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ABSTRACT 

Using of different fidelity computational models and relations between them in the multidisciplinary 

design system is considered. A structural design procedure and optimization methods for aeroelastic 

design of aircraft and wind tunnel models are discussed. An application of the topology-based 

optimization together with the two-level structural sizing method is considered. Main stages of the 

approach to synthesis of structural layouts of aircraft components are described. Some numerical 

examples of analysis and aero-structural optimization of aircraft wings are considered to demonstrate 

the proposed methods and algorithms. The accuracy, reliability and efficiency of using of the 

considered structural models at design studies are discussed. 
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NOMENCLA TURE 

Latin 

C – Vector of generalized coordinates 

F – Objective function  

G – Constraint function 

GJ – Torsion stiffness 

G0 – Reduced stiffness matrix 

K – Global stiffness matrix 

M – Global mass matrix 

Mr – Reduced mass matrix 

Q0 – Vector of generalized forces 

R – Vector of applied forces 

T – Torsion moment 

U – Vector of nodal displacements  

X – Vector of design variables 

f – Polynomial term 

p, q – Integer polynomial powers 

r – Vector of nodal displacements 

t - Time  

x, y, z – Coordinates 

u, v, w – Displacement components 

Greek 

Π – Transformation matrix 

α – correction factor 

λ – eigenvalue 

1 INTRODUCTION 

The design of an aircraft structure and its wind tunnel model is very complex problem. This is due to 

that many operating constraints arising from different technical disciplines, determining the 

performance of the aircraft, should be taken into account. An increase of requirements to the 

lift-to-drag ratio, aeroelasticity characteristics, the stability and the controllability of aircraft causes a 

necessity of the experimental validation of the static aeroelasticity characteristics on elastically-similar 

models in a high-speed wind tunnel (WT). When using modern advanced technologies for 

manufacturing of the models the accuracy of the modeling of the aeroelasticity characteristics 

depends mainly on the accuracy of a computational model of the aeroelastic wind tunnel model 

(AWTM) with chosen similarity scales. Therefore, nowadays the development and research of the 

AWTM computational models of different fidelity is an urgent and important problem. These models 

are intended for an aeroelasticity and strength analysis, for the analytical support of the lab and WT 

tests and for the purposes of design optimization. 
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In recent years, the multidisciplinary design optimization approach is often used in aircraft design to 

solve the problem involving a highly large number of design variables and constraints. This process is 

very time-consuming and, and often in practice, it is necessary to simplify the design problem by 

using mathematical structural models of different fidelity for different design problems and levels. 

Structural optimization can be performed by using the structural models both of the global and the 

local levels. Many technical papers are devoted to the development of the multilevel methods for 

analysis and optimization [1-6]. Two-level approach to structural optimization with stress and panel 

buckling constraints has been developed in the paper [5]. There the optimization problem is solved by 

using different level models in the multidisciplinary design optimization environment. The multilevel 

approach for structural analysis and optimization with taking into account strength, buckling and 

aeroelasticity requirements is presented in [6]. In this case, the considered models are a global finite 

element model for stress/aeroelasticity analysis and a local panel model for buckling analysis and 

optimization. 

The purpose of this paper is to present an approach for aeroelastic analysis and optimization based 

on two-level modeling. Development of agreed mathematical models of different levels is discussed. 

In this method the sizing problem is to determine the structural sizes that will ensure a minimum 

weight while satisfying the numerous constraints which are of different types for many load 

conditions in disciplines such as linear static analysis, normal modes, and static and dynamic 

aeroelasticity. The responses in the disciplines can be analyzed by programs which use the structural 

models of different fidelity. In the developed multidisciplinary design system the problems of 

aeroelasticity and loads are solved by using the discrete-continual model of prescribed forms. The 

finite element model is used for detailed evaluation of stresses and displacements of a structure. Also, 

the application of topology optimization for the determination of a reasonable structural layout 

together with optimization by using the structural models of different level is discussed. Three 

numerical examples on using of the different fidelity computational models for structural analysis and 

optimization are presented. 

2 MULTIDISCIPLINARY SYSTEM WITH DIFFERENT FIDELITY COMPUTATIONAL 

MODELS 

2.1 Flowchart of multidisciplinary design system 

Integrated structural design systems play the important role in the design of aircraft structures [7-

10]. They give an opportunity to increase a number of numerical investigations and improve the 

weight, aerodynamic, strength and aeroelastic performances of aircraft. The automated 

multidisciplinary system ARGON [10] was developed in Central Aero-Hydrodynamic Institute (TsAGI) 

for efficient solution of the problems related with the design of aircraft structures made of metallic 

and composite materials. Mostly, this software package is intended for airframe structural 

optimization, prediction of stiffness/stress/mass distributions, aerodynamic characteristics, loads and 

aeroelastic characteristics of aircraft at the preliminary design stages. It is based on the common 

initial data for the structural models of different fidelity and it integrates the following disciplines: 1) 

linear aerodynamics; 2) flight loads with account of structural elasticity; 3) structural analysis by using 

the models of prescribed form method (PFM) and finite element method (FEM); 4) structural 

optimization; 5) modal analysis; 6) aircraft static aeroelasticity; 7) flutter; 8) aeroservoelasticity. 
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Figure 1: Interaction between the system modules 
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The main modules of the system and interaction between them are presented in Fig. 1. The 

aeroelasticity/strength design cycle starts with calculation of the aerodynamic and inertial loads for 

the various maneuver parameters of aircraft. Structural and aeroelastic analyses are performed with 

using of the model of PFM [10]. The optimization under both strength constraints for obtained loads 

and aeroelasticity constraints is performed. The loads for the optimized elastic structure are 

calculated again, and new optimization is carried out for the loads on elastic aircraft. Optimization 

results for the first level model give: the extreme load cases for structural parts with their 

corresponding load distribution, the preliminary structural sizes, the stiffness requirements as the 

constraints on the generalized displacements, etc. 

The results from optimized PFM model are used to form initial data for the detailed structural design 

by the finite element (FE) model. Based on the FEM the stresses and strains can be evaluated more 

accurately. Optimization of the design parameters under strength, stiffness, frequency and buckling 

constraints can also be performed using this model. Finally, the finite element stiffness/mass matrices 

for the optimal design variables can be transformed into corresponding matrices of the PFM model. 

This makes it possible to verify the aeroelastic characteristics of aircraft. The design cycle is 

completed if the strength, buckling and aeroelasticity constraints are satisfied. 

2.2 Different fidelity computational models 

The PFM structural model of aircraft consists of flat elastic surfaces that model flexibility of aircraft 

components such as wing, tails, fuselage, etc. The structural displacements of the aircraft 

components are represented as polynomial functions of spatial coordinates. The stiffness and mass 

parameters are set by the user for each elastic surface by using elements of different types. These 

elements are concentrated mass, isotropic, orthotropic and laminated panel, plate, beam etc. The 

local coordinate system for an elastic surface is such that its plane x0y coincides with the surface 

plane. Normal displacements w(x,y,t) of the elastic surface can be expressed by follows: 

  
1

(t) (x,y)Cfw(x,y,t)= kk

N

k=
 , where   0,1,...=,    ,),( kk

qp

k qpyxyxf kk  (1) 

The coefficients Ck(t) are the generalized coordinates of the PFM. The polynomial function fk can be 

chosen for an elastic surface by different ways. Also the generalized coordinates can be added to 

describe the in-plane displacements. The elastic surfaces are combined into one analytical model by 

using springs and damping elements. They give possibility to model different attachment conditions 

between elastic surfaces. The Ritz method for minimization of total energy is employed to form the 

linear system of equations for static and modal analysis. Stiffness matrix and structural damping 

matrix of the PFM model in common case are fully filled ones while mass matrix consists of the  

diagonal matrix blocks. The paper [10] describes using of stiffness, structural damping and mass 

matrices for aeroelasticity analysis in details. Also, knowing the structural displacements the stresses 

and strains can be simply computed from equations for beams and plates. The particular cases of the 

PFM model are equivalent plate model and equivalent beam model. 

The FEM structural model is most commonly employed for the detailed analysis of structural 

displacements and stresses. Structural analysis modules with using FEM contain a wide variety of 

isoparametric one- and two-dimensional finite elements: membranes, shells, beams and rods. 

Additional non-structural masses can be included in structural model. Isotropic, orthotropic and 

composite materials can be treated in the programs. Nodal displacements in static analysis are 

determined from solution of set of linear algebraic equations:  

RKU   (2) 

where K is stiffness matrix, U are vectors of unknown nodal displacements and R are vectors of 

applied forces for several considered load cases. This sparse set of linear equations is solved by using 

the advanced direct sparse solver. Obtained displacements are used for determination of strains and 

stresses in finite elements. Computation of eigenvalues and vectors is performed for solution 

problems on free structural vibration and general buckling analysis. The program allows determining 

several eigenvectors that correspond to the first lowest eigenvalues by solving the problem: 

MUKU  , where M is the structural mass matrix for the vibration problem or the geometric 

stiffness matrix for the buckling problem. 
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The aerodynamic and inertial loads for flexible aircraft that are obtained by using the simpler PFM 

model can be automatically transferred to nodes of the finite element mesh. 

2.3 Structural optimization methods 

The structural design problem is formulated as a conventional problem of mathematical 

programming: 

minimize       F (X) (3) 

subjected to constraints    Gj (X) 0, j=1,…, M  (4) 

xi
L  xi  xi

U ,  i=1,..., N. (5) 

The vector of the design variables X in structural design problem includes the transverse sizes of 

elements and the variables which define the shape of structure. The objective function F (X) is the 

weight of structure. It is a linear function of the design variables when they are the transverse sizes 

of elements and a nonlinear function in the case of the shape design variables. The constraints Eq. 4 

can include constraints on the stresses, displacements, natural frequencies, buckling of panels, 

aeroelastic lift effectiveness, aileron effectiveness, and flutter velocity. They are highly nonlinear and 

implicit functions with respect to the design variables. The values xi
L and xi

U in the constraints Eq. 5 

are correspondingly the lower and upper bounds of the design variables. Two major numerical 

approaches for solving structural optimization problem Eq. 3 - Eq. 5 are used in the multidisciplinary 

system. The first approach is based on the optimality criteria and the second one is based on the 

mathematical programming methods.  

The main advantage of the optimality criteria methods is their efficiency in obtaining the near-optimal 

solutions independently of the number of design variable. Often they are closely related with a 

physical nature of the structural response. For example, the stresses in an optimal homogeneous 

structure under only one load case have a maximum allowable value. The obtaining algorithms in the 

optimality criteria approaches are based on simple recurrence relationships for the different types of 

the constraints. The following optimality criteria algorithms have been implemented in the 

multidisciplinary system: 

 Fully-stressed design (FSD) algorithm; 

 Algorithm with compensation of violated stress constraints; 

 Algorithms with stress and displacement constraints; 

 Algorithm of equal-stability structural panel; 

 Topology optimization based on the FSD algorithm; 

 Topology optimization based on the criterion of uniform specific strain energy; 

Three mathematical programming methods have been implemented in the multidisciplinary system: 

 Gradient projection method; 

 Sequential quadratic programming method; 

 Modified Pshenichny method. 

The brief description of these methods is given in the paper [11] where the particular attention is 

paid to the modification of the Pshenichny method. 

2.4 Relations between matrices of FEM and PFM models 

Here we represent how the stiffness and mass matrices for the equivalent plate model as a particular 

case of PFM model can be calculated from the corresponding matrices of FE models. It gives 

possibility to form the data for the aircraft lifting surfaces to perform aeroelasticity analysis by using 

first level model. For more common cases the solution method of this problem is described in the 

paper [12]. In static analysis the displacements u(x, y, z) and v(x, y, z) of the equivalent plate in 

accordance with the Kirchhoff hypothesis are determined through the transverse displacements 

w(x, y): 

y

w
zzyxv

x

w
zzyxu









 ),,(,),,( . (6) 

Taking into account Eq. 1 the transverse displacements w(x, y) in static analysis can be represented 

as polynomial function of the non-dimensional coordinates x  and y : 
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
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where pk and qk are integer polynomial powers, N is the number of the polynomial terms, Ck are 

unknown coefficients. 

To build a correspondence between the models, we write the displacements in the nodes of a finite 

element mesh (vector U) in the form of polynomial functions as follows: 

ΠCU  , (8) 

where the components of matrix Π in accordance with Eqs. 6 and 7 are calculated by the following 

formulas: 

jjjjjj
q
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,13
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,23 ,, . (9) 

Now, at the established relationship between the nodal displacements U and the generalized 

coordinates C (Eqs. 8 and 9) the stiffness matrix of FE model can be replaced by the equivalent PFM 

stiffness matrix from the condition of equality of the strain energies for the considering models. We 

have the following equation: 

KrrCGC T0T  , (10) 

where G0  is the reduced stiffness matrix for the equivalent plate model. 

Substituting Eq. 7 into Eq. 10 we obtain CΠKΠCCGC TT0T  . From here we find the expression for 

the reduced stiffness matrix 

KΠΠG T0  . (11) 

The vector of generalized forces Q0  in the prescribed form method can be found from the condition of 

equality of the work done by external forces: ΠCRCQrR TT0T  , or 

RΠQ T0  . (12) 

The above relations (Eq. 11 and Eq. 12) are derived under the assumption of modelling the lifting 

surface by a thin symmetrical plate. Therefore, when implementing the presented matrix operations 

the structural layout of the lifting surface should be symmetrised. Note that in the structural dynamics 

problem it is also necessary to have the mass matrix. If we have the finite element mass matrix M for 

a lifting surface then it is easy to derive the reduced mass matrix Mr for PFM (equivalent plate model) 

from the equality of kinetic energies. This matrix can be calculated analogously to Eq. 11: 

MΠΠM Tr  . 

It should be noticed that the assembled stiffness matrix of FE model for a lifting surface may be 

singular without excluding the degrees of freedom providing absence of displacement of the structure 

as a rigid body. That is because the prescribed forms of displacements in the PFM are chosen to 

satisfy to some specified boundary conditions. Unknown generalized coordinates are determined from 

the solution of the equation of equilibrium for generalized forces: 00 QCG  . The reduced stiffness 

G0  and mass Mr matrices can be used in the multidisciplinary system for efficient solution of the static 

and dynamic aeroelasticity problems. 

The comparative analysis of numerical results for the above procedure for reducing the stiffness/mass 

matrices both for test examples and aircraft lifting surfaces shows that the developed method 

provides reliable results on the modeling of elastic and mass properties. Minor differences in 

displacements of lifting surfaces by using the FEM and the proposed method based on the PFM are 

due to that the relatively small number of polynomial terms is usually used in the prescribed form 

method and also the equivalent plate model, unlike the FEM, assumes symmetry in thickness. The 

displacements at the tip part of realistic lifting surfaces for the reduced models are usually 5-7% less 

than for the FE model. Nevertheless, such a difference can be reduced by correcting the reduced 

stiffness matrix based on the results of finite element calculations. 
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Consider the calculating transverse displacements at n selected nodal points for 
lcN load cases: il

Fv are 

for the FEM model and il
Rv are for the reduced PFM model. We introduce the correction coefficient α  

for the reduced stiffness matrix, such that the corrected reduced stiffness matrix is calculated by the 

formula KΠΠG Tc  . Due to the linearity of the static problem, the displacements on the reduced 

model will change by a factor of /1 . We apply the least squares method to find the minimum of the 

sum of the squares of the displacements )(S : 

 
lcN

l

n

i

il
R

il
F wwS 2)

1
()(


 . 

Solving this problem we obtain the following expression for the correction factor:  

 
lc lcN

l

N

l

n

i

il
R

il
F

n

i

il
R www /)( 2 . (13) 

Application of the described method for individual aircraft components makes it possible to generate 

PFM analysis models of significantly smaller dimensions for the solution of aeroelasticity problems and 

to obtain reliable results when performing multidisciplinary design studies on models of different 

levels. 

2.5 Analysis models in topology-based structural design procedure  

It is well-known that the application of topology optimization for determination of reasonable 

structural layout usually results in advanced designs. In this case computational model is built on the 

basis of 3D finite elements. But weight reducing for the realistic structure is achieved after the sizing 

optimization of some interpreted structural layout for which shell/beam model is used. Below we 

discuss a novel approach which combines modern topology optimization methods with two-level 

sizing optimization technique. 

The general process of the structural design procedure is presented in Fig. 2 and it includes the 

topology optimization module that allows to search of reasonable structural layouts subjected to 

several load cases. The first stage is topology optimization. The procedure begins from specifying of 

geometric outlines that serve as initial data for aerodynamic analysis and topology optimization. For 

topology optimization they define design domain, some part of which is supposed to be fixed and 

another part is subjected by external loads. The first step is preparing of the solid FEM model for 

topology optimization and the aerodynamic model for calculation of loads of some extreme load 

cases. Then, a set of topology optimizations with different control parameters to reveal where load-

bearing material should be located in global sense is performed. The optimization results are 

interpreted to find out the location of the primary structural elements. The second stage of the 

procedure is design of the structural elements in the interpreted thin-walled structural layouts. It 

includes shape and sizing optimization with the aim to minimize structural weight under 

stress/buckling/flutter constraints. The auxiliary optimization algorithms in this approach are based on 

optimality criteria and mathematical programming methods. The final stage is to identify the best 

structural layout by comparison of the obtained structural weights. 

CAD, manufactureCAD, manufacture

Engineering interpretationEngineering interpretation

Solid model

Topology optimizationTopology optimizationSizing optimizationSizing optimization

Design modelsDesign models

 

Figure 2: Design procedure 
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The first stage is characterized by the following aspects. It is important to correctly transfer pressure 

loads from aerodynamic model to the FEM model. It can be performed by interpolation of the 

obtained pressures with using polynomial function of nodal coordinates on outer surfaces of the 

model. A set of topology optimizations with different control parameters and different load cases 

should be performed to reveal adequately in global sense where load-bearing material is reasonably 

to locate. A design engineer should use some conventional technical solutions for missing information 

at interpretation of topology optimization results. 

On the second stage the structural optimization problem can be solved by different methods and 

approaches. It can be solved sequentially by introduction of additional constraints during optimization 

process or by application of the developed global-local methods with using structural models of 

different fidelity. Another important aspect is account of aeroelasticity requirements. Note that some 

extra design cycles can be needed to take into consideration effect of structural elasticity. 

2.6 Beam structural model for design studies of aeroelastic models 

Modern commercial FE-based software is widely applied in design of elastic-similar and dynamically-

similar models of aircraft which are used for testing in WTs. Often, in the development of such 

models, the beam structural model can be used where the stiffness properties of the structure are 

modeled using the given distributions of bending and torsion stiffness characteristics [13]. For 

example, such approach is relevant for design of AWTM fuselage, high-aspect ratio wing, helicopter 

tail boom, etc.  

Calculation of the bending stiffness characteristics for beam sections is not difficult problem, but the 

determination of torsion stiffness is a rather complex problem consisting in solving partial differential 

equations. It is related with the classical Saint-Venant problem for torsion of prismatic rods with an 

arbitrary cross section and it is reduced to solution of two-dimensional Laplace equation for warping 

function or Poisson equation for the stress function. In the framework of the multidisciplinary system 

several methods are developed for calculation of the torsion stiffness of cross sections of arbitrary 

shape, including the presence of cavities in them. The methods and algorithms are presented in 

details in papers [14]. Below we consider only an example of application of them to form beam 

models and discuss accuracy, reliability and efficiency of them at design studies. 

3 ILLUSTRATIVE EXAMPLES 

3.1 Wing example 

Let us demonstrate the above method for reducing the FEM model to the PFM model by the example 

of a wing of a supersonic passenger aircraft. The deformation of the wing structure is studied for two 

load cases at cruise flight with M=1.4 and M=2.05. The aerodynamic and mass models of the wing 

have been prepared in the framework of the multidisciplinary system. The FE model of the wing 

(Fig. 3) was previously created and it used for computing structural elasticity by application the 

reduction procedure. The FE model has 1556 elements and 456 nodes. 
 

S11 

 
Figure 3: Finite element model of wing 

The calculated aerodynamic and inertial loads on the first-level model of the ARGON system were 

transferred to the nodes of the upper wing panel of the FE model by a statically equivalent way, and 

static analysis was performed to determine the wing displacements. Then, the FE stiffness matrix of 

the wing structure was reduced to the stiffness matrix of the equivalent plate model, the deflections 

of which are determined by a polynomial of the 6th order along the wing span and 4th order in the 

stream-wise direction. 
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The reduced PFM stiffness matrix was used to calculate the loads on the wing taking into account its 

elasticity. These obtained loads iteratively used for the calculation of displacements for the elastic 

wing. It was required to carry out two iterations to correctly take into account of the effect of 

elasticity on the aerodynamic loads. The wing displacements for the load case at M=2.05 after the 

finite element analysis are shown in Fig. 4. The curves of deflections of the wing along the spar #11 

(marked as S11 in Fig. 3) are given in Fig. 5 for the FEM structural models and the PFM models with 

the reduced stiffness matrices. As can be seen, the difference in the displacements at the wing tip of 

two models is less than 5% for both load cases. Moreover, the application of the correction factor of 

the stiffness matrix (Eq. 13) makes it possible to reduce this difference to less than 2%.  
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Figure 4: Wing displacements, cm Figure 5: Displacements for different 

structural models 

The resulting stiffness matrix for the PFM model was used to determine the aeroelastic characteristics 

of the supersonic passenger aircraft. 

3.2 Optimizat ion of wing structural layout 

In this numerical example structural optimization of helicopter wing is considered. The baseline wing 

with traditional wing-box structure has mean aerodynamic chord of 1.3 m and the wingspan of 5.7 m. 

The extreme load case corresponds to a flight of helicopter at maximum angle of attack and flight 

with M of 0.3. The weight of the baseline structure, satisfying to strength, buckling and aeroelasticity 

requirements, is 69.5 kg. The purpose is to reduce the structural weight by using the topology-based 

optimization approach. To determine aerodynamic forces in extreme load cases and to perform 

aeroelasticity analyses an aerodynamic model of the wing is created by using the wing outer 

geometry. This geometry also serves for generation of a solid finite element model that is used in 

topology optimization. Topology optimization is carried out to minimize compliance at saving 30 

percent of initial solid model weight in the final design. The obtained pattern where the load-bearing 

material should be located is presented in Fig. 6. This optimization result is interpreted as the 

traditional thin-walled structural layout with spars, ribs, skins. Seven interpretations with different 

number of spars, with/without additional sloped ribs were considered at design studies. One of such 

interpretations is shown in Fig. 6 by the bold lines; the shell/beam FEM model is shown in Fig. 7. For 

all the interpreted layouts the global shell/beam FEM models were generated. The optimization 

results on the global FEM models with taking into consideration of strength/buckling/aeroelasticity 

constraints were obtained. The best structural layout is the three-spar layout with weight of 42.4 kg. 

This weight is less by 37% than the weight of the baseline wing structure.  

For some wing upper panels the buckling constraints become active. This is due to the fact that upper 

panels have smooth skin (no stringers). It is obvious that the stiffened panel is more effective to 

resist buckling. So addition of stringer elements is necessary to include. Addition of such elements in 

global finite element significantly increases both the number of degrees of freedom and the number 

of design variables (DV). Some of new design variables related with stringer elements are geometric 

and they define stringer shape. Therefore, it is necessary to consider the design problem with using 

local models of panels. 
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Figure 6: Topology optimization result and 

its interpretation 

Figure 7: Shell/beam FEM model of 

interpreted structural layout 

In the local optimization problem the design variables are the number of stringers, thicknesses of 

stringer elements, the stringer depth and skin thickness. In this research the shape of stringer section 

is rectangular, and we have four DV for each panel. Only upper wing panels are considered because 

they are under the action of compression loads. Figure 8 shows relation between global FE model and 

local one for a separate panel. 

Global FEM model

Local FEM model

 

 Figure 8: Global and local FEM models  

Iterative global-local optimization was performed when stringer sizes are treated as design variables 

in local panel model. Some details of this procedure are following. The stress resultants in the 

elements of the local model are taken from the global model. The stringer and skin sizes are defined 

by parametric change of the number of stringers and the stringer depth in the local optimization. So it 

is needed re-meshing of the local model of panel for different parameters. It can be noted that the 

optimal number of stringer and stringer depth can be very different for adjacent panels. It is difficult 

to include such manufacturing constraint into design procedure. Finally the best layout after global-

local optimization is the two-spar wing with weight of 36.3 kg. The weight was decreased by 16.8% 

in comparison with weight after global optimization. In summary, the weight benefit is 47.8 percent if 

the obtained two-spar wing with additional ribs at the end part compare with the conventional wing 

structural design. 

3.3 Torsion stiffness of AWTM wing cross section 

In this example a geometrically complex cross-section of the high-aspect ratio wing of aeroelastic 

model is considered. To determine its torsion stiffness two different analysis approaches are applied. 

In the first approach the solid FE model used for the beam-like structure shown in Fig. 9.  

A

A

Section A-A 

A

A

 
 

Figure 9: Solid FEM model Figure 10: Deformed structure (2nd load 

case) 
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The span of the structure is 2 m, its width is 0.394 m and minimum thickness of the structural section 

is 2 mm. Finite element model has more than 1 million tetrahedral elements with quadratic 

approximation and more than 3.5 millions degrees of freedom. Structural material is steel. All 

displacements of the root part is fixed and at the tip part the torsion moment is applied as pair of 

forces of 1000 N. Two load cases are considered. In the first one the moment arm is 0.046 m, and in 

the second one is 0.2697 m. The location of the applied forces is shown in Table 1. The deformed 

structure at acting forces of the second load case is shown in Fig. 10. It can be seen that the tip 

section is slightly curved under the action of such a load. So in this case it is difficult to uniquely 

define what is considered a twist angle. For the FEM model we define twist angle as arctangent of the 

ratio of the difference in vertical displacements for the nodes, in which the forces are applied, and 

distance between these nodes. 

In the second approach the torsion stiffness for the considered section was calculated by using the 

finite element method with triangles of quadratic approximation and the method of the fundamental 

solutions for the two-dimensional problem. The twist angle per length of the beam can be calculated 

by formula: T/GJθ  , where T  is the torsion moment and GJ is torsion stiffness. The obtained 

values of the torsion stiffness by two methods are very close, 56459 Nm2 and 56500 Nm2, 

correspondingly. 

Table 1: Comparison of twist angles, radian 

Load case Solid FEM model Beam model Difference, % 

Moment arm 0.046 m
 

8.7111·10-4 8.8255·10-4 1.3 

Moment arm 0.2697 m
 

4.9440·10-3 5.1744·10-3 4.5 

 

Comparison of the twist angles at the tip section obtained by the FEM and the beam models is given 

in Table 1. The results for a fairly complex cross section computed by both models are in good 

agreement. Note that the computation time for the FEM model takes 2609 seconds, while for the 

beam model it is a few seconds. 

4 CONCLUSION 

The paper proposes the aeroelastic design approaches with using different fidelity structural models. 

Using of the reduced stiffness matrix for the equivalent plate model allows computing the elastic 

displacements of wing in the multidisciplinary design system with good accuracy. Application of the 

models of different level in the topology-based structural optimization gives possibility to obtain 

optimal structural layout of wing with taking into consideration of strength, buckling and aeroelasticity 

constraints. The developed multidisciplinary approaches used different fidelity models shows its 

efficiency and usefulness in the design process of complex aerospace structures and further they can 

be used in modern design practice. 
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