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ABSTRACT 

In this work, a novel flight test approach for accurate aerodynamic parameter estimation is designed. 
As low aspect ratio mini aerial vehicles have highly nonlinear aerodynamics, 3
used for elevator deflection to perturb aircraft at two different trim conditions, at low angle
(high velocity) and high angle-of
to estimate the parameters. Realistic flight data is generated u
Equation-error estimation technique is used for parameter estimation. Parameter estimates using 
multiple trim flight data are compared with parameter estimates using different trim flight data. This 
comparison shows that multiple trim flight data is effective to get accurate estimates for a 
aircraft model, even by using simple least square estimation technique.
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NOMENCLATURE 

MAC – Mean Aerodynamic Chord
MAV – Mini Aerial Vehicle 
NAL – National Aerospace Laboratory
OBES – On Board Estimation System
𝐽 – Cost function 
𝑁 – No. of samples 
𝑆 – Wing area 
𝑇 – Thrust 
𝑉– Velocity 
𝑍 – Measurements 
𝑏 – Wingspan 
𝑐̅ – Mean Aerodynamic Chord 
𝑔 – Gravitational acceleration 
𝑚 – Mass 
𝑛 – No. of parameters 
𝑞 – Pitch rate 
𝑢 – Velocity component in body 𝑥
𝑤 – Velocity component in body 
𝛼 – Angle-of-attack 
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In this work, a novel flight test approach for accurate aerodynamic parameter estimation is designed. 
As low aspect ratio mini aerial vehicles have highly nonlinear aerodynamics, 3

deflection to perturb aircraft at two different trim conditions, at low angle
of-attack (low velocity). A combination of these two flight data is used 

to estimate the parameters. Realistic flight data is generated using complete nonlinear
error estimation technique is used for parameter estimation. Parameter estimates using 

multiple trim flight data are compared with parameter estimates using different trim flight data. This 
that multiple trim flight data is effective to get accurate estimates for a 

aircraft model, even by using simple least square estimation technique. 

Parameter Estimation, Mini Aerial Vehicle, Maneuvers 

c Chord 

National Aerospace Laboratory 
On Board Estimation System 

𝑥-axis 
Velocity component in body 𝑧-axis 

𝜌 – Air density 
𝛿௘ – Elevator deflection angle
𝜖 - Error 
Θ – Parameters 
𝜃 – Pitch angle 
𝐶஽ – Drag coefficient 
𝐶௅ – Lift coefficient 
𝐶ெ – Pitching moment coefficient
𝐹௑ – Force component in body 
𝐹௓ – Force component in body 
𝐼௬௬ – Moment of inertia about 
𝑀௒ – Pitching moment 
𝑎௫ – Acceleration component in body 
𝑎௭ – Acceleration component in body 
𝑥ா – 𝑥-coordinate of aircraft’s location in 
Earth-fixed frame 
𝑧ா – 𝑥-coordinate of aircraft’s location in 
Earth-fixed frame 
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Parameter Estimation of a Mini Aerial Vehicle 

In this work, a novel flight test approach for accurate aerodynamic parameter estimation is designed. 
As low aspect ratio mini aerial vehicles have highly nonlinear aerodynamics, 3-2-1-1 doublets are 

deflection to perturb aircraft at two different trim conditions, at low angle-of-attack 
attack (low velocity). A combination of these two flight data is used 

nonlinear aircraft model. 
error estimation technique is used for parameter estimation. Parameter estimates using 

multiple trim flight data are compared with parameter estimates using different trim flight data. This 
that multiple trim flight data is effective to get accurate estimates for a nonlinear 

Elevator deflection angle 

Pitching moment coefficient 
Force component in body 𝑥-axis 
Force component in body 𝑧-axis 
Moment of inertia about 𝑦-axis 

Acceleration component in body 𝑥-axis 
Acceleration component in body 𝑧-axis 

coordinate of aircraft’s location in 

rcraft’s location in 
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1. INTRODUCTION 

Applications of mini aerial vehicles (MAVs) are increasing day by day and they are widely used for 
surveillance. For completing these tasks, the MAVs must be flying in a controlled manner. Controlling 
any system requires accurate model of the system. Parameter estimation techniques are essential for 
getting an accurate mathematical model used for simulation and con
incapable of carrying accurate sensors due to sensors' 
parameter estimation. In addition to that, MAV aerodynamics 
angle-of-attack) and high airspeed (low angle
Research area of exciting aircrafts with various perturbations for quality flight data is considerably 
explored. Doublets, 3-2-1-1 doublets, improvised 3
open loop parameter estimation [1] [2]. Sine waves of varied amplitude and frequency or frequency 
sweeps are also explicitly used for frequency domain parameter estimation. [3] Dryden space 
research center has developed single
devices, each control device at a time. They also developed a system to merge these sequential 
inputs with pilot inputs or the controller inputs which was named on board estimation system (OBES) 
for closed loop parameter estimation [4]. Eugene
inputs which are also merged with the pilot or controller inputs [5]. But perturbations like frequency 
sweep, sine waves or optimized inputs are either extremely hard to perform or they require additional 
hardware system. 3-2-1-1 doublets are relatively easy inputs to apply and excites wide range of 
frequency [6] [7] but may not provide good estimates for a highly nonlinear aircraft. Instead of 
designing maneuvers for quality flight data or using any nonlin
multi-trim flight test approach is proposed.
It is observed that accurate parameter estimation can be done even with simple 3
multiple trim flight data is used. Black
aerodynamic model. Least square estimation technique is used for parameter estimation of Black
MAV. The results show that ordinary least square can provide accurate parameter estimates if 
multiple trim flight data is used. 
 
2. BLACK-KITE MAV 
 
In the present work, Black-kite MAV
tunnel by National Aerospace Laboratory (
mentioned in Table 1. 

Table 1: Dimensional Characteristics of Black

MAV Characteristics
Mass (kg)
Mean Aerodynamic Chord (MAC) (m)
Wingspan (m)
Wing area (m
Moment of Inertia about y
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Applications of mini aerial vehicles (MAVs) are increasing day by day and they are widely used for 
. For completing these tasks, the MAVs must be flying in a controlled manner. Controlling 

any system requires accurate model of the system. Parameter estimation techniques are essential for 
getting an accurate mathematical model used for simulation and control law development. MAVs are 
incapable of carrying accurate sensors due to sensors' weights; it brings in additional challenge in 
parameter estimation. In addition to that, MAV aerodynamics may be different at low airspeed (high 

airspeed (low angle-of-attack). 
Research area of exciting aircrafts with various perturbations for quality flight data is considerably 

1 doublets, improvised 3-2-1-1 doublets are used widely for time domain 
timation [1] [2]. Sine waves of varied amplitude and frequency or frequency 

sweeps are also explicitly used for frequency domain parameter estimation. [3] Dryden space 
research center has developed single-surface inputs which are sequential inputs to diffe
devices, each control device at a time. They also developed a system to merge these sequential 
inputs with pilot inputs or the controller inputs which was named on board estimation system (OBES) 
for closed loop parameter estimation [4]. Eugene Morelli developed optimized orthogonal multi
inputs which are also merged with the pilot or controller inputs [5]. But perturbations like frequency 
sweep, sine waves or optimized inputs are either extremely hard to perform or they require additional 

1 doublets are relatively easy inputs to apply and excites wide range of 
frequency [6] [7] but may not provide good estimates for a highly nonlinear aircraft. Instead of 

for quality flight data or using any nonlinear estimation technique, a novel 
trim flight test approach is proposed. 

It is observed that accurate parameter estimation can be done even with simple 3
multiple trim flight data is used. Black-kite MAV is taken as test vehicle which has highly nonlinear 
aerodynamic model. Least square estimation technique is used for parameter estimation of Black
MAV. The results show that ordinary least square can provide accurate parameter estimates if 

 

MAV data is used which is designed, fabricated and tested in a wind 
tunnel by National Aerospace Laboratory (NAL), Bangalore. Its dimensional characteristics are 

 

Figure 1: Black-kite MAV [8] 

Table 1: Dimensional Characteristics of Black-kite MAV

MAV Characteristics Values 
Mass (kg) 0.3 
Mean Aerodynamic Chord (MAC) (m) 0.083 
Wingspan (m) 0.3 
Wing area (m2) 0.042 
Moment of Inertia about y-axis (kgm2) 5.6345 x 10-4 
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Applications of mini aerial vehicles (MAVs) are increasing day by day and they are widely used for 
. For completing these tasks, the MAVs must be flying in a controlled manner. Controlling 

any system requires accurate model of the system. Parameter estimation techniques are essential for 
trol law development. MAVs are 

it brings in additional challenge in 
different at low airspeed (high 

Research area of exciting aircrafts with various perturbations for quality flight data is considerably 
1 doublets are used widely for time domain 

timation [1] [2]. Sine waves of varied amplitude and frequency or frequency 
sweeps are also explicitly used for frequency domain parameter estimation. [3] Dryden space 

surface inputs which are sequential inputs to different control 
devices, each control device at a time. They also developed a system to merge these sequential 
inputs with pilot inputs or the controller inputs which was named on board estimation system (OBES) 

Morelli developed optimized orthogonal multi-step 
inputs which are also merged with the pilot or controller inputs [5]. But perturbations like frequency 
sweep, sine waves or optimized inputs are either extremely hard to perform or they require additional 

1 doublets are relatively easy inputs to apply and excites wide range of 
frequency [6] [7] but may not provide good estimates for a highly nonlinear aircraft. Instead of 

ear estimation technique, a novel 

It is observed that accurate parameter estimation can be done even with simple 3-2-1-1 doublets if 
ch has highly nonlinear 

aerodynamic model. Least square estimation technique is used for parameter estimation of Black-kite 
MAV. The results show that ordinary least square can provide accurate parameter estimates if 

data is used which is designed, fabricated and tested in a wind 
), Bangalore. Its dimensional characteristics are 

kite MAV 
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From the wind tunnel test data provided by NAL, lift coefficient
moment coefficient 𝐶ெ are expressed as functions of angle
These aerodynamic coefficients are formulated as 

𝐶௅ = 0.1784 + 2.453𝛼 − 1.691𝛼ଶ

𝐶஽ = 0.08712 − 0.05593𝛼 + 3.4825

𝐶ெ = 0.0385 − 0.59977𝛼 − 1.27402

3. FLIGHT DATA GENERATION

Only longitudinal flight has been considered in this paper. Longitudinal flight data is generated using 
3-degree-of-freedom simulation using 
used in simulation are given in subsequent sections.

3.1. Equations of motion 

Aircraft velocity components 𝑢
differential Eq. 4 and Eq. 5 respectively.

𝑢̇ =
ி೉ା்

௠
− 𝑔 sin 𝜃 − 𝑞𝑤 

𝑤̇ =
ிೋ

௠
+ 𝑔 cos 𝜃 + 𝑞𝑢 

where𝑇 is thrust, 𝑔 is gravitational acceleration, 
pitch angle 𝜃 are calculated for simulations using Eq. 6 and Eq. 7 respectively.

𝑞̇ =
ெೊ

ூ೤೤
 

𝜃̇ = 𝑞 

where𝐼௬௬ is aircraft’s moment of inertia about 
frame is calculated by using differential Eq. 8 and Eq. 9 respectively.

𝑥ா̇ = 𝑢 cos 𝜃 + 𝑤 sin 𝜃 

𝑧ா̇ = −𝑢 sin 𝜃 + 𝑤 cos 𝜃 

Airspeed 𝑉 and angle-of-attack 𝛼

𝑉 = √𝑢ଶ +𝑤ଶ 

𝛼 = tanିଵ
௪

௨
 

3.2. Forces and pitching moment calculation

Aerodynamic force components in 
13 and Eq. 14 respectively. 

𝐹௑ =
ଵ

ଶ
𝜌𝑉ଶ𝑆𝐶௑ 

𝐹௓ =
ଵ

ଶ
𝜌𝑉ଶ𝑆𝐶௓ 

𝑀௒ =
ଵ

ଶ
𝜌𝑉ଶ𝑆𝑐𝐶̅ெ 

where𝐹௑ and 𝐹௓ are forces in direction of 
pitching moment about 𝑦-axis of body
area and 𝑐̅ is mean aerodynamic chord (MAC) of wing. Body
of aircraft with 𝑥-axis pointing towards nose of aircraft and 
𝑦-axis can be found using right hand rule. 
respectively. 

  

 
Parameter Estimation of a Mini Aerial Vehicleusing Multiple Trim Flight Data Copyright © 201

Aerospace Europe
6th CEAS Confer

test data provided by NAL, lift coefficient𝐶௅ drag coefficient 
are expressed as functions of angle-of-attack 𝛼 and elevator deflection 

These aerodynamic coefficients are formulated as Eq. 1, Eq. 2 and Eq. 3 respectively.

+ 29.986𝛼ଷ − 49.245𝛼ସ + 0.7405𝛿௘ − 0.3638𝛿௘
ଶ 

4825𝛼ଶ + 0.1471𝛿௘ + 0.2258𝛿௘
ଶ 

27402𝛼ଶ − 0.4106𝛿௘ + 0.1587𝛿௘
ଶ 

FLIGHT DATA GENERATION 

gitudinal flight has been considered in this paper. Longitudinal flight data is generated using 
freedom simulation using nonlinear aerodynamic model in MATLAB. Equations of motion 

used in simulation are given in subsequent sections. 

𝑢 and 𝑤 in body-fixed 𝑥-axis and 𝑧-axis are generated by 
espectively. 

 

 

is gravitational acceleration, 𝜃 is pitch angle and 𝑞is pitch rate. Pitch rate 
are calculated for simulations using Eq. 6 and Eq. 7 respectively. 

 

 

is aircraft’s moment of inertia about 𝑦-axis. Aircraft’s location with respect to Earth
differential Eq. 8 and Eq. 9 respectively. 

 

 

𝛼 are calculated using Eq. 10 and Eq. 11 respectively.

 

 

Forces and pitching moment calculation 

Aerodynamic force components in 𝑥-axis, 𝑧-axis and pitching moment are calculated using Eq. 12, Eq. 

 

 

 

are forces in direction of 𝑥-axis and 𝑧-axis of body-fixed frame respectively.
axis of body-fixed frame. 𝜌is sea-level air density, 𝑉

is mean aerodynamic chord (MAC) of wing. Body-fixed frame is fixed at center of gravity 
axis pointing towards nose of aircraft and 𝑧-axis is pointed towards center of Earth

axis can be found using right hand rule. 𝐶௑and𝐶௓ are calculated using 
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drag coefficient 𝐶஽ and pitching 
and elevator deflection 𝛿௘. 

respectively. 

 (1) 

 (2) 

 (3) 

gitudinal flight has been considered in this paper. Longitudinal flight data is generated using 
aerodynamic model in MATLAB. Equations of motion 

axis are generated by using 

 (4) 

 (5) 

is pitch rate. Pitch rate 𝑞 and 

 (6) 

 (7) 

th respect to Earth-fixed 

 (8) 

 (9) 

ctively. 

 (10) 

 (11) 

axis and pitching moment are calculated using Eq. 12, Eq. 

 (12) 

 (13) 

 (14) 

fixed frame respectively.𝑀௒is 
is airspeed,𝑆 is wing 

fixed frame is fixed at center of gravity 
axis is pointed towards center of Earth. 

are calculated using Eq. 15 and Eq. 16 
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𝐶௑ = 𝐶௅ sin 𝛼 − 𝐶஽ cos 𝛼 

𝐶௓ = −𝐶௅ cos 𝛼 − 𝐶஽ sin 𝛼 

3.3. Measurement noise 

Flight data is generated through simulations. It is made similar to real measured flight data by adding 
artificial noise. Noise in each sensor has been assumed to be Gaussian white noise. Airspeed
rate𝑞, acceleration components 
Measurement ranges and standard deviations of Gaussian white noises of sensors are mentioned in 
Table 2. 

Measured quantity
𝑉 
𝑞 
𝑎௫ 
𝑎௭ 
𝛼 

3.4. Flight data sets 

Simulations are done for 100 𝑠 
such that one contains low angle
attack and low velocity. Trim values of velocity and angle
data sets I and II. 

Table 3: Trim states for different flight data

Flight data Trim velocity (ms
I 
II 

Time history of angle-of-attack and velocity for three different flight data sets are shown in Fig. 2 and 
Fig. 3 respectively. It can be observed that outputs are very noisy. In
doublets with magnitude of2° and total time duration of 7 seconds are used after initial 5 seconds. In 
an attempt to excite more frequencies of MAV so that quality flight data is acquired, a step with 
magnitude of 2° and time duration of 15 seconds is used as elevator deflection after 50 seconds. The 
third flight data is combination of first two flight data sets. In this third flight data, MAV is flown at 
two different trim conditions for 50 seconds each. Previ
are used to perturb the MAV at both trim conditions.
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gh simulations. It is made similar to real measured flight data by adding 
artificial noise. Noise in each sensor has been assumed to be Gaussian white noise. Airspeed

, acceleration components 𝑎௫ and 𝑎௭ and angle-of-attack 𝛼 are m
Measurement ranges and standard deviations of Gaussian white noises of sensors are mentioned in 

Table 2: Sensors noise data 

Measured quantity Sensor type Range Standard deviation
Pressure sensor 40 Pa 0.8081 m s
Rate gyro 600 deg s-1 6 deg s
Accelerometer 4 g 0.04 g
Accelerometer 4 g 0.04 g
𝛼-sensor 50 deg 5 deg

 durations with step size 0.001𝑠. Two flight data sets are generated 
ontains low angle-of-attack and high velocity and other one contains high angle

attack and low velocity. Trim values of velocity and angle-of-attack are mentioned below for flight 

Table 3: Trim states for different flight data 

Trim velocity (ms-1) Trim angle-of-attack (deg)
9 20.67 
20 -1.80 

attack and velocity for three different flight data sets are shown in Fig. 2 and 
Fig. 3 respectively. It can be observed that outputs are very noisy. In flight data set I and II, 3

and total time duration of 7 seconds are used after initial 5 seconds. In 
an attempt to excite more frequencies of MAV so that quality flight data is acquired, a step with 

time duration of 15 seconds is used as elevator deflection after 50 seconds. The 
third flight data is combination of first two flight data sets. In this third flight data, MAV is flown at 
two different trim conditions for 50 seconds each. Previously mentioned 3-2-1-1 doublets
are used to perturb the MAV at both trim conditions. 
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 (15) 

 (16) 

gh simulations. It is made similar to real measured flight data by adding 
artificial noise. Noise in each sensor has been assumed to be Gaussian white noise. Airspeed𝑉, pitch 

are measured quantities. 
Measurement ranges and standard deviations of Gaussian white noises of sensors are mentioned in 

Standard deviation 
0.8081 m s-1 

6 deg s-1 
0.04 g 
0.04 g 
5 deg 

. Two flight data sets are generated 
attack and high velocity and other one contains high angle-of-

attack are mentioned below for flight 

attack (deg) 

attack and velocity for three different flight data sets are shown in Fig. 2 and 
flight data set I and II, 3-2-1-1 

and total time duration of 7 seconds are used after initial 5 seconds. In 
an attempt to excite more frequencies of MAV so that quality flight data is acquired, a step with 

time duration of 15 seconds is used as elevator deflection after 50 seconds. The 
third flight data is combination of first two flight data sets. In this third flight data, MAV is flown at 

1 doublets and a step 
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Figure 2: Angle-of-attack 

4. PARAMETER ESTIMATION
4.1. Data processing 

Acceleration components in 𝑥-axis and 
𝑞 and airspeed𝑉. As these measurements are corrupted by noise, Kalman filter is used to get less 
noisy measurements. Time histories of lift coefficient
coefficient 𝐶ெ are extracted from these measurements as follows.

𝐶௑ =
௔ೣ௠ି்
భ

మ
ఘ௏మௌ

 

𝐶௓ =
௔೥௠
భ

మ
ఘ௏మௌ

 

𝐶஽ = −𝐶௑ cos 𝛼 − 𝐶௓ sin 𝛼 

𝐶௅ = 𝐶௑ sin 𝛼 − 𝐶௓ cos 𝛼 

𝐶ெ =
௤̇

భ

మ
ఘ௏మௌ̅௖ூ̅೤೤

 

4.2 Least square estimation

As the aerodynamic model is known, lift coefficient
coefficient 𝐶ெ are expressed as Eq. 22

𝐶௅ = 𝐶௅బ + 𝐶௅ഀ𝛼 + 𝐶௅
ഀమ
𝛼ଶ + 𝐶௅

ഀయ
𝛼

𝐶஽ = 𝐶஽బ + 𝐶஽ഀ𝛼 + 𝐶஽
ഀమ
𝛼ଶ + 𝐶஽ഃ೐

𝐶ெ = 𝐶ெబ
+ 𝐶ெഀ

𝛼 + 𝐶ெ
ഀమ
𝛼ଶ + 𝐶ெഃ

where 𝐶௅, 𝐶஽ and 𝐶ெ are dependent variables. 

𝐶௅
ഀయ

, 𝐶௅
ഀర

, 𝐶௅ഃ೐, 𝐶௅ഃ೐మ
, 𝐶஽బ, 𝐶஽

parameters. 
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attack 𝜶 and velocity 𝑽 vs time 𝒕 for three flight data sets

PARAMETER ESTIMATION 

axis and 𝑧-axis of body fixed frame are measured along with pitch rate 
. As these measurements are corrupted by noise, Kalman filter is used to get less 

noisy measurements. Time histories of lift coefficient𝐶௅, drag coefficient 𝐶஽ and pitching mo
are extracted from these measurements as follows. 

 

 

 

 

 

Least square estimation 

As the aerodynamic model is known, lift coefficient𝐶௅, drag coefficient 𝐶஽ and pitching moment 
Eq. 22, Eq. 23 and Eq. 24 respectively. 

𝛼ଷ + 𝐶௅
ഀర
𝛼ସ + 𝐶௅ഃ೐𝛿௘ + 𝐶௅

ഃ೐
మ
𝛿௘

ଶ 

೐
𝛿௘ + 𝐶஽

ഃ೐
మ
𝛿௘

ଶ 

ഃ೐
𝛿௘ + 𝐶ெ

ഃ೐
మ
𝛿௘

ଶ 

are dependent variables. 𝛼and𝛿௘ are independent variables and 

஽ഀ
, 𝐶஽

ഀమ
, 𝐶஽ഃ೐, 𝐶஽ഃ೐మ

, 𝐶ெబ
, 𝐶ெഀ

, 𝐶ெ
ഀమ

, 𝐶ெഃ೐
, 
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for three flight data sets 

f body fixed frame are measured along with pitch rate 
. As these measurements are corrupted by noise, Kalman filter is used to get less 

and pitching moment 

 (17) 

 (18) 

 (19) 

 (20) 

 (21) 

and pitching moment 

 (22) 

 (23) 

 (24) 

are independent variables and 𝐶௅బ, 𝐶௅ഀ, 𝐶௅
ഀమ

, 

, 𝐶ெ
ഃ೐

మ
 are unknown 
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As measurements are corrupted by noise, Eq. 22, Eq. 23 and Eq. 24 can be expressed as Eq. 25.

𝑍 = 𝑋Θ + 𝜖 

where𝑍 is an array of dependent variables, 
unknown parameters and 𝜖 is an array of errors due to noise in measurements.

𝑍 = [𝑍(1) 𝑍(2) ⋯ 𝑍(𝑁)]் 

𝑋 = ൦

1 𝑋ଵ(1) ⋯ 𝑋௡(1)

1 𝑋ଵ(2) ⋯ 𝑋௡(2)

⋮
1

⋮
𝑋ଵ(𝑁)

⋱
⋯

⋮
𝑋௡(𝑁)

൪ 

Θ = [Θ(1) Θ(2) ⋯ Θ(𝑁)]் 

𝜖 = [𝜖(1) 𝜖(2) ⋯ 𝜖(𝑁)]் 

The unknown parameters Θ are estimated by minimizing sum of squares of errors. The least square 
cost function 𝐽(Θ) is defined as Eq. 30.

𝐽(Θ) = 𝜖்𝜖 = (𝑍 − 𝑋Θ)்(𝑍 − 𝑋Θ)

Differentiating Eq. 30 with respect to 
ௗ௃(஀)

ௗ஀
= −𝑍்𝑋 + Θ்𝑋்𝑋 

The unknown parameters are estimated using Eq. 32.

Θ = (𝑋்𝑋)ିଵ𝑋்𝑍 

Estimated parameters are compared with true parameters in Table 4. The error in terms of 
percentage is mentioned below the parameters in brackets.
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As measurements are corrupted by noise, Eq. 22, Eq. 23 and Eq. 24 can be expressed as Eq. 25.

 

is an array of dependent variables, 𝑋 is a matrix of independent variables, 
is an array of errors due to noise in measurements. 

]  

൪ 

]  

 

are estimated by minimizing sum of squares of errors. The least square 
is defined as Eq. 30. 

) 

ting Eq. 30 with respect to Θ gives, 

 

The unknown parameters are estimated using Eq. 32. 

 

Estimated parameters are compared with true parameters in Table 4. The error in terms of 
percentage is mentioned below the parameters in brackets. 
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As measurements are corrupted by noise, Eq. 22, Eq. 23 and Eq. 24 can be expressed as Eq. 25. 

 (25) 

is a matrix of independent variables, Θ is an array of 

 (26) 

 (27) 

 (28) 

 (29) 

are estimated by minimizing sum of squares of errors. The least square 

 (30) 

 (31) 

 (32) 

Estimated parameters are compared with true parameters in Table 4. The error in terms of 
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Table 4: Estimated parameters

Parameter True value

𝐶௅బ 0.1784

𝐶௅ഀ 2.4530

𝐶௅
ഀమ

 -1.6910

𝐶௅
ഀయ

 29.9860

𝐶௅
ഀర

 -49.2450

𝐶௅ഃ೐ 0.7405

𝐶௅
ഃ೐
మ
 -0.3638

𝐶஽బ 0.0871

𝐶஽ഀ -0.0559

𝐶஽
ഀమ

 3.4825

𝐶஽ഃ೐ 0.1471

𝐶஽
ഃ೐
మ
 0.2258

𝐶ெబ
 0.0385

𝐶ெഀ
 -0.6000

𝐶ெ
ഀమ

 -1.2740

𝐶ெഃ೐
 -0.4106

𝐶ெ
ഃ೐
మ
 0.1587

Table 4 shows that the errors gradually reduce if flight data set 
Linear least square estimation technique has provided good estimates with flight data set III.
𝐶௅

ഃ೐
మ
and𝐶஽ഃ೐ have large errors in terms of percentage. Measurements are regenerated for flight da

set III using these estimated coefficients.

A cost function 𝐽 is defined to know the performance of least square estimation technique. It is 
defined such that it shows mean absolute error for any measured quantity. It is defined as 

𝐽 =
ට∑ ൫௓೘.೔ି௒೘,೔൯

మಿ
೔సభ

ே
 

where 𝑍௠,௜is measured quantity at discrete time
is number of total samples of measurements. The values of cost function for measurements are 
shown in Table 5. 
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Table 4: Estimated parameters using least square estimation t

True value 
Estimated parameters 

Flight data I Flight data II Flight data III

0.1784 
-0.6676 0.3368 0.1707
(481.90) (92.69) (2.36)

2.4530 
6.9386 1.3391 2.5619

(-182.86) (45.41) (-4.44)

1.6910 
-3.7067 33.0846 -2.1298

(-119.20) (2056.51) (-25.95)

29.9860 
-6.7453 423.2488 27.3422
(122.50) (-1311.77) (8.80)

49.2450 
-5.5334 -60.4454 -53.0795
(88.76) (22.74) (-7.79)

0.7405 
0.5739 -0.9698 0.7470
(22.50) (230.97) (-0.88)

0.3638 
0.4988 1.2140 0.1499

(237.12) (433.69) (141.21)

0.0871 
-0.3464 0.0647 0.0992
(497.61) (25.74) (-13.92)

0.0559 
2.5371 0.2768 -0.0494

(4636.23) (594.82) (-11.63)

3.4825 
-1.8942 4.3937 3.2420
(154.39) (-26.16) (6.91)

0.1471 
0.0853 0.4037 0.0439
(41.98) (-174.42) (70.16)

0.2258 
0.6083 0.0074 0.2778

(-169.38) (96.71) (-23.02)

0.0385 
-0.7006 0.0286 0.0380

(1919.85) (25.63) (1.24)

0.6000 
3.7705 -0.4418 -0.5732

(728.66) (26.33) (4.43)

1.2740 
-7.3574 -0.9275 -1.2261

(-477.49) (27.20) (3.76)

0.4106 
-0.2423 -0.3021 -0.3985
(40.99) (26.43) (2.94)

0.1587 
0.3088 0.1016 0.1404
(-94.55) (36.01) (11.56)

Table 4 shows that the errors gradually reduce if flight data set III is used for parameter estimation. 
Linear least square estimation technique has provided good estimates with flight data set III.

have large errors in terms of percentage. Measurements are regenerated for flight da

set III using these estimated coefficients. 

is defined to know the performance of least square estimation technique. It is 
defined such that it shows mean absolute error for any measured quantity. It is defined as 

 

is measured quantity at discrete time𝑖, 𝑌௠,௜  is estimated quantity at discrete time 
is number of total samples of measurements. The values of cost function for measurements are 
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technique 

Flight data III 
0.1707 
(2.36) 
2.5619 

4.44) 
2.1298 
25.95) 

27.3422 
(8.80) 
53.0795 

7.79) 
0.7470 

0.88) 
0.1499 

(141.21) 
0.0992 
13.92) 
0.0494 
11.63) 

3.2420 
(6.91) 
0.0439 
(70.16) 
0.2778 
23.02) 

0.0380 
(1.24) 
0.5732 
(4.43) 
1.2261 
(3.76) 
0.3985 
(2.94) 
0.1404 
(11.56) 

III is used for parameter estimation. 
Linear least square estimation technique has provided good estimates with flight data set III. 

have large errors in terms of percentage. Measurements are regenerated for flight data 

is defined to know the performance of least square estimation technique. It is 
defined such that it shows mean absolute error for any measured quantity. It is defined as Eq. 33. 

 (33) 

is estimated quantity at discrete time 𝑖 and 𝑁 
is number of total samples of measurements. The values of cost function for measurements are 
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Table 5: Cost functions for different flight data sets

Quantity

𝑉 (ms-1)

𝛼 (deg)

𝜃 (deg)

𝑞 (rads-1

𝑎௫ (ms-1

𝑎௭ (ms-1

Table 5 shows that the estimated parameters from flight data set III using least square are accurate. 
Fig. 3 shows that errors between regenerated states and measurements using estimated parameters 
have very less errors. 

Figure 3: Errors between measured and estimated quantities

5 CONCLUSION 

The nonlinear aerodynamic model of Black
Three different flight data sets are generated for different trim con
make it similar to real measured flight data. Least square estimation technique is used to estimate 
unknown parameters. 
It is observed that among three different flight data sets, the flight data set III which has mult
trim conditions provided best parameter estimates. Covering whole flight regime and perturbing 
aircraft such that more frequencies get excited are important aspects for flight tests. Least square 
estimation can estimate parameters accurately if multip
accuracy initial guesses of parameters for maximum likelihood, Kalman filter based or heuristic 
methods. 
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Table 5: Cost functions for different flight data sets 

Quantity Data set I Data set II Data set III 

) 10.44 0.29 0.04 

(deg) 1.18 0.08 0.02 

(deg) 8.98 x 105 6.25 x 104 1.02 
1) 644.49 14.58 0.60 x 10-5 
1) 3.71 47.25 0.16 
1) 4.94 129.28 0.05 

Table 5 shows that the estimated parameters from flight data set III using least square are accurate. 
that errors between regenerated states and measurements using estimated parameters 

Figure 3: Errors between measured and estimated quantities

The nonlinear aerodynamic model of Black-Kite MAV is used to generate longitudinal flight data. 
Three different flight data sets are generated for different trim conditions. Artificial noise is added to 
make it similar to real measured flight data. Least square estimation technique is used to estimate 

It is observed that among three different flight data sets, the flight data set III which has mult
trim conditions provided best parameter estimates. Covering whole flight regime and perturbing 
aircraft such that more frequencies get excited are important aspects for flight tests. Least square 
estimation can estimate parameters accurately if multiple trim flight data is used. It can provide high 
accuracy initial guesses of parameters for maximum likelihood, Kalman filter based or heuristic 
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Table 5 shows that the estimated parameters from flight data set III using least square are accurate. 
that errors between regenerated states and measurements using estimated parameters 

 

Figure 3: Errors between measured and estimated quantities 

Kite MAV is used to generate longitudinal flight data. 
ditions. Artificial noise is added to 

make it similar to real measured flight data. Least square estimation technique is used to estimate 

It is observed that among three different flight data sets, the flight data set III which has multiple 
trim conditions provided best parameter estimates. Covering whole flight regime and perturbing 
aircraft such that more frequencies get excited are important aspects for flight tests. Least square 

le trim flight data is used. It can provide high 
accuracy initial guesses of parameters for maximum likelihood, Kalman filter based or heuristic 
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