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ABSTRACT 

An aircraft system design problem is intrinsically a multidisciplinary problem. If the design 
configuration is unconventional, sound low-fidelity analysis methods are not available. Complex hi-
fidelity tools are often the only solution to obtain reliable results, and for these reasons designers are 
deeply interested in the interactions and organization of these tools. Inside a Multidisciplinary Design 
Optimization (MDO) process, different architectures are possible. Analysis and comparison of six MDO 
architectures is the aim of this paper. The considered architectures are All-At-Once (AAO), 
Simultaneous Analysis and Design (SAND), Individual Discipline Feasible (IDF), Multidisciplinary 
Feasible (MDF), Collaborative Optimization (CO), Bi-Level Integrated System Synthesis (BLISS). The 
comparison is conducted on mathematical benchmark cases and on a simplified aerostructural aircraft 
design problem. Results expressed in a unified nomenclature are available as open source. Further, 
the CMDOWS (Common MDO Workflow Schema) developed in the AGILE project is used to translate 
the neutral description of the MDO problem into an executable implementation and it will be released 
as open source too. The aim is to promote the discussion on MDO architectures within the MDO 
research community. 

KEYWORDS: Multidisciplinary Design Optimization (MDO), MDF, IDF, CO, CMDOWS, AGILE, BLISS, 
SAND, AAO 

NOMENCLATURE

𝑓𝑓 = objective function 
𝒄𝒄 = vector of constraint functions 
𝑹𝑹 = vector of disciplinary equations in 

residual form 
𝒄𝒄𝑐𝑐 = vector of consistency constraint 

functions 
𝑁𝑁 = number of disciplines 
𝒙𝒙0 = vector of shared design variables 
𝒙𝒙𝑖𝑖 = vector of local (discipline 𝑖𝑖) design 

variables 
𝒚𝒚𝑖𝑖 = vector of coupling state variables 

provided by discipline 𝑖𝑖 
𝒚𝒚�𝑖𝑖 = vector of local (discipline 𝑖𝑖) state 

variables 
𝒚𝒚�𝑖𝑖 = vector of target state variables (copy 

of discipline 𝑖𝑖 coupling state variables) 

𝒙𝒙�𝑖𝑖 = system copy of local design variables 
vector 

𝒙𝒙�0 𝑖𝑖 = discipline 𝑖𝑖 copy of shared design 
variables vector 

𝒒𝒒 = vector of wing parameters (Table 12) 
𝐴𝐴𝐴𝐴 = aspect ratio 
𝑆𝑆 = wing area 
𝜏𝜏 = thickness to chord ratio global factor 

𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜 = outboard taper ratio 
𝜃𝜃𝐾𝐾 = kink twist 
𝜃𝜃𝑇𝑇 = tip twist 
𝐹𝐹 = mission fuel mass 

𝑂𝑂𝑂𝑂𝑂𝑂 = operating empty mass 
𝑠𝑠 = subscript for structural discipline 
𝑚𝑚 = subscript for mission discipline 
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1 INTRODUCTION 

Integration is important in every engineering field and for complex system a multidisciplinary 
approach must be adopted from the early stage of the project development [1-2]. The design of 
unconventional aircraft configuration is one of the best examples of this kind. The lack of appropriate 
database pushes the designer to use physics based simulation models, directly inside the design loop; 
thus, the request for the most efficient way to use these tools. 
Multidisciplinary design optimization applies optimization theory to the design of engineering systems. 
Since the inception of MDO, several architectures have been formalized to solve complex MDO 
problems for aeronautical systems [3]. These are classified into monolithic (single-level) and 
distributed (multilevel) architectures. 
All-At-Once (AAO), Simultaneous Analysis and Design (SAND), Individual Discipline Feasible (IDF; [4-
5]), Multidisciplinary Feasible (MDF; [4]) are monolithic architectures. There is not a complete 
agreement in literature regarding the labeling of AAO and SAND architectures. Here, the review 
article of Martins and Lambe [6] is used as reference for the nomenclature. Thus, AAO is the “most 
general formulation” from which all the others can be casted. 
Among distributed architectures there are Collaborative Optimization (CO; [7-8]) and Bi-Level 
Integrated System Synthesis (BLISS; [9]). The ongoing AGILE project is developing the next 
generation of MDO processes, and investigating multiple MDO techniques. 
This paper addresses multiple MDO problems, whose architectures are described with a unified 
nomenclature and represented as XDSM [6] diagrams which show both the data connections and 
process flow. Furthermore, CMDOWS (Common MDO Workflow Schema) [10] process format 
developed in AGILE is used to store the MDO problems in a neutral format and to transfer the 
formulations into executable workflow implemented in RCE (Remote Component Environment) [11]. 
For all the architecture presented and solved in this study the corresponding CMDOWS files and the 
corresponding XDSM diagrams, are made available as open-source. 
In Section 2 a brief introduction to MDO architectures is provided. Section 3 presents the multiple 
architectures implemented and compared on an analytical benchmark cases: the Sellar problem [12]. 
In Section 4 an overall aircraft design (OAD) problem is considered. Aerodynamic and structural 
analyses together with other disciplines are included in the process. Results of both use cases are 
provided in terms of graphs, as optimization path in the design variables spaces, and evolution of the 
objective function during iterations. Detailed quantitative data are collected in tables. Both graphs 
and tables will be part of the aforementioned open-source material. Finally, in Section 5 overall 
conclusions are proposed together with some outlooks of the research.  

1.1 Review of MDO Architectures Benchmark 

There are several review works on MDO architectures. One of the first is provided by Haftka et al. 
[13], and later monolithic architectures have been formalized by Cramer et al. [4]. More recently the 
work of Martins and Lambe [6] provides an exhaustive collection of MDO architectures both 
monolithic and distributed. In this survey the use of a unified nomenclature helps the reader to 
understand differences and similarities between architectures. 
One of the issues MDO community has to deal with is the benchmarking of architectures. Some of the 
first papers on MDO architectures benchmarking have employed analytical test cases [14-16]. 
Successively comparison of MDO formulations has been conducted on various design cases: the 
conceptual design of a supersonic business jet in [16]; the design of a reusable launch vehicle in 
[17]; the seizing of an air flow sensor and of turbine blades in [18]. However, all the models 
considered in the aforementioned works make us of analytical functions as disciplinary 
representations. It can be observed there are 3 main challenges concerning the benchmarking of 
MDO architectures.  
The first one is that MDO results strongly depend on the implementation of the architecture: the 
same architecture applied by two different research groups to the same optimization problem may 
obtain different optimization results. The same formulation can be coded in several slightly different 
ways, even if the programming languages used is the same. This problem can be partially solved 
using a specialized MDO platform like OpenMDAO, iSIGHT or pyMDO. 
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A second challenge regards the choice of compared architectures. Monolithic methodologies are the 
most investigated. Distributed ones are seldom considered and among them often CO and CSSO are 
selected. 
Finally it is very common to find comparisons addressing only low dimensional test cases or analytical 
discipline functions. This makes unreliable the extension of obtained results to realistic design cases, 
where high fidelity simulations tools are employed. 
This work addresses the 3 challenges in the following way. 

1. Three different platforms are used in this paper: Matlab, OpenMDAO and RCE. In this way 
differences due to the implementation are underlined and the most suitable platform for the 
aircraft design problem is identified. 

2. Both monolithic and distributed architectures are studied. Among distributed CO and BLISS 
are considered. 

3. Architectures are implemented on an analytical test case and also on an overall aircraft 
design (OAD) problem, in which physics based simulation models are employed. Monolithic 
and distributed architectures are both compared on the aircraft design use case. 

2 MDO ARCHITECTURES BACKGROUND  

Consider a generic optimization problem formulated as: 

min𝒙𝒙 𝑓𝑓(𝒙𝒙,𝒚𝒚) (1) 

subject to: 

𝒄𝒄(𝒙𝒙,𝒚𝒚) ≤ 𝟎𝟎  
𝑹𝑹𝑖𝑖(𝒙𝒙,𝒚𝒚) = 𝟎𝟎 for 𝑖𝑖 = 0, … ,𝑁𝑁 (2) 

The objective function 𝑓𝑓 is minimized with respect to the design variables 𝒙𝒙. The other arguments of 
the objective function are the state variables 𝒚𝒚. Then, constraints 𝒄𝒄 and disciplinary (𝑖𝑖 is the number 
of disciplines) equations 𝑹𝑹𝑖𝑖 depend by both design and state variables. Note that there is not lack of 
generality. Equality constraints can be always rewritten as pairs of inequalities, and disciplinary 
equation can be reordered in residual form. 
It is important to distinguish among the analysis and the design processes. Throughout the analysis 
only the disciplinary equations are considered 𝑹𝑹𝑖𝑖, and there is no difference between design and state 
variables; these are just variables satisfying a system of equations. Instead, after defining objective 
and constraints functions, the designer selects some of the disciplinary equations variables and 
indicates them as design variables. The remaining variables are the state variables. A simple example 
shows why there is not loss of generality in this definition. 
Consider the aerodynamic analysis of a wing. This analysis can be represented by the following 
equation, already in residual form. 

𝑎𝑎(𝒛𝒛,𝒑𝒑) = 0 , (3) 

where 𝒛𝒛 are the coordinates of the points on the discretized surface of the wing and 𝒑𝒑 is the pressure 
on each of these points1. The optimization problem consists in minimize the drag coefficient, C𝐷𝐷(𝒛𝒛,𝒑𝒑), 
imposing the condition 𝐿𝐿(𝒛𝒛,𝒑𝒑) − W ≤ 0, where 𝐿𝐿 is the lift and 𝑊𝑊 the aircraft weight. The designer 
can either choose some of the points 𝒛𝒛 as design variables or define some other overall quantities 𝒒𝒒, 
for example aspect ratio, wing span, taper ratio, etc.. In the latter case an additional relation 
connecting the new quantities with the wing discretization points: 

g(𝒛𝒛,𝒒𝒒) = 0, (4) 

and this is added to the set of disciplinary equations in the optimization problem. Therefore, there is 
no difference between design and state variables for the disciplinary equations for the analyzer point 
of view. The differences are connected to the design process: design variables are quantities the 
designer chooses to be always under the control of the optimizer. 
Dealing with multidisciplinary problems means some of the variables are shared among different 
disciplines’ equations. Design variables are denoted by 𝒙𝒙0 if shared, and by 𝒙𝒙𝑖𝑖 if discipline local. 𝒚𝒚𝑖𝑖 

                                                
1 For panel method this relation is a linear system 𝐴𝐴(𝒛𝒛)𝒑𝒑 − 𝑏𝑏(𝒛𝒛) = 0. 
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and 𝒚𝒚�𝑖𝑖 are respectively discipline shared, also called coupling variables, and discipline local state 
variables2.  
So far only the optimization problem has been defined, as architecture independent. A brief 
description of the various architectures is addressed in the following section in conjunction with their 
application to the first analytical test case. The already mentioned Martins and Lambe survey [3] is 
the reference for a deeper and complete description on architectures.  
Here just a short comment on monolithic and distributed formulations is proposed. The main 
difference between the two approaches is the number of optimization problems defined and solved 
within the optimization process. Monolithic architectures have a single optimization problem, while in 
distributed architectures the original problem is decomposed into several smaller optimization 
problems, disciplines and system subproblems. The reason of this decomposition might depends on 
the typical structure of the engineering-design environments. It is a common practice, especially in 
industry, to split the design of a large system among different engineering groups. These groups may 
be geographically dislocated and may communicate rarely. Therefore, choosing a distributed 
formulation they can work on their own optimization problem independently, without waiting for the 
results of other groups as would happen in a monolithic approach. 

3 AN MDO ANALYTICAL USECASE: THE SELLAR PROBLEM 

The Sellar Problem [12] is a classical benchmark for multidisciplinary methods, and it is also used in 
AGILE as the test case developing CMDOWS [10]. The statement of the problem follows. 

Table 1: Sellar problem statement 

Objective Constraints Disciplinary eq. 

min   𝑥𝑥12 + 𝑥𝑥02 + 𝑦𝑦1 + 𝑒𝑒−𝑦𝑦2  

respect to 
𝑥𝑥01,𝑥𝑥02,𝑥𝑥1 

1 − 𝑦𝑦1 3,16⁄ ≤ 0
𝑦𝑦2 24⁄ − 1 ≤ 0
−10 ≤ 𝑥𝑥01 ≤ 10
0 ≤ 𝑥𝑥02 ≤ 10
0 ≤ 𝑥𝑥1 ≤ 10

 
𝑦𝑦1 = 𝑥𝑥01 2 + 𝑥𝑥1 + 𝑥𝑥02 − 0,2𝑦𝑦2
𝑦𝑦2 = �𝑦𝑦1 + 𝑥𝑥01 + 𝑥𝑥02

 

There are two disciplines, two shared and one local design variables, two coupling state variables 
without any local state variables. In the following paragraphs description and application of six 
architectures to the Sellar problem are provided. For each architecture the corresponding XDSM 
representation is provided, as well as the implementation schema within the integration environment 
RCE. 

3.1 SAND Architecture for Sellar Problem 

The simplest approach is to let the optimizer do all the work. This is the concept behind the SAND 
architecture. The optimizer controls both design (𝑥𝑥01, 𝑥𝑥02, 𝑥𝑥1) and state (𝑦𝑦1 ,𝑦𝑦2) variables, also the local 
ones. Disciplinary equations are considered just as other equality constraints of the problem, and 
their residual values must be exposed to the optimizer. 

Table 2: SAND statement for Sellar problem 

Objective Constraints Disciplinary eq. 

min   𝑥𝑥12 + 𝑥𝑥02 + 𝑦𝑦1 + 𝑒𝑒−𝑦𝑦2  

respect to 
𝑥𝑥01,𝑥𝑥02,𝑥𝑥1,𝑦𝑦1,𝑦𝑦2 

1 − 𝑦𝑦1 3,16⁄ ≤ 0
𝑦𝑦2 24⁄ − 1 ≤ 0
−10 ≤ 𝑥𝑥01 ≤ 10
0 ≤ 𝑥𝑥02 ≤ 10
0 ≤ 𝑥𝑥1 ≤ 10

 
𝑦𝑦1 − (𝑥𝑥01 2 + 𝑥𝑥1 + 𝑥𝑥02 − 0,2𝑦𝑦2) = 0
𝑦𝑦2 − ��𝑦𝑦1 + 𝑥𝑥01 + 𝑥𝑥02� = 0

 

In this approach, that is suitable also for single-discipline problem, the optimizer simultaneously 
analyses and designs the system. Note that disciplinary equations are not solved explicitly or exactly 
and this allow the optimizer exploring unfeasible regions during first iterations.  

                                                
2 Note that no disciplinary distinction between shared design variables is necessary. 
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On the other hand, the optimizer has to control also local state variables, that means a huge amount 
data3. Furthermore, discipline analysis simulation tools usually work in a black-box fashion providing 
state variables value and hiding the residual value of discipline equations. MDF and IDF architectures 
address this aspect. 

 
Figure 1: SAND XDSM (left) and RCE workflow (right) for Sellar problem 

3.2 MDF Architecture for Sellar Problem 

The structure of MDF is rather intuitive. Starting from an initial guess of one of the coupling state 
variables (𝑦𝑦20), single disciplines tools are organized in series to calculate the remaining coupling 
variables. A feedback branch guarantees the contemporary fulfillment of all the equations once 
convergence is reached4. This loop is the multidisciplinary analysis (MDA) loop. As can be seen from 
the XDSM graph in Figure 2, the MDA loop receives the design variables (𝑥𝑥01, 𝑥𝑥02, 𝑥𝑥1) as input and 
provides the coupling state variables (𝑦𝑦1,𝑦𝑦2) as output. Hence, the only variables controlled by the 
optimizer are the design variables, and this is the lowest possible number among all the monolithic 
architecture. 

Table 3: MDF statement for Sellar problem 

Objective Constraints 

min   𝑥𝑥12 + 𝑥𝑥02 + 𝑦𝑦1(𝑥𝑥01,𝑥𝑥02,𝑥𝑥1) + 𝑒𝑒−𝑦𝑦2(𝑥𝑥01,𝑥𝑥02,𝑥𝑥1)  

respect to 
𝑥𝑥01,𝑥𝑥02,𝑥𝑥1 

1 − 𝑦𝑦1(𝑥𝑥01, 𝑥𝑥02, 𝑥𝑥1) 3,16⁄ ≤ 0
𝑦𝑦2(𝑥𝑥01, 𝑥𝑥02, 𝑥𝑥1) 24⁄ − 1 ≤ 0
−10 ≤ 𝑥𝑥01 ≤ 10
0 ≤ 𝑥𝑥02 ≤ 10
0 ≤ 𝑥𝑥1 ≤ 10

 

With this architecture, disciplinary equations are all satisfied at each iteration of the optimizer. This is 
the so called multidisciplinary feasibility of the method which is the main difference with respect to 
the IDF method. However, the constraints feasibility is not guaranteed by the architecture, because it 
depends on the optimization algorithm. 
The main disadvantage of MDF is that for each optimizer iteration the MDA loop must reach the 
convergence. Therefore, for each evaluation of the objective function the discipline tools are 
evaluated several times. 

                                                
3 Of course not here where there are not local variables. For instance using a panel method all nodes 
and pressure values must be controlled by the optimizer. 
4 Omitting the feedback branch is also possible, and in this case the architecture is said MDF not 
converged. In this case one relies much more on the initial guess. 
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Figure 2: MDF Gauss-Seidel XDSM (left) and RCE workflow (right) for Sellar problem  

Inside the MDA loop, several different organizations of discipline tools are possible. The series type 
sequence is the most intuitive one and is borrowed from numerical linear algebra method Gauss-
Seidel. Another possible sequence, inspired from numerical linear algebra method as well, is the 
Jacobi method. With Jacobi convergence, the multidisciplinary analysis modules are organized in 
parallel and a feedback branch departs from each of them, as shown in Figure 3. 

 
Figure 3: MDF Jacobi XDSM (left) and RCE workflow (right) for Sellar problem  

3.3 IDF Architecture for Sellar Problem 

In order to reduce the number of discipline evaluations needed by the MDF, the MDA loop is 
eliminated in the IDF architecture. Copies of coupling design variables are provided in order to use 
the different discipline tools independently. Each disciplinary module calculates its own coupling state 
variables 𝒚𝒚𝑖𝑖 (here, for example for the first discipline, means 𝑦𝑦1), using copies of other disciplines 
coupling state variables, called target variables and identified by the hat 𝒚𝒚�𝑗𝑗≠𝑖𝑖 (for the first discipline 
means 𝑦𝑦�2, copy of 𝑦𝑦2). Local and coupling state variables are not exposed, while target variables are. 
Consistency constraints are added to ensure the equality of coupling state variables and their copies. 

Table 4: IDF statement for Sellar problem 

Objective Constraints Consistency 

min  𝑥𝑥12 + 𝑥𝑥02 + 𝑦𝑦1(𝑥𝑥01,𝑥𝑥02,𝑥𝑥1,𝑦𝑦�2) + 𝑒𝑒−𝑦𝑦2(𝑥𝑥01,𝑥𝑥02,𝑦𝑦�1) 

respect to 
𝑥𝑥01,𝑥𝑥02,𝑥𝑥1,𝑦𝑦�1,𝑦𝑦�2 

1 − 𝑦𝑦1(𝑥𝑥01, 𝑥𝑥02, 𝑥𝑥1, 𝑦𝑦�2) 3,16⁄ ≤ 0
𝑦𝑦2(𝑥𝑥01, 𝑥𝑥02, 𝑦𝑦�1) 24⁄ − 1 ≤ 0
−10 ≤ 𝑥𝑥01 ≤ 10
0 ≤ 𝑥𝑥02 ≤ 10
0 ≤ 𝑥𝑥1 ≤ 10

 
𝑦𝑦�1 − 𝑦𝑦1 = 0
𝑦𝑦�2 − 𝑦𝑦2 = 0 

In this method only single discipline feasibility is guaranteed during iterations. Global disciplines 
feasibility is obtained only at the end of the optimization process. This architecture is a tradeoff 
between MDF and SAND. The number of required evaluations is reduced, respect to MDF, introducing 
additional variables controlled by the optimizer (target variables). However, the number of variables 
exposed to the optimizer is lower in IDF than in SAND (in IDF local state variable are not exposed), 
and that is achieved solving explicitly the discipline equations (as in MDF). 
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Figure 4: IDF XDSM (left) and RCE workflow (right) for Sellar problem  

3.4 AAO Architecture for Sellar Problem 

The AAO architecture is obtained introducing target variables and consistency constraints in SAND 
architectures. Like in SAND the optimizer controls all the variables, which here are: design, state and 
target variables. Again disciplinary equations are considered as constraints. 

Table 5: AAO statement for Sellar problem 

Objective Constraints Disciplinary eq. Consistency 

min  𝑥𝑥12 + 𝑥𝑥02 + 𝑦𝑦1 + 𝑒𝑒−𝑦𝑦2 

respect to 
𝑥𝑥01,𝑥𝑥02,𝑥𝑥1, 𝑦𝑦1, 𝑦𝑦2,𝑦𝑦�1,𝑦𝑦�2 

1 − 𝑦𝑦1 3,16⁄ ≤ 0
𝑦𝑦2 24⁄ − 1 ≤ 0
−10 ≤ 𝑥𝑥01 ≤ 10
0 ≤ 𝑥𝑥02 ≤ 10
0 ≤ 𝑥𝑥1 ≤ 10

 
𝑦𝑦1 − (𝑥𝑥01 2 + 𝑥𝑥1 + 𝑥𝑥02 − 0,2𝑦𝑦�2) = 0
𝑦𝑦2 − ��𝑦𝑦�2

 + 𝑥𝑥01 + 𝑥𝑥02� = 0
 
𝑦𝑦�1 − 𝑦𝑦1 = 0
𝑦𝑦�2 − 𝑦𝑦2 = 0 

Actually AAO is never solved in practice in this form, because the introduction of target variables does 
not provide any advantages and they can be easily eliminated using consistency constraints (which 
are linear in this formulation). Doing this, SAND architecture is obtained again. The reason for 
defining AAO architecture is strictly formal. It is the most general formulation, in which all possible 
variables and constrains are presented; removing some of them all the other architecture can be 
obtained.  

 
Figure 5: AAO XDSM (left) and RCE workflow (right) for Sellar problem  

3.5 CO Architecture for Sellar Problem 

This distributed architecture exploits and extends the concept of IDF. In this formulation single 
discipline tools not only are executed independently using copies of coupling state variables (𝑦𝑦�1,𝑦𝑦�2), 
but they are wrapped in their own discipline optimization subproblem. For this reason each 
disciplinary subproblem needs its own copies of the design variables (𝑥𝑥�01_1, 𝑥𝑥�02_1 for first discipline and 
𝑥𝑥�01_2, 𝑥𝑥�02_2 for second discipline). 
Furthermore copy of local design variables (𝑥𝑥�1) are needed only if these variables are explicitly 
employed in objective or constraints functions of the system subproblem (as the case of Sellar 
problem). 
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The purpose of the discipline optimizations is to enforce the consistency of state and design variables 
with their copies. Whereas, the system level optimization subproblem collects all the discipline 
optimized consistency constraints and minimizes the original objective function. The CO system 
subproblem statement for the Sellar problem is the following. 

Table 6: CO system subproblem statement for Sellar problem 
System Subproblem 

Objective Constraints Consistency 

min 𝑥𝑥�1
2 + 𝑥𝑥02 + 𝑦𝑦�1 + 𝑒𝑒−𝑦𝑦�2 

respect to 
𝑥𝑥01, 𝑥𝑥02, 𝑥𝑥�1, 𝑦𝑦�1, 𝑦𝑦�2 

1 − 𝑦𝑦�1 3,16 ≤ 0⁄
𝑦𝑦�2 24⁄ − 1 ≤ 0
−10 ≤ 𝑥𝑥01 ≤ 10
0 ≤ 𝑥𝑥02 ≤ 10

 
𝐽𝐽1∗ = 0
𝐽𝐽2∗ = 0 

The asterisk on the consistency constraints functions   𝐽𝐽𝑖𝑖 indicates they are optimized by the 
respective discipline subproblem. For this reason the system optimization is also called post-optimal 
calculation. The discipline subproblems are shown in Table 7 

Table 7: CO discipline subproblems statement for Sellar problem 
Discipline 1 Subproblem 

Objective Constraints 

min 𝐽𝐽1 = �𝑥𝑥�01_1 − 𝑥𝑥01�
2

 + �𝑥𝑥�02_1 − 𝑥𝑥02�
2

+ ‖𝑥𝑥1 − 𝑥𝑥�1‖2 + �𝑦𝑦�1 − 𝑦𝑦1�𝑥𝑥�01_1, 𝑥𝑥�02_1, 𝑥𝑥1, 𝑦𝑦�2��
2
 

respect to 
𝑥𝑥�01_1, 𝑥𝑥�02_1, 𝑥𝑥1 

0 ≤ 𝑥𝑥1 ≤ 10 

Discipline 2 Subproblem 

Objective Constraints 

min 𝐽𝐽2 = �𝑥𝑥�01_2 − 𝑥𝑥01�
2

 + �𝑥𝑥�02_2 − 𝑥𝑥02�
2

+ �𝑦𝑦�2 − 𝑦𝑦2�𝑥𝑥�01_2, 𝑥𝑥�02_2, 𝑦𝑦�1��
2
 

respect to 
𝑥𝑥�01_2, 𝑥𝑥�02_2 

none 

As in IDF the discipline feasibility is not guaranteed during iterations of system optimization 
subproblem, but only at the end of it. The main disadvantage of this form of CO is the poor 
convergence rate. Indeed, the gradient of consistency constraints at an optimal point is a null vector. 
This slows down convergence for the most common gradient-base optimization algorithm. Several 
ways of solving this issue were proposed. One is the use of linear consistency constrains for each 
variable and copy of it, but then the problem would have more equality constraints than variables. 
Another possible solution is relaxing equality constraints. They are replaced by inequalities with a 
relaxation tolerance, where the tolerance is a small constant number. 
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Figure 6: CO XDSM for Sellar problem 

 
Figure 7: CO RCE workflow for Sellar problem 

3.6 BLISS Architecture for Sellar Problem 

The driving concept here is building a path in the design space, using a series of linear 
approximations of the original design problem. User defined bounds on the approximated design step 
are used to prevent design point moving too far respect to the approximation accuracy. This is the 
same idea of thrust-region optimization algorithm. 
For each approximation point the local linear approximation of the objective function is minimized 
respect to the design variables step5 ∆𝒙𝒙. The optimization is accomplished in two times. First, 
discipline optimization subproblems define the optimal step in local discipline design variables 
direction. Then, the system level subproblem determines the optimal step in the remaining directions, 
which are the shared design variables directions. As in thrust region algorithm, when two (or more) 
steps give the same value of design variables and objective function, the minimum is reached. The 
system optimization subproblem follows. 

                                                
5 Note: approximation point for objective and constraints functions remains constant during the 
optimization. This is indicated by the subscript 0. 
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Table 8: BLISS system subproblem statement for Sellar problem 
System Subproblem 

Objective Constraints 

min �𝑓𝑓0
∗�

0
+ �

𝜕𝜕𝑓𝑓0
∗

𝜕𝜕𝑥𝑥01
�∆𝑥𝑥01 + �

𝜕𝜕𝑓𝑓0
∗

𝜕𝜕𝑥𝑥02
�∆𝑥𝑥02 

respect to 
∆𝑥𝑥01,∆𝑥𝑥02 

(𝒄𝒄0∗)0 + �
𝜕𝜕𝒄𝒄0∗

𝜕𝜕𝑥𝑥01
� ∆𝑥𝑥01 + �

𝜕𝜕𝒄𝒄0∗

𝜕𝜕𝑥𝑥02
� ∆𝑥𝑥02 ≤ 0

∆𝑥𝑥01_𝐿𝐿 ≤ ∆𝑥𝑥01 ≤ ∆𝑥𝑥01_𝑈𝑈
∆𝑥𝑥02_𝐿𝐿 ≤ ∆𝑥𝑥02 ≤ ∆𝑥𝑥02_𝑈𝑈

 

Note: the linear approximation point used in the system subproblem is actually moved in local 
discipline design variables direction, and this legitimize the term of post-optimal calculation also for 
this architecture6 (thus the use of the asterisk). 
Although the involved disciplines are two, the discipline subproblem for Sellar problem in BLISS 
architecture is only one. This is a peculiarity of BLISS: the number of discipline subproblems is equal 
to the number of discipline local design variables. Thus, only the first discipline subproblem is defined. 

Table 9: BLISS first discipline subproblem statement for Sellar problem 
Discipline 1 Subproblem 

Objective Constraints 

min �𝑓𝑓0�0
+ �

𝜕𝜕𝑓𝑓0

𝜕𝜕𝑥𝑥1
� ∆𝑥𝑥1 

respect to 
∆𝑥𝑥1 

(𝒄𝒄0)0 + �
𝜕𝜕𝒄𝒄0
𝜕𝜕𝑥𝑥1

� ∆𝑥𝑥1 ≤ 0

∆𝑥𝑥1_𝐿𝐿 ≤ ∆𝑥𝑥1 ≤ ∆𝑥𝑥1_𝑈𝑈

 

The subproblems statements are reported in general form without using the explicit expressions for 
the derivatives of 𝑓𝑓 and 𝒄𝒄; though it would be possible for an analytical problem like this one. This 
representation reflects better the actual implementation, for which a finite difference approach is 
used to make the method suitable also for complex problems. 
Several differences can be observed by comparing BLISS with CO. First a new set of constraints has 
been introduced. These are the bounds of the approximation step, and are defined outside the MDO 
process by the user. 
Other structural differences are evident looking at the graphic representation of the architectures. CO 
presents the disciplines subproblems organized in parallel respect each other and nested on the 
system subproblem, Figure 6-7. Furthermore, in CO analysis modules are inside the discipline 
optimization subproblem, which is responsible of enforcing consistency among original and copied 
variables. Whereas in BLISS analysis tools are outside any optimization subproblems, and in series 
with them, Figure 8-9. This means that an IDF-style method to deal with copied variables is not 
possible since there would be no optimizer to guarantee consistency. Therefore, an MDF structure is 
the only solution, and the analysis modules are wrapped in an MDA loop. 
Advantages and disadvantages of BLISS come both from the thrust-region like structure. Gradients of 
objective and constraints functions are immediately available (and constant for the optimizer), since 
they are necessary for the definition of the optimization problems themselves. On the other hand all 
the unreliability connected to the linear approximation is unavoidable. This issue can be only partially 
solved by easy-to-handle user-defined bounds for design step, especially if the user has not a clear 
idea of the problem nonlinearity level. 

                                                
6 Even if in this architecture discipline subproblems are not nested on the system subproblem, but in 
series with it. 
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Figure 8: BLISS XDSM for Sellar problem 

 
Figure 9: BLISS RCE workflow for Sellar problem 

3.7 Architectures Comparison Results for Sellar Problem 

All the results from the MDO architectures described in the previous subsections are here compared. 
The optimization history results are shown in two kinds of graphs: objective function evolution and 
optimization path in the design domain. The latter shows the sequence of iteration points chosen by 
the optimizer in the design variables space. This kind of representation is possible because the design 
space has only three dimensions. 
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Figure 10: Objective function evolution (left) and optimization path (right) for Sellar 

problem  

The cloud of dots on the right corner of the optimization path graph, Figure 10, is made by minimum 
points analytically calculated keeping 𝑥𝑥1 fixed. As can be seen, MDF has the steepest descendant 
behavior; it also chooses a radically different path respect to the other architectures. In this particular 
case the performances of distributed architectures are basically equivalent to the monolithic ones. 
The number of iterations, the shape of objective function evolution and of the optimization path of 
CO and BLISS are similar to the monolithic architectures ones, Figure 10. 
However, as it is shown by the graphs in Figure 11, changing the starting point seriously affects the 
performance of CO. Instead, BLISS solution is strongly dependent on the approximation step length. 
Figure 11 shows also a BLISS with the half of the previous step length. 

    
Figure 11: Objective function evolution (left) and optimization path (right) for Sellar 

problem with different starting point and approximation step length for BLISS 

For the case represented in Figure 11 a table of quantitative data is reported in Table 10. Due to the 
different structure the indications on the table have slightly different meanings for each architecture. 
For AAO, SAND and IDF there is no ambiguity: iterations are the optimizer iterations. For MDF the 
optimizer iterations are reported, but the MDA iterations are implicitly considered in the number of 
discipline calls. For CO the iterations of the system subproblem are reported, but the discipline 
subproblems iterations are included in the discipline calls. For BLISS the iterations are the number of 
approximation points calculated before the optimum is reached. Again, iterations of MDA are included 
in the objective and discipline functions calls. 
Finally, for all the architectures (except BLISS), gradients are never provided to any optimizer. Finite 
difference method is used and, thus, functions are evaluated several times within single optimizer 
iteration. 
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Table 10: Summary of architectures comparison on Sellar problem 
 AAO SAND IDF MDF CO BLISS 
Optimal obj.value 3.1834 3.1834 3.1834 3.1834 3.233 3.1834 
Iterations 9 8 8 5 18 52 
Obj.fun calls 80 72 72 48 176 243 
Disc. 1 calls 0 0 72 152 2642 348 
Disc. 2 calls 0 0 72 152 797 348 

The table underlines the difference between monolithic and distributed architectures. For the latter 
the number of discipline tool calls is definitely greater, especially for CO. However, must be pointed 
out that the purpose of developing distributed architectures is not to decrease calculations but to 
make disciplinary groups independent. In an industrial environment, it may effectively decreases the 
development lead time. 
A clear difference exists among distributed formulations. CO performs few system iterations, each one 
with many disciplinary calls. BLISS disciplinary calls for single iteration are fewer but the number of 
global iterations is higher. 
Moreover, the number of discipline calls in BLISS is equal for both disciplines, like in monolithic 
architectures and unlike CO. This is expected because in BLISS there is no optimizer driving the 
discipline analyses. All the disciplines are inside the same MDA converger loop and optimization 
subproblems are in series with it. 
The implementations of monolithic architectures are compared also on different optimization 
platforms. The previous results are all obtained with Matlab optimization-environment, and are also 
compared with OpenMDAO and RCE environments. 
Regarding the optimization algorithm adopted, for both Matlab and OpenMDAO implementation, a 
sequential quadratic algorithm is used while for RCE the built-in DAKOTA Coliny COBYLA algorithm 
(an extension of simplex algorithm for linear and nonlinear constraints). 

 
Figure 12: Objective function evolution (left) and optimization path (right) for the 

monolithic architectures (AAO-red, SAND-green, IDF-blue, MDF-black) of Sellar problem 
obtained with the three different optimization platforms 

Figure 12 shows that the different optimization algorithm of RCE implementation results in an 
increased number of iterations. However the general behavior of the architectures is confirmed: MDF 
has the steepest descent, while the others have a similar behavior (except IDF in RCE implementation 
which is close to MDF). 

4 AEROSTRUCTURAL AIRCRAFT SYSTEM DESIGN PROBLEM 

In this section three architectures, MDF, IDF and CO, are applied to an overall aircraft design 
problem. A brief description of the tools used is provided in the MDF subsection.  
The different tools are organized in a RCE workflow. RCE [11] is an open source workflow-driven 
integration environment developed by DLR to execute collaborative MDO problems. Tools and the 
workflow itself are the same ones used in AGILE project [19] for other tasks. 
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Another feature that accelerates the development of an aircraft design workflow is the use of CPACS 
data format to exchange information between disciplinary tools. CPACS [20] is a data schema written 
in xml containing all the information related to the aircraft. All the tools read and write on the same 
CPACS file; hence, the number of necessary connections is decreased as well as the possibility of 
store inconsistent or duplicated information. 
The design and optimization problem is formalized in the following statement. 

Table 11: OAD problem statement 

Objective Constraints Disciplinary eq. 

min𝐹𝐹  

respect to 
𝒒𝒒 

𝑠𝑠(𝒒𝒒) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0
𝐹𝐹 −  𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0  

[𝑂𝑂𝑂𝑂𝑂𝑂,𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚] = 𝑫𝑫𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝒒𝒒,𝐹𝐹)
𝐹𝐹 = 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝒒𝒒,𝑂𝑂𝑂𝑂𝑂𝑂)  

The objective to minimize is the fuel mass calculated by the mission analysis tool. Design variables 
are indicated by the vector 𝒒𝒒; they are defined in the Table 11 and in Figure 13. 

Table 12: OAD design variables 
𝒒𝒒 definition                  boundaries init. ref. 

𝐴𝐴𝐴𝐴 = 𝑏𝑏2 𝑆𝑆⁄   [7; 13] 8 9 

𝑆𝑆 wing area [70𝑚𝑚2; 95𝑚𝑚2] 90𝑚𝑚2 81𝑚𝑚2 

𝜏𝜏 = �𝑡𝑡𝑅𝑅,𝐾𝐾,𝑇𝑇 𝑐𝑐𝑅𝑅,𝐾𝐾,𝑇𝑇⁄ �
�𝑡𝑡𝑅𝑅,𝐾𝐾,𝑇𝑇 𝑐𝑐𝑅𝑅,𝐾𝐾,𝑇𝑇⁄ �𝑟𝑟𝑟𝑟𝑟𝑟

  [0.5; 2] 1 1 

𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑐𝑐𝑇𝑇 𝑐𝑐𝐾𝐾⁄   [0.25; 0.45] 0.3 0.39 

𝜃𝜃𝐾𝐾 kink twist [−1.5°; 2.5°] 0° 0.01° 

𝜃𝜃𝑇𝑇 tip twist [−3°; 1°] −1° −1.3°  

Figure 13: Wing parameters definition 

All the design variables are shared among disciplines; there are not local design variables. Although 
design variables refer to the wing, the problem defined in Table 10 is an aircraft design problem 
because tools analyze the whole aircraft.  
Several disciplines are considered in the workflow and all of them are actually coupled.  However, for 
the sake of brevity, this paper underlines the coupling between two of them: structural and mission 
analysis. This is one of the strongest couplings in the aircraft design process and, all the architectures 
features are still well represented. Future works will highlight more distributed connections among 
disciplines. 
The coupling state variables are the fuel mass (𝐹𝐹), and the operating empty mass (𝑂𝑂𝑂𝑂𝑂𝑂). Local state 
variables are not explicitly indicated but they are numerous. For instance, the aerodynamic tool is a 
panel method with 1000 panels, that means approximately 4000 scalar local state variables. Only one 
local design variable is exposed: the maximum fuel mass (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚), which is obtained from the tank 
volume calculated by the structural tool. 
Finally two constraints are considered: maximum wing span and maximum fuel. The maximum span 
is defined by the user at the start of the process and kept fixed throughout the design process. Here 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 28 𝑚𝑚, that is the standard limitation for the chosen aircraft category. The reference 
aircraft for all the MDO architectures is a large regional jet (same class of E190): 90 passengers and a 
range of 3500 km. 

4.1 MDF Architecture for OAD Problem 

In realistic design problems the huge number of local state variables hampers the use of SAND. 
Hence the first adopted monolithic architecture is MDF. 
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Table 13: MDF statement for OAD problem 

Objective Constraints 

min𝐹𝐹(𝒒𝒒)  

respect to 
𝒒𝒒 

𝑠𝑠(𝒒𝒒) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0
𝐹𝐹(𝒒𝒒) −  𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚(𝒒𝒒) ≤ 0 

First the Gauss-Seidel version of the MDF is considered. In this formulation the different disciplinary 
modules are organized in series. Thus, each tool writes its output on the CPACS file that it has 
received from the previous tool and sends it to the next tool. 

  
Figure 14: RCE workflow of MDF Gauss-Seidel architectures for the OAD design problem  

The workflow’s structure is represented in Figure 14. First, the aerodynamic block calculates the 
aircraft polars for different Mach and Reynolds numbers. Viscous considerations are added to results 
obtained by a lifting surface method (results of this tool are shown on the left wing in Figure 15). 
Thereafter, the structural block calculates flight envelops, calculates the corresponding loads, and the 
wing box structure is seized according to the critical points of the envelope. A FEM is used for 
calculating stress in the wing box (see the right wing in Figure 15). Secondary masses, such as 
actuators system, control surfaces, etc., are also accounted in the process and represented by 
colored points on the right wing in Figure 15. Therefore, the entire mass breakdown and the 
operating empty mass are updated. 
Finally, the mission analysis block provides the fuel mass necessary to fly the mission. The mission 
profile is chosen by the user and kept constant throughout the optimization process. 
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Figure 15: Models used for aerodynamic, structure and actuators system analysis 

After the mission calculations, fuel mass and OEM, which are the coupling variables, are sent to the 
MDA converger. Once convergence on the coupling variables is reached, converged values of fuel 
mass and OEM are used to obtain objective and constraint functions. When the optimizer receives 
these values the iteration is concluded. At the next iteration the optimizer provides new design 
variables, which are the wing parameters: aspect ratio, area, thickness to chord ratio, taper and twist. 
With this data the CPACS aircraft representation is updated and sent to the MDA loop. The loop starts 
once also a starting value of the fuel mass is provided. 
For the Jacobi version of the MDF the structural and the mission clusters are parallel, whereas the 
aerodynamic block is placed before the bifurcation, see Figure 16. Hence, a starting value of both fuel 
mass and OEM must be provided in order to start the MDA loop. 

 
Figure 16: RCE workflow of MDF Jacobi architectures for the OAD problem 

Here the trends of the objective and the constraint functions are reported for both the MDF 
variations, Figure 17. Only the constraint on span is represented because it is driving the 
optimization, whereas the constraint on tank volume is never active. 
The adopted optimization algorithm spends the first 6 iterations (because this is the number of the 
design variables in this formulation) perturbing objective and constraints functions in a single design 
variable direction. After this collection of gradient information, the descendant path starts.  
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Figure 17: Objective function (blue) and span constraint function (red) of MDF Gauss-

Seidel (left) and Jacobi (right) architectures for the OAD problem 

Dimensionless values are reported, since the aim of these graphs is showing the trends. Gauss-Seidel 
version has a steeper and more regular slope than Jacobi. Regularity considerations are also shown 
by the constraints trend; in Jacobi version violations are stronger and more frequent (positive values 
of constraints function means constraint violation).  

4.2 IDF Architecture for OAD Problem 

In this architecture there is not MDA converger loop. Copies of couplings variables, 𝐹𝐹� and 𝑂𝑂𝐸𝐸�𝑀𝑀, are 
created to allow independent discipline analyses. Consistency constraints guarantee discipline 
feasibility, but only at the end of the optimization process. 

Table 14: IDF statement OAD problem 

Objective Constraints Consistency 

min𝐹𝐹(𝒒𝒒,𝑂𝑂𝐸𝐸�𝑀𝑀)  

respect to 
𝒒𝒒,𝐹𝐹� ,𝑂𝑂𝐸𝐸�𝑀𝑀 

𝑠𝑠(𝒒𝒒) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0
𝐹𝐹(𝒒𝒒,𝑂𝑂𝐸𝐸�𝑀𝑀) −  𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚(𝒒𝒒,𝐹𝐹�) ≤ 0 𝑂𝑂𝐸𝐸�𝑀𝑀 − 𝑂𝑂𝑂𝑂𝑂𝑂 = 0

𝐹𝐹� − 𝐹𝐹 = 0
 

Like in the Jacobi version of MDF, also in IDF there is a bifurcation in the workflow, see Figure 18. 
Again structural and mission blocks work in parallel, while the aerodynamic block is placed upstream 
to the bifurcation.  

 
Figure 18: RCE workflow (right) of IDF architectures for the OAD problem 

Figure 19 underlines that for this architecture global disciplinary feasibility is reached only at the end 
of the optimization process. 
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Figure 19: Objective function (blue), fuel (red) and OEM (green) consistency constraints 

of IDF architecture for the OAD problem 

4.3 CO Architecture for OAD Problem 

Among the two analyzed distributed architectures CO is chosen for the OAD problem. The aim here is 
to underline the effect of disciplines separation in distributed architecture. BLISS is discarded because 
disciplines analyses do not run independently (see paragraph on BLISS of Subsection 3.1). The 
system subproblem statement is the following. 

Table 15: CO statement for OAD problem 
System Subproblem 

Objective Constraints Consistency 

min 𝐹𝐹� 

respect to 
𝒒𝒒,𝐹𝐹� ,𝑂𝑂𝐸𝐸�𝑀𝑀 

𝑠𝑠(𝒒𝒒) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0
𝐹𝐹� −  𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚(𝒒𝒒�𝑠𝑠,𝐹𝐹�) ≤ 0 

𝐽𝐽𝑠𝑠∗ = 0
𝐽𝐽𝑚𝑚∗ = 0 

Discipline 1 Subproblem 

Objective Constraints 

min 𝐽𝐽𝑠𝑠
 = �𝒒𝒒�𝑠𝑠 − 𝒒𝒒�2

 + �𝑂𝑂𝐸𝐸�𝑀𝑀 − 𝑂𝑂𝑂𝑂𝑂𝑂(𝒒𝒒�𝑠𝑠, 𝑓𝑓�)�2
  

respect to 
𝒒𝒒�𝑠𝑠 

none 

Discipline 2 Subproblem 

Objective Constraints 

min 𝐽𝐽𝑚𝑚
 = �𝒒𝒒�𝑚𝑚 − 𝒒𝒒�2

 + �𝐹𝐹� − 𝑓𝑓(𝒒𝒒�𝑚𝑚,𝑂𝑂𝐸𝐸�𝑀𝑀)�2
 

respect to 
𝒒𝒒�𝑚𝑚 

none 

In this architecture each discipline tool is wrapped in its own discipline optimization subproblem. For 
this reason not only copies of coupling state variables (𝑓𝑓,𝑂𝑂𝐸𝐸�𝑀𝑀) are needed, but also copies of design 
variables are defined for each discipline (𝒒𝒒�𝑠𝑠 for structure and 𝒒𝒒�𝑚𝑚 for mission). In this way each 
discipline subproblem guarantees single discipline feasibility (minimizing respectively 𝐽𝐽𝑠𝑠 and 𝐽𝐽𝑚𝑚). 
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After disciplines optimization the obtained value of consistency constraints (the so called post-optimal 
value: 𝐽𝐽𝑠𝑠∗ and 𝐽𝐽𝑚𝑚∗ ) is sent to the system optimizer. The system optimization subproblem is responsible 
of minimizing the original objective function respect to design variables (𝒒𝒒) and the copies of coupling 
state variables (𝑓𝑓,𝑂𝑂𝐸𝐸�𝑀𝑀). 
Note that in this particular problem there are no local design variables, hence it is not necessary to 
define copies of them for the system subproblem. 
The typical structure of the CO architecture, with discipline subproblems nested on the system 
subproblem, is shown on Figure 20. 

 
Figure 20: CO RCE workflow for the OAD problem 

Although CO is considered a distributed version of IDF, comparison of Figure 21 with Figure 19 shows 
an important difference among them. In IDF consistency is enforced through constraints, hence it is 
reached just at the end of the process. In CO consistency is demanded to discipline subproblems 
optimization, that means it is satisfied from the first iteration. 

 
Figure 21: Objective (blue), fuel (red) and OEM (green) consistency functions of CO 

architecture for the OAD problem 

Figure 21 shows also some other important features of CO implementation in RCE. As said in 
Subsection 4.1, the chosen algorithm spends the first iterations just collecting gradient information in 
each design variables direction. For CO the design variables of the system subproblem are the wing 
parameters, 𝒒𝒒, and the copies of the coupling state variables, 𝐹𝐹� and 𝑂𝑂𝐸𝐸�𝑀𝑀, 8 in total. The objective 
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function depends explicitly just on 𝐹𝐹�, thus objective function is constant for the first 8 iterations, 
except for the iteration where the perturbation direction is exactly 𝐹𝐹� (that is the second iteration). 

4.4 Architectures Comparison Results for OAD Problem 

The optimal aircraft solutions obtained for each of the MDO architectures investigated are shown in 
Figure 22. 

 
Figure 22: Optimal shape obtained with MDF Gauss-Seidel (green), MDF Jacobi (blue), 

IDF (red) and CO (orange) architectures (baseline in black) 

Quantitative results for the comparison are provided in terms of objective function graph, Figure 23, 
and Table 16. 

Table 16: Summary of architectures comparison on OAD problem 
 MDFgs MDFj IDF CO 

(interrupted) 
Optimal obj.value 5141 (-9.4%) 5260 (-7.3%) 5144 (-9.4%) 5068 (-10.7%) 

𝐴𝐴𝐴𝐴 11.10 11.10 11.10 7.82 
𝑆𝑆 [𝑚𝑚2]  69.66 69.66 69.66 91.56 
𝜏𝜏 0.93 0.61 0.94 1.13 

𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜 0.25 0.27 0.26 0.31 
𝜃𝜃𝐾𝐾 [°]  -0.0010 -0.0002 0.0005 0.0001 
𝜃𝜃𝑇𝑇 [°] -1.10 -0.92 -0.97 -1.02 

Iterations 38 42 50 15 
Obj.fun calls 76 84 50 15 

Struct. tool calls 76 84 50 418 
Miss. tool calls 76 84 50 423 

 
Figure 23: Objective functions of MDF Gauss-Seidel (red), MDF Jacobi (green), IDF (blue) 

and CO (black) for the OAD problem 
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Some trends found in the analytical test case are here confirmed. For instance MDF (Gauss-Seidel 
version in particular) has still the steepest descent among monolithic architectures, even if is a little 
bit more expensive in terms of calculation respect to IDF. 
The number of calculations for CO is definitely greater than any of the monolithic architectures, and 
this is only partially compensated by the considerations that disciplines calculations run 
simultaneously. Approximately 450 evaluations of each analysis tool were spent for these iterations of 
CO architecture. Then, considering the good point reached, in terms of objective function and of 
consistency constraints, the process was manually interrupted. The consistency functions, 𝐽𝐽𝑠𝑠∗ and 𝐽𝐽𝑚𝑚∗ , 
for the last point before interruption have both a value of 10−2. 

5 CONCLUSIONS 

In this paper a comparison among six multidisciplinary optimization architectures is presented. The 
architectures investigated include AAO, SAND, IDF and MDF among monolithic; CO and BLISS among 
distributed. The study is part of the AGILE project, which is developing the next generation MDO 
processes, and investigating multiple MDO techniques. 
The study addresses 3 main challenges concerning the benchmarking of MDO architectures: 

1. Implementation platforms’ dependency:  the MDO architectures have been implemented into 
three different platforms (Matlab, OpenMDAO and RCE), and results compared. 

2. Scarcity of results on distributed architectures: the comparison here presented is not limited 
to monolithic architectures. Two distributed architectures are also considered: CO and BLISS. 

3. Low dimensionality of use cases: in the presented study an overall aircraft design problem is 
also selected as use case. Such a use case included physics based simulation models typical 
for preliminary aircraft design, panel method for aerodynamic and FEM for structure analysis. 

The comparison underlines the strong dependency of architectures’ performance not only on the 
problem under investigation, but also on the analysis modules available, on the design environment 
of the organizations involved, and on the settings selected by the designer. For each of the MDO 
architecture (both the analytical and the OAD problem), the formulation and implementation are 
described. Quantitative results comparing the different architectures are also reported and discussed. 
Furthermore, each of the problem is represented and made available to the MDO community [21] as 
XDSM representation, and in the neutral format CMDOWS (Common MDO Workflow Schema) 
developed in AGILE project. The use of CMDOWS allows and facilitates the comparison among MDO 
architectures in order to choose the most suitable formulation for each design problem and 
organizational situation considered. 
The insight gained by means of a realistic use case as an OAD problem will be exploited  further in 
future comparisons of MDO architectures. Future works will also address more distributed coupling 
between disciplines, as well as the extension of the comparison among other distributed 
architectures. 
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