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ABSTRACT  

The control of a tethered satellite system pendular motion is done by application of Hamiltonian 
equation of motion on a control design method known as planar H tracking. In this case, the 

reference motion is considered a natural planar motion. The control of the TSS is accomplished by 

using the inside plane control inputs as well as the outside plane control inputs. The designed control 
laws are able to drive the pendular motion to a natural planar trajectory with the required 

characteristics. The control inputs are analyzed using their magnitude ability. The numerical 
simulation results for each control inputs show that the inside of plane input not only has strong 

magnitude, but also effectively controls the pendular motion of the tethered satellite system.  
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NOMENCLATURE 

a  Semi major axis                           

dl -differential tether length 

e -instantaneous keplerian orbit 

GF -gravitational force 

OF  -orbital frame 

IF -inertial frame 

EF -body fixed coordinate frame 

H -Hamiltonian principle 

h -constant simplified version of Hamiltonian 

principle 

I -centroid moment of inertia tensor 
m -mass of the body 

GM -gravity gradient torque 

P -orbital parameter  

r -distance from mass center to the end body 

Ar -instantaneous orbit radius 

T - tether tension 

t -time, s 

,  -parameters 

 -angular velocity 

 -constant angular rate 
 -angle of movement of a body in orbit 

-eccentricity 
  - intermediate variable 

1 INTRODUCTION  

With a rise in modern technology, cheap, effective and reliable control designs are the main focus of 

research in Tethered Satellite Systems (TSS). Generally, the dynamics and control of tethered 
satellites are very complicated. The tethers are normally susceptible to undergo a complicated set of 

vibrations and librations during satellite operations in a space environment [1]. This problem becomes 

challenging during the deployment and retrieval of the TSS as a result of the presence of Coriolis 
accelerations [2]. Motions with large amplitudes may result in high tensional stress that is beyond the 

stress of the tether which may at the end result to the tether failure. From the point of view of tether 
control, the performance requirements in TSS are often quite demanding [3] and therefore the most 

important idea in TSS is how to apply the control action to the system [4,5]. Any control system has 
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to be designed according to the needs of a specified mission. A dump-bell system is the simplest 
model of the TSS. It is composed of a group of massive bodies connected by massless tethers with 

the satellite attitude dynamics and the tether flexibility, both being ignored [6]. In a TSS two or more 
satellites are attached to each other to portray high dynamic potential in various applications [7]. This 

is seen from the work of Tsiolkovsky in 1895 [8]. There are other so many published literatures on 

the dynamic and control of TSS [9 -15].  Belotsky and Levin did a very impressive job [9]. Rupp also 
proposed a valuable tension control law which is used up to date [10]. 

New authors have come up with their ideas on control of TSS. Krupa et al [16] discussed on the 
dynamics and control of two bodies TSS based on the Finite Element Method. Takaechi et al [17] 

studied about the periodic solution of libration motions of the TSS in an elliptic orbit and ended up 
devising a controller known as “on – off” that could drive the system to periodic libration trajectories. 

Another writer by the name of Barko et al [18] discussed on the control of deployed tether satellites 

through the comparison of six different strategies which include: (1) free deployment only due to the 
gravity gradient vector, (2) force braked deployment, (3) Kissel’s law using a linear proportional 

derivative (PD) controller, (4) open-loop time-optimal control, (5) pendulum control, and (6) targeting 
and stabilization following the controlling chaos strategy. Steindl et al. [19, 20] come up with the 

optimal controllers to achieve effective controlled deployment and retrieval of a TSS based on the 

multiple shooting method.  
Williams and Trivailo [21] extended their investigations on optimal control to the controlling of the 

librations of a TSS in elliptic orbits by tracking periodic libration trajectories [22]. Linear Quadratic 
(LQ) and proportional integral derivative (PID) control methods were first used in flying system 

formation [23 - 25].   
In this paper, the description of the system is first made. Then the equations of motion for the end 

body, the tether and the sub-body are derived. The equations that will control the pendular motion of 

the TSS are further achieved. Finally, Hamiltonian equation of the pendular motion is used together 
with a design method referred to as planar H tracking. The control laws are first made so that they 

are used to drive the TSS pendular motion to track a natural planar reference trajectory. The control 

is accomplished using the in-plane control inputs u  and out-plane control inputsu . The simulation 

results for each control inputs are obtained in response to the system response for H planar control 
design and the control inputs. The efficiency of control in the two planes is determined by the level of 

their magnitude.  

2 SYSTEM DESCRIPTION 

The system is composed of a centered body (earth), end body (deploy / base satellite), sub –body 

(sub satellite) and a cable (tether) as presented in Fig. 1.  
 

Sub-end body
(Sub-satellite)

Tether (Cable)

End body 
(Base satellite)

Central body
(Earth)

 
Figure 1: Diagram of Tethered Satellite System 

 

From the description of the system, modelling assumptions are made in relation to the physical 
environment of the system. The first assumption made is that the central body (earth) is sphered 

shaped and it represents itself as a point mass. The second assumption states that the magnetic field 

is a tilted di-pole fixed at the center of the central body as it keeps on rotating. The final assumption 
is that the gravitational force of the central body and electrodynamic forces are external forces that 
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act on the system. This implies that the gravity of the central body and other components such as 
drag and solar radiations are negligible in the system. 

In TSS, modeling assumptions can be outlined as follows; 
a) The end body and the sub-body are finite rigid bodies. 

b) The tether is an elastic string that can resist axial stretching (it can’t support compression and has 

negligible torsion and bending characteristics). 

3 EQUATION OF MOTION 

A mathematical model of the system is created by using the modeling assumptions that were outlined 
in Section 2. Figures of the central body (CB), end body (E) and the sub-body (S) are illustrated 

together with their frame coordinates in Fig. 2. 
The state of the end body E is used as the orbital motion of the system. It is parameterized by 

osculating classical elements of the orbit [26] as shown below. 

( )Te a                                                                                                                       (1) 

The distance from the center O of the central body C to the mass center EG of the end body E is Er  

The distance from the mass center EG of the end body E to the point of tether attachment  EN is 

EN  whereas dl , is the differential tether length with arc length l  from point EN  in the end body E 

to point  SN  in the sub–end body S. The point SN  relative to mass center of the sub-end body S is 

given as SN . The coordinate frames of each body are shown in Fig. 2, and Fig. 3 shows the diagram 

representing the end body E and sub-end body S. 

 

y1

y2

y3

o
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Orbital  Frame

Inertial Frame
EG

EN

EN

Er

 
Figure 2: Coordinate diagram of the central body C and the end body E 
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Figure 3: Diagram of the end body E and Sub-end body S 
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Inertial frame on the central body C with the denotation IF  has coordinates yi  and a central 

position O, 3y axes on the inertial frame lies on the spin axis of the central body C. The  1 2y y  

axis creates a plane that corresponds to the Equatorial plane of C.  

Orbital frame OF  of  instanteneous Keplerian orbit of EG  (end body E) has coordinate axes xi  . The 

3x  axis is derived from the center O of the central body C to EG  whereas 2x  is pointing to the 

direction of the instantaneous angular momentum of the Keplerian orbit. The final axis 1x  completes 

the right-hand triad. On performing 3-1-3 Euler rotation [27] through the angles ,   and      

, the inertial frame is changed to orbital frame. The directional cosine matrix (DCM) that connects the 

inertial frame with the orbital frame is represented as:- 
cos 0 sin

sin sin cos cos sin

sin cos sin cos cos

EOR

 

    

    

 
 

   
 
 

                                                                   (2) 

The acceleration and angular velocities of orbital frame 0F  in relation to the inertial frame IF  are 

presented as:- 

/ 3
2O I

E

P
y

r


                                                                                                                 (3) 

/ 3

2 sin
2O I

A

x
r

 
                                                                                                             (4) 

 - Gravitational parameter of the central body C 

2(1 )P a e                                                                                                                      (5) 

1 cos
A

P
r

e 



                                                                                                                 (6)  

P is the orbital parameter whereas Ar  is the instantaneous orbit radius of the mass center end body 

S. 

3.1    Equations of motion of the end body E 

It consists of the following equations; 

a) Equation governing the evolution of the instantaneous keplerian orbit of mass center EG  of the 

end body E 

b) Equations governing the rotation of the fixed body coordinate frame EF in relation to OF  

Orbital equations for EG are done by application of Newton’s second law [28] to the end body E 

thus:- 

(0, )E E GEm r F T t                                                                                                          (7) 

Em - Mass of the end body E; GEF - Gravitational force of the central body acting on the end body E 

(0, )T t - Tether tension on the end body E at the point EN . 

From the physical assumptions made in Section 1, the central body is treated as appoint mass. This 
implies that:- 

3

E
GE E

E

m
F r

r


                                                                                                                 (8) 

The Eq. (8) above is known as the Newton’s law of universal gravitation. Applying Eq. (8) to Eq. (7), 

Orbital equation of motion for EG is achieved and presented as:- 

3

(0, t)
E E

E E

T
r r

r m


  

                                                                                                        (9) 

For the rotational equation of the end body E, Euler rotational equation is applied. 

/ / / (0, )E E I E I E E I GE EM P T t                                                                              (10) 
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E - Centroid moment of inertia tensor of the end body E 

/E I - Angular velocity of a fixed body principal coordinates EF of the end body E in relation to the 

IF   

/ / /E I E O O I                                                                                                               (11) 

GEM  - Gravity gradient torque acting on the end body E at its mass center EG   

By using linear approximation of gradient torque [29, 30]; 

5

3
GE E E E

E

M r r
r


                                                                                                           (12) 

Substituting GEM in Eq. (10) with the results from Eq. (12):- 

/ / / 5

3
(0, )E E I E I E E I E E E

E

r r P T t
r


             

                                                       (13) 

The above Eq. (13) represents the rotational equation of motion of the end body E. 

3.2    Equations of motion of the end body S 

Using Euler’s rotational equation, the attitude equation of the sub-end body S is presented as: -  

/ / / ( , )S S I S I S S I GS SM P T L t                                                                               (14) 

S - Centroid moment of inertia tensor for the sub-body S 

/S I - Angular velocity of sub-end body coordinate frame SF in relation to IF  

GSM -Gravity gradient torque 

/ / /S I S O O I                                                                                                                (15) 

5

3
GS S S S

S

M r r
r


                                                                                                             (16) 

Substituting gravity gradient torque GSM  in Eq. (16) to Eq. (14):- 

/ / / 5

3
( , )S S I S I S S I S S S S

S

r r P T L t
r


                                                                      (17) 

The above Eq. (17) represents the rotational equation of motion of the sub-end body S 

3.3    Pendular equations of motion  

Using the assumptions from the physical model, it is assumed that in the pendular equation of motion 

the elastic vibration of the tether does not affect the pendular motion of the TSS and the tether is a 
rigid body. The equations that are to control the pendular motion of the TSS are achieved by the 

application of Euler equation of rigid body dynamics. It is a first order ordinary differential equation 

describing the rigid body. 
 ( )x M                                                                                                              (18)  

M - Applied rotation;  - Inertia rotation;  - Angular velocity on the principle axis 

For an end body E the Euler’s rotational equitation will be as follows:- 

/ / /E E I E I E E I EM                                                                                                (19) 

E - Moment of inertia tensor; EM - Total external moment 

The moment of inertia tensor is expressed as follows:- 

3 3(1 )E E e e                                                                                                                  (20) 

 This is because the mass of the system lies on the 3e  axis. 

EI  - Scalar moment of inertia; 1- Identity tensor 
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By combining the equation of the angular velocity of a tethered fixed coordinate frame  EF  to the 

orbital frame coordinate  OF  the following equation is achieved. 

1 2 3/ cos sinE O e e e                                                                                              (21)  

With angular velocity of the orbital coordinate in place, then it relates to the inertial coordinate frame 

 IF  as:- 

/ 2O I AO                                                                                                                      (22) 

A - Constant angular rate 

The equations of the angular velocity and acceleration of tether fixed coordinate frame in relation to 
inertial frame will be presented as shown below:- 

1 2 3

1 3

/

/ 2

( )cos ( )sin

[ cos ( ) sin ] [ sin ( ) cos ]

E I e A e A e

E I e A A ee

     

           

     

       

                     (23) 

In this situation AM  is as a result of gravity-gradient acting on the system. The length of the system 

appears to be smaller than the orbital radius. Due to this aspect, linear approximation for gravity 

gradient torque method is used [29]. This method is represented as:- 
2

3 33A A AM O I O                                                                                                         (24) 

By combining all these formulas together, the equation of pendular motion is achieved, such that the 
equation will appear as represented bellow:- 

2

2 2 2

cos 2( ) sin 3 sin cos cos 0

[( ) 3 cos ]sin cos 0

A A

A A

       

    

    

    
                                                  (25) 

This equation is the same as of the dumb-bell satellite, which can also provide a simplified solution to 

the existing problem. 

4 CONTROL OF PENDULAR MOTION OF TSS 

4.1    Application of Hamiltonian principle  

The equation (25) above, describing the inside plane pendular motion is confined to a non-
dimensional form by defining the non-dimensional time with the boundary conditions as represented 

in the following equations. 
(0, ) ( , t)

v(0, t) v(L, t) 0

u t u L

 

                                                                                                         (26) 

 

A

t





 

 - The angle in which the end body moves in the circular orbit; t - Time; 
A - Constant angular rate 

The pendular equation of motion will be in a non-dimensional form which will appear as:- 

2 2

cos 2( 1) sin 3sin cos cos 0

( 1) 3cos sin cos 0

       

    

   

     

                                                          (27) 

The above equations of the pendular motion are linearized such that the nominal pendular motion of 

the tether will appear as a planar spinning on the angles 0    of which it is represented in the 

form of the equation below. 

2 2

cos 2( 1) sin 3sin cos cos 0

( 1) 3cos sin cos 0

       

    

   

     

                                                          (28)  

The solution for an inside plane motion is obtained by integrating the equation (28), such that it will 
appear as represented bellow:- 

23sinh                                                                                                            (29) 

 ( )  Systems with positive angular rate; ( ) Systems with negative angular rate; h   Constant 

simplified version of the Hamiltonian of the pendular motion [29].The Hamiltonian equation is 

represented as shown below. 
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2 2 2 2 2( 3sin )cos 4sinH                                                                              (30)                           

Linearizing the above Hamiltonian equation (30) for small out-of- plane angle    , the equation of 

the pendular motion is achieved and presented as follows:- 
3cos 2( ) sin 3 sin cos cos 0A A                                                             (31) 

The pendular motion in this case is a planar. These mean that, H will be presented as:- 
H h  

The objective of Hamiltonian planar tracking control design [31 - 34] is to drive   and   to Zero 

value, while at the same time driving H to a certain desired value
*h . The final result is a natural 

planar motion in the form of
*h h . As it appears that the out-of-plane motion is driven to zero, then 

the control law for u  is given as:- 

2 2

1 2 ( 1) 3cos sin cosu k k              
                                                    (32) 

2 0k     ; Therefore the closed loop equation will be:- 

2 1 0k k                                                                                                           (33)    

Given an assumption that the arbitrary control inputs corresponding to   u  and u  are provided by 

small thrusters at the sub-body B , then the equation governing the pendular motion of the tether will 

be presented as:- 

2 2

cos 2( 1) sin 3sin cos cos

( 1) 3cos sin cos

u

u





       

    

   

     

                                                        (34) 

By differentiating equation (30) using equation (34), it is observed that the time rate of change of H 
will be as follows:- 

 2 cosH u u                                                                                                    (35) 

 *

1

cos 2

Hk H h
u u 

 

 
   
  

                                                                              (36) 

Eq. (36) shows the control law of u , where:- 0Hk  - is the constant control gain. Substituting the 

Eq. (36) into Eq. (35), the closed loop dynamics of H will be:- 
*

H Hk h H k H                                                                                                             (37) 

From equation (36), Hk  appears to be positive. The control law in equation (36) drives H  to 
*h  

exponentially as the angle in which the body moves ( ) approaches infinity. 

4 NUMERICAL RESULTS 

The initial conditions used to generate the graphical presentations are; 

0; 2.375; 0.3; 0        

  The parameters used are: 
2

1*

2 1

ln(100) ln(100)
20; ; ;

2 4 2
H

k
h k k k
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(d) Inside of plane angular rate 

 
 

 

      (e) Planar H 

Figure 4: The above graphs are for the system response for planar H tracking. 

 
    Fig. 4 shows that the control laws applied are successful in driving the pendular motion to a 

desired natural planar trajectory with
*h h . This fact is shown in Fig. 4 (b), 4 (c) and 4(e) in which 

the out- of –plane motion and the quantity H do not undergo any amplitude oscillations about the 
desired reference motion. 
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(a) inside of plane control inputs 
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(b) Outside of plane control input 

   Figure 5: The above graphs (a) and (b) represent the Control inputs for planar H control 

tracking 
 

In Fig. 5, u  and u both do approach zero as the maneuvers are completed. This implies that the 

propellant required in performing the maneuvers decreased significantly as the maneuvers 

approached completion. The magnitude of u  is seen to be significantly smaller which is the primary 

advantage of the H tracking control law. The in plane control input is also lower because of the 
qualitative characteristics of the reference motions. 

5 CONCLUSIONS 

In this work, the application of Hamiltonian principle has been studied to enable the control of 

pendular motion of the TSS in an elliptic orbit. The tether system considered in the study is based on 

the classical dumbbell model. It is assumed that the end-body and the sub- end body are finite rigid 
bodies and that also the tether is an elastic string that could resist axial stretching. The mathematical 

model developed in the paper, assists in the formation of the equations of motions for both the end 
and sub-end bodies. The pendular equations of motions are achieved by the application of Euler 

equation of the rigid bodies using the assumptions previously highlighted. The control laws are 

developed to drive the pendular motion to a preferred natural trajectory. Numerical simulations of the 
controlled pendular motion of the tether showed that the control laws used were successful in driving 

the pendular motion of the tether to a natural planar trajectory. It was seen that the magnitude of 

u  in the inside plane was significantly smaller than that of u in the outside plane. The in-plane 

control input was also lower because of the qualitative characteristics of the reference motion. This 
became the primary advantage of Hamiltonian Principle in the control of the Pendular motion in a 

TSS. However, the major disadvantage was in tracking a specific time history for , that could be 

needed somewhere else because this method requires a less precise control. In that case, some other 

methods of control must be employed that will require more precise control. This idea leads in the 
development of more precise control methods in future that could efficiently control the TSS.  
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