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ABSTRACT

This paper presents innovative methodological investigations performed as research activities in the field of
MDO for conceptual aircraft design in the ongoing EU-funded research project AGILE. The next generation of
aircraft Multidisciplinary Design and Optimization processes is developed in AGILE, which targets significant
reductions in aircraft development costs and time to market, leading to cheaper and greener aircraft solu-
tions. The paper introduces the AGILE project structure and recalls the achievements of the 1st year (Design
Campaign 1 or DC-1) leading to a reference distributed MDO system. Design Campaign 2 (DC-2) is briefly
described, investigating the ease of the optimization of complex workflows, characterized by a high degree
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of discipline interdependencies, high number of design variables in the context of multilevel processes and
multipartner collaborative engineering projects. The paper focuses on an innovative approach where a com-
plex aircraft design workflow has been simplified and implemented by using surrogate models for clusters of
disciplines to reduce the computational time. The paper will detail the different steps of the retained approach
to set up and operate this test case, involving a team of surrogate specialists, and taking advantage of the
AGILE distributed MDO framework.

KEYWORDS: AGILE, MDO, surrogate models, optimization, collaborative framework, knowledge framework

NOMENCLATURE

AGILE H2020 EU Project: Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous
Teams of Experts

CMDOWS Common MDO Workflow Schema
CPACS Common Parametric Aircraft Configuration Schema
DACE Design and Analysis of Computer Experiments
DC Design Campaign
DOE Design Of Experiments
DP Design Process
FPG Fundamental Problem Graph
IT Information Technology
KADMOS Knowledge- and graph-based Agile Design for Multidisciplinary Optimization System
LHS Latin Hypercube Sampling
MDA Multi-Disciplinary Analysis
MDAO Multidisciplinary Design Analysis and Optimization
MDO Multidisciplinary Design Optimization
MDPG MDAO Data and Process Graph
MOE Mixture Of Experts
MTOM Maximum Take-Off Mass
OAD Overall Aircraft Design
OBS On Board Systems
OEM Operating Empty Mass
PIDO Process Integration and Design Optimization
POD Proper Orthogonal Decomposition
RCE Remote Component Environment
RCG Repository Connectivity Graph
RSM Response Surface Method
SEGOMOE Super Efficient Global Optimization based on Mixture Of Experts
SM Surrogate Model
VISTOMS VISualization TOol for MDO Systems
XDSM eXtended Design Structure Matrix

1. INTRODUCTION

Over the past century, the aircraft design and development process has evolved from pioneering - one or few
people building a simple and small aircraft in a shed - into a highly complex but well-established engineer-
ing process. Today, aircraft are highly advanced technological and competitive products that are developed
by multidisciplinary expert teams. To keep up with the growing demand for more complex and innovative
products in shorter time and in higher volumes, the industry digitizes rapidly. The highly advanced aircraft
industry increasingly applies innovative design approaches based on digital modelling, simulation and opti-
mization technology to take design decisions as early as possible and hence develop state-of-the-art aircraft
more timely and cost efficiently. Still, with the large computational power that is available nowadays, there
remains the challenge to master the complexity of the multidisciplinary design workflow and all corresponding
variables. High-dimensional data sets resulting from various design competences need to be handled in an
efficient way.
In the last three decades, there has been a growing interest in improving the efficiency of vehicle design
processes through the use of multidisciplinary design optimization (MDO) numerical tools and techniques.
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Nevertheless, the exploitation of the full MDO potentials for the development of a complete aircraft is still an
open challenge mainly due to the technical and management issues encountered during the set up and the
operations of such a complex architecture. Even though many of the MDO algorithms have been applied into
industrial applications, the necessity of novel methodology to encapsulate knowledge and skills has been
identified [1,2] in order to be able to manage the increasing design complexities. In that aim, since 2015, EU
funded Horizon2020 AGILE project is developing the next generation of aircraft Multidisciplinary Design and
Optimization processes, focusing on the reduction of the aircraft development time at the early stages of the
design process in the context of multi-level and multi-partner collaborative engineering projects. This paper
presents an innovative approach investigated in the context of the project aiming at simplifying a complex
workflow through the combination of clusters of design competences and the extensive use of surrogate
models (SM).
The paper is organized as follows. Section 2 provides an overview of the EU H2020 AGILE project structure
and the main achievements of Design Campaign (DC) 1 an 2 are exposed. Section 3 details the different
scenarios to build associated multidisciplinary process based on surrogate models in order to compare sev-
eral MDO strategies. In addition, improvements brought by AGILE framework, both by knowledge based
technologies and IT solutions, to support the surrogate models scenarios are also presented. Section 4 de-
scribes the overall process to be apply to DC-1 MDA in order to obtain an equivalent workflow only involving
surrogate models of the associated design competences. Section 5 presents the results obtained at the main
steps of the process with a focus on the building of the surrogate models. Section 6 summarizes the work
performed and identifies the future steps.

2. AGILE PROJECT OVERVIEW

AGILE [3] (Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Experts) is
an EU funded project under the research schema Horizon 2020 and coordinated by the German Aerospace
Center (DLR). AGILE is developing the next generation of aircraft Multidisciplinary Design and Optimization
processes, which target significant reductions in aircraft development costs and time to market, leading to
cheaper and greener aircraft solutions [4]. The developed AGILE Paradigm [5] will enable the 3rd genera-
tion of multidisciplinary design and optimization through efficient collaboration among international multi-site
aircraft design teams. The AGILE project is structured into three sequential phases, targeting design cam-
paigns with increasing levels of complexity, addressing different aircraft configurations and dedicated MDO
techniques. The overall structure is shown in Fig. 1. In the 1st phase (Initialization), a reference aircraft

Figure 1. AGILE project structure

configuration is optimized using state-of-the-art techniques. The reference MDO problem is then used to
investigate and benchmark novel optimization techniques individually and later in smart combinations (MDO
test bench). Finally, the most successful MDO strategies are applied to significantly different aircraft con-
figurations (Novel Configurations). The three sequential work packages are embedded within two enabling
layers. The 1st enabling layer (Collaboration techniques) targets the development of the technologies enabling
distributed collaboration, comprising the process of collaboration between involved specialists, collaborative
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pre- and post-processing, visualization and the enhancement of existing framework. The second enabling
layer (Knowledge enabled technologies) develops the information technologies, which support the manage-
ment and the formalization of knowledge within an MDO process. The parallel activities are clustered in
three phases (or periods), Design Campaigns (DC), each one lasting one year. Each of the sequential de-
sign campaigns focus on the solution of the use cases, which are setup to develop specific collaborative
and knowledge based technologies. Design Campaigns, address an increasing complexity from use case
perspective (progressing from conventional aircraft to novel configurations), and from MDO environment per-
spective (from the state-of-the-art MDO system to the 3rd generation system).

2.1. Design campaign 1

The DC-1 is the first use case in the project that has been formulated and collaboratively solved by the AGILE
team. This case consists of the design and optimization task for a large regional jet, with Entry Into Service
2020. Starting from the specification of the Top Level Aircraft Requirements provided by the aircraft man-
ufacturer partner (Bombardier), an Overall Aircraft Design (OAD) task targeting conceptual and preliminary
development stages was implemented in DC-1. Fig. 2 shows a representation of the DC-1 distributed OAD
process. The figure indicates the domains of the specialists’ competences which have been integrated into

Figure 2. AGILE Collaborative design process: individual competences are distributed multi-site, and hosted at the different
partners’ networks

the process, the location where such simulation competences are hosted, and the specific partners providing
such a competence within their IT networks. The corresponding deployed collaborative MDO workflow is
represented in Fig. 3. A design exploration method is “calling” the OAD process (here labelled as MDA) as

Figure 3. AGILE DC-1 workflow. Partner 1 deploys a Design Of Experiment requesting as remote service the cross-
organizational MDA workflow, deployed at Partner 2. The MDA is composed by disciplinary competences provided as remote
services to Partner 2 by Partners 4 to N

a remote service, which integrates all the distributed disciplinary competences, which are in turn called as
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remote services (deployed as disciplinary workflows) within the MDA process. All competences communicate
via a CPACS model [6] corresponding to the AGILE aircraft product model. They are deployed as disciplinary
workflows and provided as remote services. Furthermore, the deployed “workflow of workflows” has been
provided as “service of services” and coupled to an optimization strategy, named SEGOMOE, developed by
ONERA [7]. An MDO problem was therefore formulated for the optimization of the reference aircraft using a
MDF formulation resulting in an improved design.

2.2. Design campaign 2

The DC-2 activities are based on the DC-1 work, and were implemented during the second year of the
project. In addition, the number of use cases is expanded to five parallel ones. For each use case, a novel
MDO strategy (addressing a specific collaborative scenario) was investigated and assessed for the resolution
of the design of the reference aircraft. Depending on the test cases, classical MDO formulations (such as
MDF, IDF [8] or Analytical Target Cascading [9]) or more adapted ones have been proposed.

• First use case focused on the improvement of MDO strategies with the development and integration
of new design competences in terms of optimization algorithms and surrogates modelling. These
investigations are presented in [10,11].

• The implementation of Uncertainty Quantification (UQ) methods and robust based design optimization
in complex, variable fidelity optimization was the objective of second use case [10].

• The development of mixed-fidelity MDO strategy was tackled with the integration of high-fidelity design
competences and its combination with Overall Aircraft Design (OAD) level. The process is presented
in [12] and illustrated on Fig. 4-a.

• A multi-scale application is described in [13] aiming at investigating the improvement of involving an
aircraft component supplier (aircraft rudder) in the overall aircraft optimization process while keeping its
specific framework. The coupled optimization problem is illustrated on Fig. 4-b.

• A large-scale system-of-systems application was also studied, coupling Aircraft - Engine - On-Board-
Systems (OBS) - Emissions in a distributed framework approach with the involvement of disciplinary
services from the other partners [14].

(a) Hi-Fi multi-level optimization formulation (b) Rudder optimization

Figure 4. DC-2 investigation examples

Furthermore, based on the best practice developed during the DC-1, during the DC-2 the overall AGILE
framework was enhanced by knowledge based technologies [15] and IT solutions [16], which contribute to
accelerate the deployment of the complex MDO processes addressed by the DC-2 use cases.
This paper will present DC-2 investigations performed on first use case and focusing on enhanced MDO
strategies which took advantage of surrogate models aiming at converging the process more rapidly to the
best solutions.

3. MDO THROUGH SURROGATES

All the methods developed during DC-2 have the common goal of enhancing the optimization of complex
workflows, which are characterized by a high degree of discipline interdependencies, high number of design
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variables in the context of multilevel and multi-partner collaborative engineering projects. One of the most
straightforward solutions is the use of surrogate models. A surrogate model (SM) is an analytical formula
that replaces a complex model, or even a design analysis workflow, by means of data fitting. Consequently
a surrogate model requires only little computation time, which is particularly useful for capturing complex
analysis methods and applying them multiple times as part of a global optimization. In collaborative design
studies during the early aircraft design phases, surrogate models are valuable to support the collaborative
analysis of as many design alternatives as possible in a short time and at low cost, preferably with as much
knowledge of the systems under consideration as possible.

3.1. Objectives

In the context of DC-2, two main scenarios were considered for the use of surrogate models to enhance MDO
strategies:

• The 1st scenario (see Fig. 5) is related to the investigations of MDO formulations on complex workflows.
The objective is to benchmark various MDO formulations such as MultiDisciplinary Feasible (MDF),
Individual Discipline Feasible (IDF), Collaborative Optimization (CO). All of these different formulations
are described in [8]. In order to compare these formulations in terms of number of function evaluations
and/or accuracy of the optimal solution, the idea is to take advantage of surrogate models to reduce the
computational costs. The key point here is to use surrogate models, instead of real tools while keeping
the disciplinary results accurate. The accuracy of the surrogate models (computed for instance with the
Root Mean Square Error criterion on a validation set of points) can be reduced with the use of a large
database or with an iterative process to enrich the database as described in [17].

Figure 5. Scenario for automatic MDO process

• The 2nd scenario (see Fig. 6) concerns the optimization process using surrogate models and the prop-
agation of uncertainty associated to each surrogate. By using surrogate models in an MDO instead of
the real tools, some approximation errors are done and they are propagated within the process. The
first objective is to quantify these uncertainties in the MDA in order to have the probability distribution
of the objective function (dispersion of the objective function due to the use of surrogates) [18]. The
second objective concerns the enrichment process to choose the next promising point and improve the
surrogate models. This step is under investigation and implies some theoretical aspects linked to the
probability distribution of the objective function and its discretization to determine its extreme values.

3.2. Enhanced framework

During DC-2 activities, the overall AGILE framework was enhanced both by knowledge based technologies
and IT solutions enabling a quicker and more efficient understanding and deployment of the complex MDO
processes. Next paragraphs will provide a brief description of two improvements brought by those enabling
layers to support the surrogate models scenarios.
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Figure 6. Scenario relative to propagation of the modeling uncertainty in the process

3.2.1. Collaborative architecture

In AGILE, the MDA/MDO workflows are configured, deployed and executed by making use of PIDO (Process
Integration and Design Optimization) environments available at the different process integration sites. Multi-
ple PIDO environments are available in AGILE. One integration environment used in AGILE is the “Remote
Component Environment” (RCE) [19], developed by DLR. NOESIS provides an alternative/complementary
collaborative framework by means of Optimus [20]. Both are deployed in AGILE to compose the main pro-
cesses, as well as disciplinary sub-processes. The cross-organizational mechanism available in AGILE is
Brics [21], developed by NLR. Brics provides technology for interconnecting PIDO environments. It comprises
a protocol and supporting middleware for creating cross-organisation workflows as federations of native and
legacy local workflows, tools and scripts, complying with the prevailing security constraints. Therefore, nested
complex collaborative MDO workflows, connecting multiple organizations, can be deployed. Thanks to the
standardized interface by means of CPACS [6], processes implemented using different PIDO platforms can
be integrated in the same MDO. A schematic of workflows in different administrative domains is illustrated in
Fig. 7. More information on all the developments of collaborative architecture is available in [15] and [22].

Figure 7. Connection of PIDO workflows hosted at multiple administrative domains

3.2.2. Knowledge architecture

The knowledge architecture under development in AGILE integrates different applications to enhance the
MDO development process. The full AGILE knowledge architecture is discussed in [16]. Here, two elements
of the architecture have been used to support the creation of the different surrogate models: the graph-
based MDO formulation system KADMOS (Knowledge- and graph-based Agile Design for Multidisciplinary
Optimization System) [23] and the visualization tool for MDO systems VISTOMS (VISualization TOol for MDO
Systems) [24].
The five main stages of the AGILE development framework are shown in Fig. 8. KADMOS and VISTOMS
support the development process in the first three steps of the framework and enable the design team to
formulate MDO systems of any size and complexity. This support is provided by KADMOS using a graph-
theoretic approach for the set-up and manipulation of multidisciplinary systems. In this approach, different
graphs are created to represent the three different formulation stages shown in Fig. 8.

Repository Connectivity Graph (RCG): The RCG is a graph that represents the repository of (CPACS-
compatible) tools that are available to the design team. CPACS-compatible tools all operate on a
CPACS input file and create a CPACS output file. KADMOS interprets these different files and estab-
lishes the interdisciplinary dependencies (couplings), system inputs and system outputs.
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stage I:
Tool repository

 

KADMOS graph:
RCG

stage II:
MDO problem

 

KADMOS graph:
FPG

stage III:
MDO solution

strategy
 

KADMOS graphs:
MDPG

stage IV:
 

Simulation
work�ow

stage V:
 

MDOptimized
design

triggers
iteration

Formulation phase Execution phase

Application area KADMOS and VISTOMS

Figure 8. The five stages of a multidisciplinary system in the AGILE development framework

Fundamental Problem Graph (FPG): Based on the RCG an FPG can be created by the design team. This
FPG is an enriched subgraph of the RCG, hence only a selection of the RCG tools which are necessary
to solve a certain problem are still in the graph. Furthermore, key variables are indicated in the FPG,
such as design variables and quantities of interest, which are necessary to define a Multidisciplinary
Design Analysis and Optimization (MDAO) strategy. In this paper, the FPG is used to define different
clusters for which Designs of Experiments (DOE) are executed to be able to create the surrogate
models of a subset of disciplinary tools.

MDAO Data and Process Graph (MDPG): The MDPGs are automatically created by KADMOS based on
the FPG. If the FPG contains a definition of a DOE strategy for a cluster of tools, then the MDPG will
contain the description of the data and process flow required to execute this DOE. The MDPG itself is
still just a combination of two graphs in KADMOS and cannot be executed.

Note that the link to the execution of the solution strategy is also enabled by KADMOS through the CMDOWS
(Common MDO Workflow Schema) format [25], however, this development is not discussed in this paper and
all workflows have been built manually based on the formulation provided by the KADMOS graphs.
As the graphs grow in size very quickly, their visualization becomes a challenge, while at the same time this
would help the design team to inspect and debug the multidisciplinary system in each stage of the process.
In AGILE, VISTOMS has been developed for this purpose and it is used in this paper to visualize the different
KADMOS graphs. Throughout this paper the dynamic eXtended Design Structure Matrix (XDSM) [26] view
from VISTOMS is used to represent the different KADMOS graphs.

4. APPLICATION TO DC-1 MDA

The scenarios described in Section 3.1 should demonstrate the improvements brought by the use of surrogate
models on the optimization of complex workflows in the context of multilevel and multi-partner collaborative
projects. A typical application of these investigations is the former MDA workflow defined and implemented
during DC-1 activities with a realistic complexity of the problem w.r.t. industrial aircraft design (in terms of
number of design competences, amount of coupling ...). Fig. 9 provides an overview of DC-1 MDA in XDSM
format [26].
The objective was therefore the preparation of the workflows for the envisaged scenarios, using the DC-1
MDA as use case. Fig. 10 describes the different steps required to build the "MDA through surrogates"
process:

• Identify the disciplinary tools and their associated domain of variation for each of the inputs.

• Create the associated DOEs and build the associated surrogate models.

• Build the associated workflow within any PIDO framework.

• Run the scenarios.

Next paragraphs will expose the pre-processing modifications applied to DC-1 MDA taking advantage of
KADMOS and VISTOMS capabilities.

CEAS 2017 paper no. 956
Lefebvre, Bartoli, Dubreuil, Panzeri, Lombardi, Lammen, Zhang, van Gent, Ciampa

Page | 8
Copyright c© 2017 by author(s)



4
in
p
.

47
in
p
.

1
in
p
.

1
in
p
.

5
in
p
.

21
in
p
.

2
5
in
p
.

25
in
p
.

1
in
p
.

1
in
p
.

1
in
p
.

1
in
p
.

1
in
p
.

2
0
in
p
.

11
in
p
.

1
8
in
p
.

2
in
p
.

1
8
8
in
p
.

6
1
in
p
.

A
E
R
O
M
A
P

In
it

4
co
n
.

4
co
n
.

4
co
n
.

4
co
n
.

4
co
n
.

4
co
n
.

4
co
n
.

4
co
n
.

3
co
n
.

3
co
n
.

3
co
n
.

10
ou

tp
.

A
S
T
R
ID

10
co
n
.

5
co
n
.

6
co
n
.

A
er
oT

oR
S
M

8
co
n
.

86
2
ou

tp
.

C
os
t

C
al
cu
la
to
r

85
80
0
ou

tp
.

3
co
n
.

21
45

co
n
.

D
L
R

A
E
R
O

S
IZ
E

19
24

co
n
.

21
47

co
n
.

21
62

co
n
.

18
60

co
n
.

11
2
co
n
.

1
co
n
.

9
76

co
n
.

9
7
8
co
n
.

9
7
6
co
n
.

9
7
8
co
n
.

1
1
2
co
n
.

6
5
4
co
n
.

6
54

co
n
.

5
3
6
co
n
.

1
5
47

co
n
.

1
5
4
7
co
n
.

18
ou

tp
.

8
co
n
.

D
L
R

A
er
o

P
er
fo
rm

an
ce

6
co
n
.

6
co
n
.

6
co
n
.

6
co
n
.

6
co
n
.

69
ou

tp
.

1
co
n
.

1
co
n
.

1
co
n
.

D
L
R

F
S
M
S

1
co
n
.

21
36
7
ou

tp
.

3
co
n
.

5
co
n
.

12
co
n
.

33
co
n
.

D
L
R

M
A
S
S

D
T
R
M

7
co
n
.

5
co
n
.

5
co
n
.

5
co
n
.

5
co
n
.

6
ou

tp
.

1
co
n
.

21
49

co
n
.

20
78

co
n
.

19
48

co
n
.

21
50

co
n
.

21
49

co
n
.

D
L
R

M
or
p
h
in
g

14
6
co
n
.

15
co
n
.

1
1
0
2
co
n
.

11
0
0
co
n
.

1
1
02

co
n
.

1
1
0
0
co
n
.

1
6
8
co
n
.

7
5
6
co
n
.

7
56

co
n
.

5
6
0
co
n
.

1
5
61

co
n
.

1
5
6
1
co
n
.

1
ou

tp
u
t

3
co
n
.

5
co
n
.

4
co
n
.

2
co
n
.

E
M
W

E
T

4
co
n
.

5
co
n
.

E
N
G
IN

E
D
E
C
K

In
it

4
co
n
.

4
co
n
.

8
ou

tp
.

3
co
n
.

7
co
n
.

19
34

co
n
.

18
67

co
n
.

17
34

co
n
.

19
40

co
n
.

19
38

co
n
.

21
87

co
n
.

16
4
co
n
.

IN
IT

IA
T
O
R

1
1
3
8
co
n
.

11
3
9
co
n
.

1
1
38

co
n
.

1
1
3
9
co
n
.

1
8
5
co
n
.

7
7
7
co
n
.

7
73

co
n
.

5
8
0
co
n
.

1
7
58

co
n
.

1
7
5
8
co
n
.

74
ou

tp
.

3
co
n
.

M
a
te
ri
a
ls

In
it

6
co
n
.

10
4
ou

tp
.

P
H
A
L
A
N
X

[F
u
ll
L
o
o
k
u
p
]

10
4
ou

tp
.

P
H
A
L
A
N
X

[F
u
ll
S
im

p
le
]

67
ou

tp
.

P
H
A
L
A
N
X

[S
y
m
m
et
ri
c
L
o
o
k
u
p
]

67
ou

tp
.

P
H
A
L
A
N
X

[S
y
m
m
et
ri
c
S
im

p
le
]

3
ou

tp
.

P
R
O
T
E
U
S

6
co
n
.

6
co
n
.

12
6
co
n
.

6
co
n
.

6
co
n
.

6
co
n
.

6
co
n
.

1
3
0
co
n
.

Q
3
D

[A
P
M
]

6
co
n
.

6
co
n
.

12
6
co
n
.

6
co
n
.

6
co
n
.

6
co
n
.

6
co
n
.

1
3
0
co
n
.

Q
3
D

[F
L
C
]

8
co
n
.

6
co
n
.

6
co
n
.

6
co
n
.

6
co
n
.

6
co
n
.

R
S
M
T
oA

er
o

6
co
n
.

6
co
n
.

2
4
co
n
.

2
4
co
n
.

2
4
co
n
.

24
co
n
.

T
O
R
N
A
D
O

A
er
o

D
er
iv
a
ti
v
es

50
ou

tp
.

U
N
IN

A
[H

ig
h
L
if
t]

14
ou

tp
.

U
N
IN

A
[W

in
g
A
n
a
ly
si
s]

Fi
gu

re
9.

O
ve

rv
ie

w
of

th
e

D
C

-1
di

sc
ip

lin
ar

y
to

ol
re

po
si

to
ry

(R
C

G
vi

su
al

iz
ed

w
ith

X
D

S
M

da
ta

flo
w

vi
ew

)

CEAS 2017 paper no. 956
Overview of MDO enhancement in the AGILE project: a clustered and surrogate-based MDA use case

Page | 9
Copyright c© 2017 by author(s)



Figure 10. Description of the approach to optimize the MDA using surrogate models

4.1. DC-1 simplification

Fig. 9 presents the RCG of the full DC-1 MDA process. A first analysis indicated that more than 2000
connections can exist between design competences and that some design competences have more than
one hundred inputs and outputs. In order to reduce the complexity of the problem while keeping as much as
possible its similarity w.r.t aircraft design process, several adaptations were performed:

• Reduction of the number of design competences to be considered, mainly removing the Flight Dynam-
ics assessment part and the Cost assessment part, both used as post processing tools in the DC-1
workflow. In addition, the engine characteristics are fixed. The retained design competences from DC-1
MDA, mainly made of low to medium fidelity tools, are the following:

– Aerodynamics performance provided by DLR (German Aerospace Center)

– High Lift Performance provided by UNINA (University of Naples "Federico II")

– Propulsion system performance provided by CIAM (Central Institute of Aviation Motors)

– Loads and structural sizing provided by DLR

– On-board systems design provided by POLITO (Politecnico di Torino)

– Mission performance provided by DLR

• Slight reduction of the complexity of the optimization problem to be considered compared to DC-1.
Here, only seven inputs, linked to the wing design are selected as global variables (wing area, wing
sweep, aspect ratio, thickness at tip and at kink, twist at tip and at kink) and outputs will be linked
to the aircraft performances, such as weights (fuel weight, MTOM (Maximum Take-Off Mass), OEM
(Operating Empty Mass) . . . ) or low speed characteristics (CLmax).

All these modifications were not sufficient to reduce the dimensions of the coupling variables (ie connections
between the design competences) that would prevent the use of surrogates’ capabilities. Indeed the main
difficulty to build a SM is driven by the input characteristics: their number and their location. Two main sources
of high number of coupling variables can be identified as follows:

1. The coupling between the Geometry and most of the other design competences, such as Aerody-
namic performance one, need as inputs, the whole geometry of the aircraft, stored in multiple CPACS
branches.

2. The coupling between the Aerodynamic performances and the Mission performance as the Mission per-
formance tools need, as inputs, the whole aerodynamic performance map, stored in a CPACS branch.
This lookup table of aerodynamic coefficients is given as function of the mission dependent parameters
Mach, Reynolds Number (Re), Angle of Yaw (AoY) and Angle of Attack (AoA).

In order to reduce drastically the 1st source of coupling, a design competence was introduced in the workflow:
the Aircraft Morphing design competence (provided by DLR) that enables the modification of wing geometry
from a set of design parameters which are not explicitly defined/directly accessible in CPACS. Therefore the
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full wing geometry, representing hundreds of variables can be controlled by less than a dozen parameters.
This design competence was already used for the MDO application of DC-1 as a pre-processing tool and is
now introduced inside the workflow.
For the 2nd source of coupling, another approach was retained through the use of a specific surrogate model
that should embed the Aerodynamic look up table and that is described more in detail in the next paragraph.

4.2. Clustering of design competences

Adding new tools, such as Aircraft Morphing Tool in the workflow, will only lead to reduce the coupling if it
is clustered with the other design competences. For instance, making a cluster of the Morphing tool and a
Structural sizing tool will expose a limited set of inputs, here the wing design parameters, of the cluster and
a limited set of outputs, here the wing weight, as outputs, while keeping the full geometry description as an
internal coupling variables between the clustered tools. As an extension of this approach, it was decided to
make clusters of design competences of the MDA exposing the following characteristics:

• These clusters should exhibit low dimensions of inputs (less than 20) in order to be accurately repre-
sented by a surrogate model.

• These clusters should not have internal feedback coupling between design competences (to prevent
the use of convergence process inside the cluster).

• These clusters should be representative of an aircraft design process.

In order to fulfill those requirements, four clusters were built using the retained design competences.

Aerodynamic Cluster This cluster gathers Morphing tool and aerodynamic performance computations in-
cluding the low- speed configurations. It takes as input the wing design parameters and provides the
lookup tables for aerodynamic coefficients, related to the specified wing design.

On-board systems Cluster This cluster aims at providing the On Board systems performance, in terms of
weights and power, using the wing design parameters and other inputs such as the Fuel Weight and
other operational weights such as MTOM (Maximum Take-Off Mass).

Structural sizing and Weight Cluster This cluster provides the weight breakdown of the whole aircraft, us-
ing as inputs the wing design parameters, the fuel weight and the systems weight. It also contains the
Load and structural sizing competence that sizes the wing structure and computes its weight.

Mission performance Cluster This cluster contains the Mission performance tool and uses as inputs, the
wing design parameters, the operational weights and the Aerodynamic look up tables to run the full
mission and provides the fuel weight.

Fig. 11 provides the FPG of the four clusters. One can notice that, each cluster can contain design compe-
tences of various partners that will be called through AGILE framework.
At this step, two approaches have been identified in order to derive a surrogate model of the Aero Cluster
and link it to the Mission Cluster.

• A two-step approach: In this case the AeroClusterSM predicts - as a function of wing design parame-
ters - a representation of the aero lookup tables, e.g. by predicting polynomial coefficients that will be
transferred to the MissionClusterSM.

• An "all-in-one" approach: In this case the AeroCluster SM directly predicts the aerodynamic coeffi-
cients as a function of wing design parameters and mission parameters (Mach, Re, AoY and AoA). As
such the AeroClusterSM becomes an integrated part of the MissionCluster (and therefore also of the
MissionCluster SM which is to be derived).

Eventually, Fig. 12 summarizes the MDA workflows obtained with the clusters defined above for the two
possible approaches. In agreement with the clusters’ requirements, both MDA are representative of an
aircraft design problem with different disciplines (Aerodynamic, Structure, Performance) coupled together. A
surrogate model of each cluster now needs to be created in order to build the MDA workflow.
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2048 inputs 1 input 429 inputs

AEROMAP Init 4 connections 3 connections 4 connections

DLR Morphing 1948 connections 1561 connections

DLR Aero Performance 8 connections

2 outputs UNINA[High Lift]

8 outputs AeroToRSM

(a) FPG of Aero Cluster

240 inputs 7 inputs

DLR Morphing 1 connection

24 outputs ASTRID

(b) FPG of System Cluster

2099 inputs 212 inputs

DLR Morphing 2078 connections

759 outputs DLR AERO SIZE

(c) FPG of Weight Cluster

2167 inputs 8 inputs 83 inputs

DLR Morphing 2150 connections

RSMToAero 6 connections

69 outputs DLR FSMS

(d) FPG of Mission Cluster

Figure 11. FPG of the 4 retained clusters (2-steps approach)
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(a) two-step approach
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(b) "all-in-one" approach

Figure 12. Workflow(s) of MDA through surrogates with the two different approaches
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5. RESULTS

5.1. DOE

After the formulation of design competence clusters, these have been implemented as collaborative service
oriented workflows, and executed within DOE studies in order to generate the databases for the clusters’
surrogate models. An XDSM view of the clusters DOEs, automatically created by KADMOS (i.e. MDPG),
for the two-step approach are provided in Fig. 13. Each DOE study only exposes from 7 to 11 independent
variables, including wing design parameters (7) and aircraft masses (e.g. Operating Empty Mass (OEM))
as coupling variables (0 to 4) that will be provided by the other clusters. In order to generate the individual
clusters database, the first challenge is the selection of the range of variation of the coupling variables. The
adopted approach was to make use of the results from DOEs performed during the DC-1 optimization activity
Since in the clusters DOEs, the range of variation for the wing shape parameters has been kept similar to the
DOEs performed during the DC-1, the 15 configurations in the DC-1 database have been used to estimate
the range of variation of the coupling variables between the clusters (i.e. inputs of DOE of the clusters).

0, 8:
Coordinator

2: 7 inputs 3: 2041 inputs 4: 1 input 5: 429 inputs

1:
AEROMAP Init

4: 4 connections 5: 3 connections 6: 4 connections

8: 10 outputs
2, 7 → 3:
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3: 7 connections

3:
DLR Morphing 4: 1948 connections 5: 1561 connections

4:
DLR Aero Performance
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5:
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7: 8 connections
6:

AeroToRSM

(a) DOE of Aero Cluster

0, 5:
Coordinator

1: 11 inputs 2: 233 inputs 3: 4 inputs

5: 24 outputs
1, 4 → 2:
DOE

2: 7 connections 3: 4 connections

2:
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(b) DOE of System Cluster
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5: 135 outputs
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2:
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DLR AERO SIZE

(c) DOE of Weight Cluster
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1: 11 inputs 2: 2160 inputs 3: 8 inputs 4: 79 inputs
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2:
DLR Morphing 4: 2150 connections

3:
RSMToAero
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4:

DLR FSMS

(d) DOE of Mission Cluster

Figure 13. XDSM view of the DOE architectures for 4 competence clusters (two-step approach). The XDSMs are a visualization
by VISTOMS package of the MDPG created by KADMOS.

Once the range of each design variable has been determined, the DOE sampling plans have been generated
for each cluster, by using a LHS (Latin Hypercube Sampling) sampling method. The number of DOE samples
was selected to minimize the numbers of calls to the cluster while providing a sufficient accuracy. Thereafter,
the 4 clusters have been integrated and executed as collaborative workflows. The characteristics of the DOE
sampling plan are given in Table 1.

Initial DOE samples Number of design variables

Aero Cluster 40 7

System Cluster 60 10

Weight Cluster 60 10

Mission Cluster 70 11

Table 1. Characteristics of cluster DOE studies database

A collaborative DOE study service approach, has been developed within the DC-2 by DLR with the objec-
tive to facilitate the execution of collaborative DOE studies, whose different steps are performed at different
organization. The nested steps are illustrated in Fig. 14 and briefly addressed in the following.

• Step 1: A DOE sampling plan is generated by a specialized Partner, stored in a dedicated CPACS
study branch, and provided to the Partner which is responsible for the integration and the execution of
the DOE samples via the so-called DOE Study service.
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• Step 2: The Partner responsible for the DOE Study service receives the complete sampling plan, and
the contained input and output quantities are mapped to the parameters which need to be varied within
the specific clusters’ workflows. For the described DOE clusters, the sampling plan quantities have
been mapped to the DLR aircraft geometry morphing tool, which provides the input (a CPACS aircraft)
to the specific cluster’s workflow to be executed for each DOE point. Note that such a cluster workflow
is also hosted at a different Partner, which is responsible for the specific cluster’s workflow integration,
and offered as a remote service to the Partner initializing the DOE sampling plan in the previous step.

• Step 3: The specific cluster’s workflow receives the DOE sample point as input, it is executed as
a remote service requested in step 2. The specific cluster’s workflow is also composed by multiple
competences, which are CPACS compatible and hosted at different Partners’ sites and provided as
remote services. The list of the design competences used in the 4 clusters is provided in Section 4.1.

Figure 14. Collaborative DOE study: nested steps approach

The results obtained within the cluster’s workflows (in step 3) are collected by the DOE Study service workflow
(in step 2) and mapped back as DOE output for each sampling point, and the complete DOE database
is provided back to the Partner initializing the DOE (in step 1). Afterwards, the DOE database stored as
CPACS study branch is forwarded to the Partners responsible for the generation of the cluster surrogate
models, or for the further enhancement of the DOE sampling plan. For all the 4 DOE clusters shown in
Fig. 13, the described three steps have been implemented as individual RCE workflows hosted at different
Partners’ sites. The deployed approach makes use of the AGILE Collaborative Architecture’s elements for
requesting and providing the remote services. The complete process for the DOE sampling generation-
execution-enhancement is fully automated. As described in Section 4.2 each of the DOE has a specific set of
input parameters, and output parameters provided by the distributed design competences which are selected
for the cluster. Therefore, for each of the DOE 4 clusters illustrated by the XDSM in Fig. 13, a selection of
output parameters is shown in Fig. 15, and briefly summarized in the following.

• Aero Cluster: wing planform parameters (aspect ratio and wing area displayed) are provided as DOE
input to the cluster’s workflow composed by the aerodynamics analysis modules provided by DLR and
UNINA (maximum lift coefficient at take-off displayed).

• System Cluster: wing planform (wing area displayed) and design masses (Maximum Take-Off Mass
displayed) are provided as DOE input to the cluster’s workflow composed by the on-board systems
design competence provided by POLITO (mass of the sized on-board systems displayed).

• Weight Cluster: wing planform parameters (wing sweep angle and wing area displayed) are provided
as DOE input to the cluster’s workflow composed by the loads analysis and structural sizing design
competence provided by DLR (operating Empty Mass displayed).

• Mission Cluster: wing planform (wing area displayed) and design masses (Operating Empty Mass
displayed) are provided as DOE input to the cluster’s workflow composed by the mission performance
analysis module provided by DLR (mass of the mission fuel displayed).
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(a) DOE output of Aero Cluster: CLmax at take-off (b) DOE output of System Cluster: Mass on-board systems

(c) DOE output of Weight Cluster: Operating Empty Mass (OEM) (d) DOE output of Mission Cluster: Mass mission fuel

Figure 15. DOE clusters sample points results
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5.2. Surrogate models

5.2.1. Available methods

Thanks to AGILE consortium, multiple methods are available regarding surrogate models (SM) competence.
During DC-2, one of the objective was to make these methods accessible to the partners through their
integration as remote services in one of the PIDO framework, like any other design competence. Multiple SM
competences were investigated in the frame of this use case.

• NLR’s toolbox, called MultiFit [27] which provides a MATLAB based integration of multiple data fitting
methods (e.g. polynomial, kriging, spline, neural network). The toolbox guides the user through the
steps of deriving and delivering an optimal surrogate model. This includes data analysis and selection,
fit method assessment, and deployment of the surrogate model. MultiFit has been used in AGILE to
derive surrogate models of wing MDA, loads analysis, engine behaviour and rudder design. Developed
surrogate models are made available to partners through the Surrogate Model Repository (SMR), which
has also been developed in AGILE [22].

• ONERA’s tool, MOE, a Mixture of Experts technique which combines local surrogate models [28].
Mixture of Experts method [29, 30] for surrogate modeling provided uses a clustering of the training
basis into regions where the function to be approximated is expected to be continuous or at least more
simple. It strongly relies on the Expectation-Maximization (EM) algorithm for Gaussian mixture models
(GMM). With an aim of regression, the inputs are clustered together with their output values by means
of parameter estimation of the joint distribution. A local expert is then built (linear, quadratic, cubic,
radial basis functions, or different forms of kriging) on each cluster and all the local experts are finally
combined using the Gaussian mixture model parameters found by the EM algorithm to get a global
model. MOE has been made available to AGILE partners for different applications [17].

• NOESIS Optimus kernel which provides a set of surrogate models and accuracy evaluation tools. Three
main classes of surrogate models are available:

– Least squares fit for Taylor polynomial (linear, quadratic, cubic order) or user defined model. The
definition of the model terms can be changed by the user or performed automatically to identify
an optimal set of terms.

– Interpolating, either Kriging or radial basis function (linear, thin-plate, quadratic, cubic).

– User: Optimus offers the possibility to calculate a User-defined RSM. This type of models uses
shared libraries and is configured in XML-files.

Generated models can be evaluated from Optimus or exported and integrated in other application as
executable or Functional Mockup Units.

• Surrogate model built by AIRINNOVA is Kriging & co-Kriging [31] based on Matlab DACE toolbox [32].
This process is built initially to provide a "data fusion" technique in AGILE, where a great quantity of low-
fidelity data is coupled with a small amount of high-fidelity data to enhance the accuracy of a surrogate
model. Using DACE toolbox the surrogate model can be built by choosing the proper regression model
(polynomials of order N = 0 (constant), 1(linear) or 2 (quadratic)) and correlation function.

AIRINNOVA provides an alternative (Matlab-license independent) to DACE co-Kriging, Python’s built-in
persistence model (scikit-learn), containing the co-Kriging model parameters corresponding to the co-
Kriging surrogate trained with incoming training data. The co-Kriging (Kriging) predictor is inherently
strongly coupled with its Hessian computation, which will be examined and the suggested new training
data can be provided according to maximum Hessian [17].

5.2.2. Modeling of the Aero Cluster

This subsection analyses multiple methods for creating a surrogate model (SM) of the Aerodynamic analysis
cluster (AeroCluster) and describes the results obtained with the MultiFit toolbox. The AeroCluster takes as
input the wing design parameters. As a result of the performed analysis the AeroCluster provides lookup
tables for aerodynamic coefficients, related to the specified wing design. The lookup tables are given as
function of the mission dependent parameters Mach, Reynolds Number (Re), Angle of Yaw (AoY) and Angle
of Attack (AoA). The lookup tables will be used later on in the Mission performance Cluster, in order to
calculate the actual values of the aerodynamic coefficients and from there contribute to the overall design
objectives, e.g. fuel mass.
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As already mentionned in Section 4.2, two approaches have been identified in order to derive a surrogate
model of the AeroCluster (AeroClusterSM) and relate it to the MissionCluster:

• A two-step approach. In this case the AeroClusterSM predicts - as a function of wing design parameters
- a (representation of) the aero lookup tables, e.g. by predicting polynomial coefficients. This approach
is illustrated in Fig. 16.

• A "all-in-one" (AI1) approach. In this case the AeroClusterSM directly predicts the aerodynamic coef-
ficients as a function of wing design parameters and mission parameters. As such the AeroClusterSM
becomes an integrated part of the MissionClusterSM. This approach is depicted in Fig. 17.

Figure 16. Depiction of the "two-step" approach. For simplicity the other clusters have been left out here.

Figure 17. Depiction of the "all-in-one" (AI1) approach. For simplicity the other clusters have been left out here.

As indicated in Section 5.1, a database of 40 aircraft configurations (with varying wing design parameter
values) have been processed by the AeroCluster. The aero table parameter AoY was not varied and is there-
fore ignored. Below surrogate model derivations are described both for the two-step and the AI1 approach.
In each case the surrogate model is created using a training set based on the first 39 configurations. The
40th configuration is used for validation of the surrogate models. Only the first aerodynamic output Cfx is
considered here, for simplification. The other aerodynamic coefficients (e.g. Cfy, Cfz) could be predicted in a
similar fashion.

Two-step approach With this approach two methods for creating the AeroClusterSM have been applied.

• Method1: Approximation of the aero lookup tables using polynomials and prediction of these
polynomial coefficients (as function of wing design) again using polynomials.

• Method2: Prediction of the aero lookup tables using Proper Orthogonal Decomposition (POD) [33]
and polynomial prediction of the POD coefficients (as function of wing design).

1. Method1: For all configurations the stepwise fit resulted in a 2nd order polynomial (as a function of
Mach, Re and AoA) with 7 coefficients: using the constant term, three linear terms, the cross term
Mach × AoA and the quadratic terms Mach2 and AoA2. Fig. 18 shows that all 40 sets of poly-
nomial coefficients have a piecewise similar order of magnitude. Therefore they could be fitted as
well as function of the design configuration. The sets of polynomial coefficients have again been
stepwise fitted by a 2nd order polynomial, leaving the 40th polynomial out for validation. This last
stepwise fit represents the AeroClusterSM. The 40th polynomial (consisting of 7 coefficients) has
been predicted with the AeroClusterSM and has been applied in order to predict the aero lookup
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table values of the 40th configuration. The results are depicted in Fig. 19. A maximum absolute
Cfx prediction error of less than 0.02 has been achieved. Fig. 19 shows that this corresponds to a
relative error of about 10 percent. Other methods (e.g. kriging) for fitting the set of polynomial co-
efficients have been tried as well, but they gave worse prediction results on the 40th configuration
than the stepwise fit AeroClusterSM. Concluding, the AeroClusterSM derived with this method
predicts 7 polynomial coefficients that can be passed on to the mission cluster for prediction of
the aerodynamic coefficients later on.

Figure 18. Coefficient values of a 2nd degree polynomial (derived with stepwise fit of the aero lookup tables), for all 40 aircraft
configurations

Figure 19. Prediction of the Cfx aero table values on the 40th configuration : Method1 with Nested stepwise polynomial fits

2. Method2: Alternatively, when the lookup table values of Cfx are ordered into one long row (of 192
samples) they can be considered as a "snapshot" of the ith aircraft configuration. This results in
a "snapshot-matrix" A of 40 x 192. A can be reduced using POD. A singular value decomposition

A = U × S × V T

is derived. From S the dominant singular values are selected, in this case the first three. The
matrix U ×S contains the POD vectors (row-wise). The first three columns of this matrix are to be
fitted, as a function of aircraft configuration. The 40th row of U × S is left out and the remaining
39 rows are fitted, again using stepwise fit of a 2nd order polynomial. The 40th POD vector is
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Figure 20. Prediction of the Cfx aero table values on the 40th configuration: Method2 with Stepwise polynomial fit of POD
vectors.

predicted using this polynomial and back transformed to a prediction of the 40th row of A (40th

aero table "snapshot"). The results are depicted in Fig. 20. This result is a maximum prediction
error of less than 0.01, which is better than the validation result with Method1.
Concluding, the AeroClusterSM derived with this method is composed by a stepwise polynomial
fit and POD transformation functions. The AeroClusterSM predicts the full aero lookup table (as
function of wing design parameters) which can be passed on to the mission cluster for prediction
of the aerodynamic coefficients later on.

All-in-one approach With the AI1 approach the 7 wing design parameters and the 3 mission parameters
have been combined, resulting in a dataset of 40 x 192 = 7680 points, with 10 inputs and 1 output (Cfx).
An Artificial Neural Network (ANN) has been fitted on to the first 7488 points, which correspond with
the 39 configurations. One hidden layer with 10 neurons has been used. The aero lookup table values
of the 40th configuration are predicted as validation of the method. The results are depicted in Fig. 21.
This result is a maximum prediction error of less than 0.01, which is comparable to the validation result
with Method2 of the previous approach.

Figure 21. ANN Prediction of the Cfx aero table values on the 40th configuration based on the AI1 approach

Concluding, the AeroClusterSM derived with this approach consists of an ANN that must be integrated
with the MissionClusterSM, as illustrated Fig. 17.
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Similar investigations were performed by other partners on the AeroCluster and similar approach was also
applied to the other clusters once the database was made available. One should note that the objective,
here, was not to benchmark the various SMs of the partners but to make accessible multiple surrogate
Design Competences through the AGILE framework to build the surrogate-based MDA workflow.

5.3. MDA clusters workflow

This paragraph presents the next step of the approach: the building of the MDA workflow of surrogate models
in a PIDO framework. The results shown here were obtained using the Optimus framework and the surrogate
models were provided by NOESIS but, thanks to AGILE framework, this workflow could also be established
using the RCE PIDO framework and surrogate models provided by other partners could be applied (as a
remote competence or as an executable version).
To illustrate the approach, the four clusters have been embedded in a single Optimus MDA workflow depicted
on Fig. 22 that reproduces the simplified connection schema depicted in the XDSM (see Fig. 9). As the
SMs were already available on the same platform, a non-collaborative implementation of the MDA has been
preferred. The MDA does not exploit neither the potentiality offered by Brics to connect remote tools nor the
unified file CPACS to enrich the information space. It has been implemented using a single PIDO platform
and the surrogate models have been deployed on the same workstation used for the simulations. This direct
implementation has been made possible by the clusters created using the knowledge-based part of the AGILE
framework, that minimized the number of variables and connections from the complexity represented in Fig. 9
to something manageable by hand. The information exchange between the cluster has been managed using
the Optimus native variables. The SMs, exported as binary models, have been prepared for execution via
an external evaluator (thus their analysis is triggered from within the workflow, but run independently). The
highlighted blocks in the Fig. 22 are:

Yellow color: Aero Cluster Green color: Structural sizing and Weight Cluster
Red color: On-board systems Cluster Azure color: Mission Cluster

The structure of the workflow can be adapted with minimal efforts to match the collaborative framework
methodology; each colored block can be replaced with a 3-components assembly that performs the CPACS
mapping, Brics task creation and extraction of the output values from the enriched CPACS. The operations
with the surrogate models operated as remote discipline have been successfully tested using the Multi-task
feature of Brics.
There are 2 nested convergence loops (represented by the circular icons on Fig. 22). They are required
as the connections among the tools, which have been severed for the DOEs, have to be re-established to
ensure the MDA functionality; in some cases this implies that a cluster may receive the input before the
corresponding output has been generated by another cluster. To this end, a nominal initialization value,
subsequently refined in the following iterations, has been used. Each loop has been addressed using a fixed
point iteration until the assigned tolerance is reached (difference between 2 successive iterations lesser than
0.1%). The inner loop connects weight and system clusters and is required to ensure the consistency of
the systems weight value (mSystem coupling variable). The outer also includes the Mission cluster and is
mandatory to achieve convergence on the fuel weight (mFuel coupling variable) information. On average to
achieve convergence on both loops, 45 evaluations have to be performed (9 runs of the outer loop, each
requiring 5 runs of the inner). Input values have been gathered on the top of the workflow; the two main array
are InputWingGeometry (top left, which include all the AeroCluster inputs) and the InputMission (top right).
The design variables for Structural sizing and Weight and On-board systems Clusters are either inherited or
generated as output. System and fuel mass are not to be considered independent design variables.
A single run of the non-collaborative MDA takes about 10 seconds; 4 iterations of the internal loop and 5 of
the outer one are required to achieve the convergence requirements. The total number of calls to the SM
evaluator is 46 (Aero 1, Weight 20, Systems 20, Mission 5). The equivalent collaborative workflow requires
around 300 seconds, due to the overhead introduced by data upload and download on the sharedpoint
server. The overhead is particularly relevant using SM because of the significantly reduced execution time
of the modeled discipline, from seconds/minutes to less than a second. The non-collaborative version of the
MDA has been used for the following analysis.
Thanks to the reduced execution time it has been possible to perform a DOE to explore the design space and
investigate the impact of the design variables. A 100 experiments Latin Hypercube Sampling has been used.
The analysis of the Pearson (measure of the linear correlation) coefficients has been reported in Fig. 23.
Values can vary between +1 (total positive linear correlation) and −1 (total negative linear correlation). Colors
are proportional to the absolute value of the coefficient and emphasize outputs that are significantly affected
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Figure 22. MDA through surrogates with 4 clusters

Figure 23. MDA through surrogates, design variable influence on evaluated outputs - Pearson coefficient
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by a specific design variable (i.e. wing mass and wing area). As an example in Fig. 23, are highlighted the
(almost linear) influence that the wing area has on Wing Total Mass, Operative Empty Weight and Systems
Weight and the negative effect on both the evaluated lift coefficients due to wing tip twist.
The MDA has been used to test an optimization aimed at minimize the maximum Take Off Mass with a
constraint on the minimum range. A global search method, the Self Adaptive Evolution [20] has been selected
as optimization algorithm. The method performs an expensive initial exploration of the entire design space but
is robust against local minima. The evolution of design variables, outputs and objective has been reported
in Fig. 24. The colors represent the iteration number; a convergence pattern is clearly visible. The final
configuration has been reported in Table 2. The optimization algorithm selected a thinner, larger wing in order
to minimize the drag and consequently fuel consumption; the range improvement has been accompanied by
an estimated reduction of total fuel mass. This has a negative effect on the (unconstrained) lift coefficients.

Figure 24. MDA through surrogates, parallel coordinates

Start End (983) Low High

Inputs
aspectRatio 10 10.99915 9 11
tcKink 0.11 0.1042 0.1 0.12
tcTip 0.1 0.0971 0.09 0.11
twistKink 0 -0.6882 -3 3
twistTip -1.5 -2.075 -5 2
wingArea [m2] 85 75.2221 75 95
wingSweep 32 30.4007 30 34

Outputs
CLmaxTO 2.2584 2.2234
CLmaxL 2.7255 2.7021
mWing [kg] 4330.23 4108.19
mOEM [kg] 29824.72 29606.31
mSystems [kg] 7059.62 7063.26
mFuel [kg] 2956.61 2452.57
distance [m] 3396172.04 3450220 3450000
reserveFuelMass [kg] 754.65 796.75
mTOM [kg] 44281 44355.64

Table 2. Optimization, initial and final configurations

The optimization has been performed only to test the MDA through surrogates functionality and the achieved
results are for demonstration purposes only. Next step will be to evaluate the optimal configuration with the
real MDA in order to quantify the error induced by the simplified process. Nevertheless, the target workflow,
representative of the DC-1 MDA through the use of surrogate models, was successfully implemented in a
PIDO framework, enabling the explorations of new MDO strategies.
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6. CONCLUSIONS AND FUTURE DEVELOPMENTS

This paper has presented an innovative approach where a complex workflow, representative of a conven-
tional aircraft MDA, has been successfully simplified and implemented using surrogate models for clusters of
disciplines to reduce the computational time. Taking advantage of the improvements brought by the knowl-
edge based architecture, the set-up phase of the process was strongly eased and the clustering of design
competences was investigated in a collaborative way involving all tools’ specialists. A field of improvement
concerns the clustering process which could be partially automated as it is currently an expert-based and
manual process.
During the operational phase, the features implemented in the collaborative architectures, such as DOE ser-
vice workflow, enabled a quick execution of all the DOEs for all the clusters, each one being a distributed
workflow of partners’ design competences. In addition, multiple methods regarding surrogate models (SM)
competence were investigated and SM were made available to the partners in different formats, such as
executable or remote access through a PIDO framework. Eventually, the target workflow, coupling the surro-
gate models of the clusters, was successfully implemented in Optimus and provided encouraging preliminary
results, thus demonstrating the success of the proposed approach.
The next step will be to use the MDA workflow in the two identified scenarios to investigate classical and
innovative MDO formulations, potentially with an increase of complexity (adding local variables in some clus-
ters for instance). In addition, this use case will also be used as a mock-up for testing the automation of the
execution phase of an MDO system, mainly the execution of the DOE strategy, enabled by KADMOS, through
the CMDOWS (Common MDO Workflow Schema) [25] format. Last but not least, the use of surrogate mod-
els for clusters of design competences has proven to be a feasible and effective approach and will also be
applied to novel configurations in the frame of Design Campaign 3 of AGILE.
Another main consideration concerns the propagation of modeling uncertainties induced by the errors as-
sociated to the use of surrogate models. Surrogate model must provide mean value of the output of the
discipline as well as an uncertainty on this mean value. Solving the MDA only based on surrogate models
implies that the quantity of interest is computed approximately (due to the uncertainty associated to each
surrogate). Taking into account the uncertainty associated to each surrogate in the resolution of the MDA
implies the resolution of a stochastic non linear system. In order to solve this system an approach based
on semi-intrusive polynomial chaos expansion has been proposed in [18] and will be applied in this MDA
workflow in order to enrich the surrogate models in area of interest for the objective function.
Significant reduction in aircraft development costs and time to market is essential to achieve cheaper and
greener aircraft solutions. The AGILE project is developing the next generation of aircraft Multidisciplinary
Design and Optimization processes, focusing on the reduction of the aircraft development time at the early
stages of the design process. Many challenges have been identified to ease the optimization of complex
workflows in the context of multi-level and multi-partner collaborative engineering projects that characterize
aircraft design. However, it can be concluded that the technical solutions developed by AGILE, by smart
combination of knowledge based technologies, IT solutions, and MDO strategies provide a fruitful approach
for handling those challenges and therefore contribute to a shorter aircraft development time.
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