DC1 WP6

wing startpoint]
3 con. 118 con. 118 con. 118 con. 134 con. 120 con. 121 con. 115 con. 174 con. 6 con. 155 con. 138 con. 4 con. 1 con. 1 con. 1 con.

1107 outp.

HANGAR

[AGILE DC1

L0 MDA]
1 con. 118 con. 118 con. 118 con. 134 con. 116 con. 116 con. 119 con. 167 con. 2 con. 1088 con. 135 con. 1 con. 1 con. 2 con. 1 con.

1075 outp. INITIATOR 107 con. 107 con. 107 con. 107 con. 105 con. 105 con. 108 con. 116 con. 2 con. 1138 con. 185 con. 1 con. 1 con. 2 con. 1 con.

SCAM

[wing taper

morph]
6 con. 6 con. 6 con. 6 con. 6 con. 6 con. 6 con. 6 con. 6 con.

2 con.

SCAM

[wing sweep

morph]
2 con. 2 con. 2 con. 2 con. 2 con. 2 con. 2 con. 2 con.

GACA

[mainWing

RefArea]
1 con. 1 con. 1 con.

1 outp.

GACA

[mainWingFuel

TankVol]
1 con.

2 outp.
Q3D

[VDE]
2 con.

4 outp.
Q3D

[FLC]
126 con.

Q3D

[APM]
6 con.

1 outp. EMWET 1 con.

1 outp. SMFA 1 con. 1 con.

104 outp.
PHALANX

[Full Lookup]

3 outp. PROTEUS

4 outp. 1 con. 1 con. 2 con. 1 con. 1 con. MTOW 1 con. 1 con.

2 outp. OBJ

2 outp.
CNSTRNT

[wingLoading]

2 outp.
CNSTRNT

[fuelTankVolume]

2 inp. 28 inp. 9 inp. 20 inp. 14 inp. 3 inp. 3 inp. 8 inp.

HANGAR

[AGILE DC1 WP6

wing startpoint]
103 con. 119 con. 161 con. 107 con. 2 con.

SCAM-merged

[5modes]
15 con. 15 con. 15 con.

GACA-merged

[2modes]
1 con. 2 con.

Q3D[FLC]-

EMWET�seq
1 con.

Q3D[VDE]-

SMFA�seq
1 con. 1 con.

2 con. 1 con. MTOW 1 con. 1 con.

1 outp. OBJ

2 outp.
CNSTRNT-merged

[2modes]

MDO system
stages

AGILE MDO framework
(wing design case)

Figure 14: Visualization of the AGILE MDO framework applications from Fig. 13 for the wing design case,
mapped on the first four stages of the MDO system in Fig. 1

CEAS 2017 paper no. 969
I. van Gent, G. La Rocca, M.F.M. Hoogreef

Page | 18
Copyright c© 2017 by author(s)

The implementation of the CMDOWS format in a heterogeneous MDO framework has enabled the coupling
of multiple MDO framework applications that would normally operate independently. The associated time
reduction that motivated this development has not been quantified yet, though it is estimated by MDO experts
to be significant. [10, 13] For example, the time reduction achieved through InFoRMA for creation of the
executable workflows for the same MDO problem, where also the same MDO solution strategy was imposed
automatically, were beyond 90% [26]; even without the use of a standardized format to benefit from other MDO
framework applications. The quantification of the time reduction impact of CMDOWS within a broader MDO
framework will be one of the results of the final year of AGILE, where the framework integration supported by
CMDOWS will be put to the test in six MDO studies of unconventional aircraft configurations (e.g. blended-
wing body, box-wing).

4. CONCLUSIONS AND FUTURE DEVELOPMENTS

The latest version (0.7) of the MDO system exchange format CMDOWS has been presented in this paper.
CMDOWS supports the storage of an MDO system of any size at three different stages of the formulation
phase: tool repository, MDO problem, and MDO solution strategy. The main goal of CMDOWS is to provide
a format that allows different MDO framework applications to exchange the definition of the MDO system.
CMDOWS was demonstrated by using an aerostructural wing design problem within the AGILE context.
Different AGILE MDO framework applications were linked to CMDOWS and it was shown that all stages
of the formulation phase are successfully supported by the schema. Moreover, the final formulation stage
results in a CMDOWS file for which a collaborative workflow can be instantiated directly in the workflow
softwares Optimus and RCE. This last functionality alone is already sufficient to demonstrate the key role a
standard format to store and exchange MDO systems can play in the reduction of the set-up time of an MDO
system. The enabled check and debugging operations supported by automatically generated visualizations,
together with the enabled automated generation of executable workflows alone, can reduce set-up time of
MDO systems even beyond 90%.
Future work will focus on extending the schema while still maintaining the nine main requirements stated in
Section 2.1. As the AGILE MDO framework will grow, so could the schema to support additional or enriched
links between CMDOWS and the MDO framework applications. An example of an enriched link would be the
future extensions that might be required to support the storage of multilevel optimization architectures, such
as BLISS [43], since so far the schema has only been tested for monolithic formulations.
In conclusion, the current version of CMDOWS already demonstrated its robustness and versatility. Hopefully,
the presented developments will gain enough momentum and convince the broader MDO community to adopt
it as the new standard to store and exchange MDO systems for a large range of MDO framework applications.

ACKNOWLEDGMENTS

The research presented in this paper has been performed in the framework of the AGILE project (Aircraft
3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Experts) and has received
funding from the European Union Horizon 2020 Programme (H2020-MG-2014-2015) under grant agreement
n◦ 636202. The authors are grateful to the partners of the AGILE consortium for their contribution and
feedback.

OPEN-SOURCE REFERENCES

CMDOWS repository http://cmdows-repo.agile-project.eu
CMDOWS visualization interface http://cmdows.agile-project.eu
KADMOS https://bitbucket.org/imcovangent/kadmos
RCE http://rcenvironment.de

REFERENCES

1. Kodiyalam, S., Evaluation of methods for multidisciplinary design optimization (MDO), Phase I, National
Aeronautics and Space Administration, Langley Research Center, 1998.

2. Kodiyalam, S. and Yuan, C., “Evaluation of methods for multidisciplinary design optimization (MDO), Part II,”
NASA Contractor Report , 2000.

CEAS 2017 paper no. 969
CMDOWS: A Proposed New Standard To Store And Exchange MDO Systems

Page | 19
Copyright c© 2017 by author(s)

3. Brown, N. F. and Olds, J. R., “Evaluation of multidisciplinary optimization techniques applied to a reusable
launch vehicle,” Journal of Spacecraft and Rockets, Vol. 43, No. 6, 2006, pp. 1289–1300.

4. Perez, R. E., Liu, H. H. T., and Behdinan, K., “Evaluation of multidisciplinary optimization approaches for
aircraft conceptual design,” AIAA/ISSMO multidisciplinary analysis and optimization conference, Albany, NY ,
2004.

5. Roth, B. and Kroo, I., “Enhanced Collaborative Optimization: Application to an Analytic Test Problem and Air-
craft Design,” Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
American Institute of Aeronautics and Astronautics, September 2008.

6. Belie, R., “Non-technical barriers to multidisciplinary optimisation in the aerospace industry,” 9th AIAA/ISSMO
Symposium of Multidisciplinary Analysis and Optimisation, 2002, pp. 4–6.

7. Giesing, J. P. and Barthelemy, J., “A summary of industry MDO applications and needs,” AIAA White Paper ,
1998.

8. Agte, J., De Weck, O., Sobieszczanski-Sobieski, J., Arendsen, P., Morris, A., and Spieck, M., “MDO: assess-
ment and direction for advancement - an opinion of one international group,” Structural and Multidisciplinary
Optimization, Vol. 40, No. 1-6, 2010, pp. 17–33.

9. Shahpar, S., “Challenges to overcome for routine usage of automatic optimisation in the propulsion industry,”
Aeronautical Journal , Vol. 115, No. 1172, 2011, pp. 615.

10. Simpson, T. W. and Martins, J. R. R. A., “Multidisciplinary design optimization for complex engineered sys-
tems: report from a national science foundation workshop,” Journal of Mechanical Design, Vol. 133, No. 10,
2011, pp. 101002.

11. Flager, F. and Haymaker, J., “A comparison of multidisciplinary design, analysis and optimization processes in
the building construction and aerospace industries,” 24th international conference on information technology
in construction, 2007, pp. 625–630.

12. Ciampa, P. D. and Nagel, B., “Towards the 3rd generation MDO collaboration environment,” 30th Congress of
the International Council of the Aeronautical Sciences, 2016.

13. Pate, D. J., Gray, J., and German, B. J., “A graph theoretic approach to problem formulation for multidisci-
plinary design analysis and optimization,” Structural and Multidisciplinary Optimization, Vol. 49, No. 5, 2014,
pp. 743–760.

14. Meadows, N., Schetz, J., Kapania, R., Bhatia, M., and Seber, G., “Multidisciplinary design optimization
of medium-range transonic truss-braced wing transport aircraft,” Journal of Aircraft , Vol. 49, No. 6, 2012,
pp. 1844–1856.

15. Mallik, W., Kapania, R., and Schetz, J., “Effect of flutter on the multidisciplinary design optimization of truss-
braced-wing aircraft,” Journal of Aircraft , Vol. 52, No. 6, 2015, pp. 1858–1872.

16. Iwaniuk, A., Wisniowski, W., and Zóltak, J., “Multi-disciplinary optimisation approach for a light turboprop
aircraft-engine integration and improvement,” Aircraft Engineering and Aerospace Technology , Vol. 88, No. 2,
2016, pp. 348–355.

17. Bach, T., Führer, T., Willberg, C., and Dähne, S., “Automated sizing of a composite wing for the usage within
a multidisciplinary design process,” Aircraft Engineering and Aerospace Technology , Vol. 88, No. 2, 2016,
pp. 303–310.

18. Balesdent, M., Bérend, N., Dépincé, P., and Chriette, A., “A survey of multidisciplinary design optimiza-
tion methods in launch vehicle design,” Structural and Multidisciplinary Optimization, Vol. 45, No. 5, 2012,
pp. 619–642.

19. Adami, A., Mortazavi, M., and Nosratollahi, M., “A new approach in multidisciplinary design optimization of
upper-stages using combined framework,” Acta Astronautica, Vol. 114, 2015, pp. 174–183.

20. Ashuri, T., Zaaijer, M., Martins, J., van Bussel, G., and van Kuik, G., “Multidisciplinary design optimization of
offshore wind turbines for minimum levelized cost of energy,” Renewable Energy , Vol. 68, 2014, pp. 893–905.

21. Ashuri, T., Zaaijer, M., Martins, J., and Zhang, J., “Multidisciplinary design optimization of large wind turbines
- Technical, economic, and design challenges,” Energy Conversion and Management , Vol. 123, 2016, pp. 56–
70.

22. Ashuri, T., Martins, J., Zaaijer, M., van Kuik, G., and van Bussel, G., “Aeroservoelastic design definition of a
20 MW common research wind turbine model,” Wind Energy , 2016.

23. Jiang, P., Wang, J., Zhou, Q., and Zhang, X., “An enhanced analytical target cascading and Kriging
model combined approach for multidisciplinary design optimization,” Mathematical Problems in Engineering,
Vol. 2015, 2015.

24. Ollar, J., Toropov, V., and Jones, R., “Sub-space approximations for MDO problems with disparate disciplinary
variable dependence,” Structural and Multidisciplinary Optimization, 2016, pp. 1–10.

CEAS 2017 paper no. 969
I. van Gent, G. La Rocca, M.F.M. Hoogreef

Page | 20
Copyright c© 2017 by author(s)

25. Martins, J. R. R. A. and Lambe, A. B., “Multidisciplinary Design Optimization: A Survey of Architectures,”
AIAA Journal , Vol. 51, No. 9, 2013, pp. 2049–2075.

26. Hoogreef, M. F. M., Advise, Formalize and Integrate MDO Architectures - A Methodology and Implementation,
Ph.D. thesis, Delft University of Technology, 2017.

27. Alexandrov, N. and Lewis, R., “Reconfigurability in MDO Problem Synthesis, Part 1,” 10th AIAA/ISSMO Mul-
tidisciplinary Analysis and Optimization Conference, American Institute of Aeronautics and Astronautics, Au-
gust 2004.

28. Alexandrov, N. and Lewis, R., “Reconfigurability in MDO Problem Synthesis, Part 2,” 10th AIAA/ISSMO Mul-
tidisciplinary Analysis and Optimization Conference, American Institute of Aeronautics and Astronautics, Au-
gust 2004.

29. Tosserams, S., Hofkamp, A., Etman, L., and Rooda, J., “A specification language for problem partitioning in
decomposition-based design optimization,” Structural and Multidisciplinary Optimization, Vol. 42, No. 5, 2010,
pp. 707–723.

30. Marriage, C., Automatic Implementation of Multidisciplinary Design Optimization Architectures Using πMDO,
Master’s thesis, University of Toronto, Canada, 2008.

31. Nagel, B., Böhnke, D., Gollnick, V., Schmollgruber, P., Rizzi, A., La Rocca, G., and Alonso, J. J., “Com-
munication in aircraft design: Can we establish a common language?” 28th International Congress Of The
Aeronautical Sciences, Brisbane, 2012.

32. Ciampa, P. D., Baalbergen, E. H., and Lombardi, R., “A Collaborative Architecture supporting AGILE Design of
Complex Aeronautics Products,” 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
2017.

33. van Gent, I., La Rocca, G., and Veldhuis, L. L. M., “Composing MDAO symphonies: graph-based gener-
ation and manipulation of large multidisciplinary systems,” 18th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, 2017.

34. Diestel, R., “Graph theory,” Graduate Texts in Mathematics, Vol. 173, 2010.
35. Raju Kulkarni, A., Hoogreef, M. F. M., and La Rocca, G., “Combining semantic web technologies and KBE to

solve industrial MDO problems,” 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
2017.

36. Aigner, B., van Gent, I., La Rocca, G., Stumpf, E., and Veldhuis, L. L. M., “Using graph-based algorithms and
data-driven documents for formulation and visualization of large MDO systems,” 6th CEAS Air and Space
Conference, 2017.

37. Seider, D., Fischer, P. M., Litz, M., Schreiber, A., and Gerndt, A., “Open source software framework for
applications in aeronautics and space,” Aerospace Conference, 2012 IEEE , IEEE, 2012, pp. 1–11.

38. van Gent, I., Lombardi, R., La Rocca, G., and d’Ippolito, R., “A Fully Automated Chain from MDAO Problem
Formulation to Workflow Execution,” EUROGEN 2017 , 2017.

39. Baalbergen, E. H., Kos, J., and Lammen, W. F., “Collaborative multi-partner modelling & simulation processes
to improve aeronautical product design,” 4th CEAS Air & Space Conference, 2013.

40. Sellar, R. S., Batill, S. M., and Renaud, J. E., “Response surface based, concurrent subspace optimization
for multidisciplinary system design,” AIAA paper , Vol. 714, 1996, pp. 1996.

41. van Gent, I., Ciampa, P. D., Aigner, B., Jepsen, J., La Rocca, G., and Schut, E. J., “Knowledge architec-
ture supporting collaborative MDO in the AGILE paradigm,” 18th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, 2017.

42. Baalbergen, E. H., Moerland, E., Lammen, W., and Ciampa, P. D., “Methods to support efficient collaboration
for competitive aircraft design,” 6th CEAS Air and Space Conference, 2017.

43. Sobieszczanski-Sobieski, J., Altus, T. D., Phillips, M., and Sandusky, R., “Bilevel integrated system synthesis
for concurrent and distributed processing,” AIAA journal , Vol. 41, No. 10, 2003, pp. 1996–2003.

CEAS 2017 paper no. 969
CMDOWS: A Proposed New Standard To Store And Exchange MDO Systems

Page | 21
Copyright c© 2017 by author(s)

