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ABSTRACT 

In solid propellant rocket propulsion, the design of the propellant grain is a decisive aspect. The grain 

design governs the entire motor performance and, hence, the whole rocket mission. The ability to 

decide, during design phase, the proper grain design that satisfies the predefined rocket mission with 
minimum losses is the ultimate goal of solid propulsion experts. This study enables to predict the 

pressure time curve of rocket motor with star grain configuration and also to optimize the performance 
prediction tool through optimization methods to maximize its prediction efficiency. A hybrid optimization 

technique is used. Genetic Algorithm (GA) is first implemented to find the global optimum followed by 

Simulated Annealing (SA) optimization method to find the accurate local optimum. A program for 
predicting the pressure time curve of the rocket motor is created on MATLAB and then linked to GA - 

SA optimizers as an application on a case study. The purposed approach is validated against satisfying 
data. It is found that the developed optimized program is capable of predicting rocket motor 

performance (including the effect of erosive burning) with acceptable accuracy for preliminary design 

purposes. 
 

KEYWORDS: solid propellant propulsion, star grain, hybrid evolutionary optimization. 

NOMENCLATURE 

Uppercase letters 
Ap - Port area of star grain at each burning step  

A∗ - Critical section area of the nozzle, 

Ab - burning area of the grain at each step 

C∗ - Propellant characteristic velocity 

Lg - Length of star grain 

Mn - Gas Mach number at the nozzle end of the 

grain  
N - No of star points 

Pon  - Stagnation pressure of flowing gases 

Pn - Pressure at nozzle end  

Ph - Gas pressure at head end of the grain  

Rin - Grain inner radius 

RMSE - Root mean square error 
PD  - discharge pressure 

Vcf - Final chamber volume 

Vn  - flow velocity of gases at the nozzle end  

Vci - Initial volume of combustion chamber 

Lowercase letters 
a - Burning rate coefficient 

dcr - Initial critical diameter of nozzle 

errate - Erosion rate of nozzle critical section 

f - Fillet radius 

j - Burning step 

mD
∙  - Rate of discharge of gases 

mG
∙  - Rate of generation of gases 

n - Pressure exponent 

rh - Burning rate at the head end of the grain 

rn - Total burning rate at the nozzle end due to 

applying the erosive burning rate 
rav - Average burning rate of the grain 

Δt - Time increment 

tdelay - Delay time until begin of erosion 

w - Web thickness 

△ y - Distance burnt  

Greek symbols 
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∝ - Step regression factor 

β - Head end regression factor 

γ - Specific heat ratio of the combustion gases 

ε - Angle fraction 

ρ - Density of the burning propellant 

θ - Star point angle 

Γ - Specific gas constant  

Subscripts 

b – Burning 
n – Nozzle 

h – Head 
i – Initial 

f – Final 

cr - Critical 

1 INTRODUCTION 

The solid propellant grain design involves numerous parameters that are commonly referred to as the 
grain ballistic parameters. These parameters can be classified into distinct categories as follows [1]: 

 Properties of solid propellant, this category includes the following parameters: Total impulse, 

specific heat ratio, Propellant material, burning rate, characteristic velocity and propellant 

density. 
 Mission requirements which include both thrust and thrust coefficient. 

 Grain geometry: that includes web fraction, propellant geometric configuration, volumetric 

loading coefficient and slenderness ratio. 

 Nozzle geometry, this category includes: exit area, throat area, nozzle shape, convergence 

and divergence angles and expansion ratio, erosion pattern of nozzle throat. 
 Other ballistic parameters includes: combustion chamber material, weight and pressure, exit 

pressure, combustion temperature, burning time and motor diameter. 

Clearly, the proper design of solid propellant rocket motors (SPRMs) involves multi-disciplinary 
algorithms to develop efficiently and accurately the designs related to the required performance 

parameters. Over the years, researchers developed tools for the preliminary design of SPRMs that can 

be optimized to the required performance criteria. Generally, these tools comprise three steps: 
geometric modeling, burn back analysis and optimization. 

Many optimization objectives have been acquire through numerous optimization techniques. 
One objective was to minimize the propellant mass. Nisar [2] used a hyprid optimization technique 

(genetic algorithm and sequential quadratic programming) on 3D finocyl grain involving 18 parameters. 

Similarly, Fredy [3] used GA on different grain geometries (end burning, tubular, star, etc.) which had 
up to 8 parameters. In contrast, Kamran[4] investigated different optimization objectives such as 

maximum volumetric loading fraction, minimum sliver fraction and maximum total impulse using GA on 
convex star grain with 6 parameters. In another study, Kamran [5] also used GA to find the maximum 

average thrust of 3D grain configuration with radial slots having 24 different parameters. 
The research group of Raza et. al. conducted a series of studies on optimizing the dual thrust rocket 

motors (DTRMs). In these studies [6-9], the focus was to maximize the average boost-to-sustain thrust 

ratio and total impulse of DTRMs. They used different hybrid optimization techniques on different types 
of 3D grains. In [6], they used hybrid evolutionary GA and SA on 3D wagon wheel with 10 parameters. 

Similarly, in [7, 9] Raza et. al. used the same hybrid optimization technique on 3D finocyl grains (convex 
star tapered hollow cylinder grain geometry with 8 different design parameters and fin tapered hollow 

tubular with 8 design parameters). In contrast, in [8] they used a different hybrid optimization 

technique (SA and pattern search) on 3D finocyl grain with 8 parameters. 
In all cases, researchers rely on theoretical techniques to predict the performance of SPRMs. The 

accuracy of such tools is a crucial aspect as far as credibility of these tools is concerned. This motivated 
many researchers to improve the accuracy of the tool they use via, in many cases, optimization. In this 

respect, the optimization technique is used to minimize the root mean square error (RMSE) between 

the desired and computed performance merit. In [10-13], different optimization methods were used 
such as complex method, pattern search and genetic algorithm. Sforzini [12] used pattern search for 

optimizing the computed thrust-time profile of a 3D finocyl grain with 10 parameters. Both Acik [11] 
and Yücel [10] used complex method to find the minimum RMSE but on different cases. Acik [11] 

optimized different grain geometries (end burning, internal burning tube, slot, slot-tube, star and star-
tube) with parameters up to 9. Yücel [10] optimized a 3-D finocyl grain with 8 axial slots at the fore 

end and a radial slot at the aft end with 11 parameters. He also used genetic algorithm on his case 

study. Recently, Gawad [13] used genetic algorithm to find the minimum RMSE but on DTRM with 
tubular grain with two different diameters and sloped grain near its head end with 10 parameters. 
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It is clear that many studies implemented GA as the optimization method. This may be justified by its 
ability to define the global optimum inside the domain of study. For more accurate results, researchers 

refine optimization results via a hybrid optimization technique with a method for global search followed 
by a method using local search superiority. 

The focus of the present study is to develop an optimized tool to predict the pressure time profile of a 

star grain. Acik [11] conducted a similar study, but using complex as the optimizer method. In this 
study, a different approach is adopted in which a hybrid GA-SA optimization is implemented. 

The remainder of this paper is organized as follows. The next section presents the case study and the 
methodology of calculating pressure-time history followed by the optimization technique. The following 

section includes the results of this study. Conclusion and future work wrap up the paper.  

2 CASE STUDY AND METHODOLOGY 

2.1 Internal ballistics prediction model 

A mathematical model for the internal ballistics of the solid propellant grain is developed based on the 
mass balance of the gas products [14, 15]. The developed model adopts the following assumptions: 

 The flow of gases is adiabatic. The flow along the combustion chamber is isentropic. 

 The gas products are ideal gases. 

 Regression of surface along the grain length is linear.  

The computations are performed in two sections; at the head and nozzle end of the grain and the grain 
erosive burning is accounted for. The typical pressure time profile can be divided into three phases; the 

initial pressure rise, the quasi-steady state phase, and the exhaust phase. These phases are illustrated 

schematically in Figure  1. 

 
Figure 1: Pressure time profile phases 

 

In the initial pressure rise (ignition) phase, the igniter is activated to bring the chamber pressure to a 

level sufficient to ignite the propellant grain surface. The initial pressure rise is dependent on the igniter 
charge rather than the main propellant grain. It is thus overlooked in the model. The Quasi steady state 

operation phase generally occupies the longest time in the motor operation. In the present analysis, 
this phase starts directly after ignition. The phase ends at the moment when the burning gases reach 

the inner wall of the combustion chamber for star perforated grains, this phase is divided into two 

regimes. The first regime is till the star leg is ended while the second ends when the web is finished. 
The prediction of pressure history is performed according to the following procedures. 

A grain burn-back analysis is performed through analytical method to calculate the burning and port 
areas of star grain configuration. The gas Mach number at the nozzle end of the grain is evaluated 

(iteratively) by the following equation; 
 

Mn =
A∗

Ap
[

2

γ+1
(1 +

γ−1

2
Mn

2)]

γ+1

2(γ−1)
         (1) 
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where γ, Ap, A∗ are Specific heat ratio of the combustion gases, port area of star grain at each burning 

step and critical section area of the nozzle, respectively. The flow velocity of gases at the nozzle end is 

then estimated as follows: 

Vn = √γC∗ΓMn (1 +
γ−1

2
Mn

2)

−1

2
         (2) 

where Γ, C∗ are specific gas constant and characteristic velocity of the propellant, respectively. The 

stagnation pressure of flowing gases is estimated from the relation: 

 

Pon = [aρpC∗Ab/A∗]
1

1−n          (3) 

where ρp, Ab, n are propellant density, burning area of the grain at each step and the pressure exponent 

of the propellant, respectively. Hence, the pressure at nozzle end is: 

 

Pn = Pon (1 +
γ−1

2
Mn

2)

−γ

γ−1
          (4) 

 

Now, the rate of discharge of gases is calculated as:  
 

mD
∙ =

A∗Pon

C∗            (5) 

 

Hence the gas pressure at head end of the grain is: 
 

Ph = Pn +
mD

∙ Vn

Ap
           (6) 

The burning rate at the head end of the grain can be obtained by: 
 
rh = aPh

n           (7) 

where a is the burning rate coefficient. The total burning rate at the nozzle end due to applying the 

erosive burning rate is: 

rn = aPh
n + α(mD

∙ /Ap)
0.8

L−0.2e(−βrρpAp/mD
∙ )       (8) 

where α, L, β are step regression factor, grain length and head end regression factor. The rate of 

generation of gases is estimated using the following equation: 

 
mG

∙ = Abρprav           (9) 

where rav =
rh+rn

2
 

The discharge mass flow rate is obtained more accurately (iteratively) through the following equations:  

mḊ = mG
̇ −

r̅av

г2∗c∗2 (P̅av A̅b + Vc
dP

dy
)         (10) 

 
where: Vc = Vci + ∑ △ yiA̅bjj  

Vci and j are the initial volume of combustion chamber and the burning step, respectively. The rate of 

change of chamber pressure (dP/dy) is computed as follows: 
dP

dy
=

P̅av

r̅av

△rav

△y
+

P̅av

A̅b

△Ab

△y
          (11) 

 

During the quasi-steady state phase, the chamber pressure varies due to the change in the grain 

surface. The computation of the pressure time curve requires iteration because the burning surface is 
a function of the distance burnt △ y during a time increment Δt. The grain web is divided into equal 

distances △ y. Hence the time increment for the calculations is: 

Δt =
△y

rav
            (12) 

 
Finally, during tail off, the burning surface decreases sharply in two distinct regimes. In the first regime, 

the mass of gases produced by combustion still represents a fraction of flow discharge through the 

nozzle. In the second regime, after the burning is completed, the remainder of combustion gases is 
simply exhausting out of the nozzle. The first regime characterized by high port area in the nozzle end 

section together with a reduced mass flow rate in consequence of reduced burning surface. The 
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conditions of reduced gas velocity and absence of erosive burning (hence, absence of pressure gradient 
along the chamber) are thus assumed. This can be formatted as follows: 
Ph = Pn = Pon           (13) 

 
Hence: rh = rn. The rate of change of chamber pressure is obtained from: 

 
dP

dy
=

Pon

(1−n)A̅b

△Ab

△y
           (14) 

The second regime is characterized by: (1) zero burning surface and (2) the rate at which the chamber 
pressure decreases with time is relatively high. The pressure is computed from the relation: 

 
Pon = PD exp[−г2c∗A∗(t − tD)/Vcf]        (15) 

where Vcf, PD  are the final free volume of the combustion chamber and the discharge pressure, 

respectively. The discharge mass flow rate can be obtained from:  

 

mḊ =
PcAcr

C∗ = mĠ −
d

dt
ρV =

−V

RT
 

dP

dt
         (16) 

 
Nozzle critical section erosion is typical in many cases and can significantly impact the value of chamber 

pressure. The developed model account for nozzle erosion in critical section where the critical diameter 
expands with time due to erosion expressed by factor (Er) according to the relation [13]: 

 

dcr = dcri + (2 ∗ errate(t − tdelay))        (17) 

where dcr and  dcri are instantaneous and initial critical diameters, respectively. errate is the erosion 

rate, and tdelay is the time lag between motor ignition and nozzle throat erosion onset. 

 

2.2 Internal ballistics prediction model 

A grain with star perforation geometry used designed and tested by Maklad [16] in a standard test 

motor. Results of this static test are adopted here to validate the performance prediction program. 

Figure 2 shows the star grain geometry. Table 1 lists the parameters of the grain and the test motor 
whereas Figure 3 illustrates the measured pressure-time profile of the test case. 

 

 
Figure 2: star grain parameters 
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Table 1 Case study parameters 

Propellant characteristics symbol value unit 

Propellant characteristic velocity C∗ 1560 m/s 

Pressure exponent n 0.42 --- 

Burning rate coefficient a 0.0000113 --- 

Density of the burning propellant ρ 1680 Kg/m3 

Specific heat ratio of the combustion gases γ 1.24 --- 

Motor characteristics    

Initial critical diameter of nozzle dcr 0.036 m 

Initial free volume of the combustion chamber Vci 0.004286 m3 

Final chamber volume Vcf 0.017356 m3 

Star grain parameters    

No of star points N 7 --- 

Star point angle θ 74 degree 

Angle fraction ε 0.5058 --- 

Grain inner radius Rin 0.0235 m 

Fillet radius f 0.0016 m 

Web thickness w 0.0335 m 

Length of star grain Lg 1.6041 m 

 

 
Figure 3: Measured pressure-time profile [14] 

 

2.3 Optimization methods 

The developed prediction model involves uncertainties in the given ballistic parameters of the 
propellant. Six parameters are considered hence namely; burning rate coefficient, 𝑎, pressure exponent, 

𝑛, step regression factor, ∝, head end regression factor, 𝛽, erosion rate of nozzle critical section, 𝑒𝑟𝑟𝑎𝑡𝑒, 

and delay time for the onset of erosion, 𝑡𝑑𝑒𝑙𝑎𝑦. The prediction accuracy of the model is thus dependent 

on the values of these parameters. The set of values of these parameters that maximize the model 

accuracy are attained by optimization. The six parameters in concern are allowed to vary within their 
respectable ranges according to the table below. The values for 𝑎 and 𝑛 are arbitrarily chosen to engulf 

the baseline values provided by the experimental work [16]. Values of other parameters are specified 

based on previous experience of the authors [13]. 
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Table 1 Ranges of variation of grain and motor parameters in concern 

Design parameters Symbols Lower Bound Upper Bound 

Burning rate coefficient a 100e-07 120 e-07 

Pressure exponent n 0.41 0.43 

Step regression factor ∝ 295e-07 315 e-07 

Head end regression factor β 140 160 

Erosion rate of nozzle critical section errate 1e-04 3 e-04 

Delay time until begin of erosion tdelay 0.01 0.9 

 
A hybrid optimization technique is used to get the minimum RMSE between the theoretical and 

experimental pressure time profile using Genetic algorithm [17] globally and simulated annealing [18] 
locally. Genetic Algorithms, GAs, [17] are based on the principle of genetics and natural selection. Here, 

a “population” is chosen randomly, the fitness of each individual is determined. The operations of 

selection, crossover, and mutation are used to create the next generation. Simulated Annealing (SA) 
[18] method simulates the natural process of very slow cooling of heated solids in which the crystalline 

structures seek the minimum energy path towards solidification. The RMSE is calculated during the 
quasi-steady state phase only. The optimization is conducted using MATLAB toolbox [19]. 

3 RESULTS AND DISCUSSION 

Figure  holds a comparison between the experimental and predicted pressure time profiles of the star 

perforated grain in concern. 

 

 
Figure 4: Theoretical and experimental pressure-time profiles 

 



  

CEAS 2017 paper no. 698 Page | 8 
Anwer E. A. Hashish, M. Y. M. Ahmed, H. M. Abdallah, M. A. Alsenbawy Copyright © 2017 by Anwer E. A. Hashish 

Aerospace Europe 
6th CEAS 2017 Conference 

Generally, prediction tool manages to predict the trend of pressure-time profile. However, the 
theoretical model overestimates the starting pressure value and the pressure drop rate during the 

starting regressive burning phase. This may indicate an overestimation of the initial burning surface 
area of the star perforation. The model also overestimates the steady-state phase duration. The overall 

root mean square of prediction during the steady-state phase only (enduring for about 2.5 seconds) is 

6.5%. 
 

Next, the optimization algorithm is applied. Figure  show the convergence history of genetic algorithm 
optimizer. The solution was found to converge after 200 iterations. The RMSE of prediction during the 

steady-state phase is improved to 2.38 %. Optimization is then continued using Simulated Annealing. 
Figure  shows the function value convergence during the simulated annealing optimization. The solution 

is found to converge after 3245 iterations and the RMSE is improved during the steady-state phase to 

2.36 %. The slight improvement in the SA optimization phase indicates that GA has reached the global 
optimum solution is a high accuracy.  

 

 
Figure 5: Convergence history of GA optimization 

 
Figure 6: Convergence history of SA optimization 

 

Figure 7 shows the optimized pressure-time profile. The improvement in prediction accuracy is evident 
especially in the starting regressive burning phase.  
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Figure 7: Pressure time curve after optimization 

 

Table 2 below lists the optimized values of the parameters in concern in this study. For the sake of 

comparison, the corresponding baseline values, lower and upper bounds of variation are also listed. 
 

Table 2 Design parameters at all design phases and lower and upper bounds. 

Design 
parameters 

Symbols 
Lower 
Bound 

Upper 
Bound 

Base line 
values 

Optimized 
solution 

GA 

Optimized 
solution 

SA 

Burning rate 

coefficient 
a 100e-07 120 e-07 113e-07 110.13 e-07 110.12 e-07 

Pressure exponent n 0.41 0.43 0.42 0.422 0.421 

Step regression 

factor 
∝ 295e-07 315 e-07 308e-07 304.91 e-07 304.81 e-07 

Head end 

regression factor 
β 140 160 150 154.909 154.859 

Erosion rate of 
nozzle critical 

section 

errate 1e-04 3 e-04 2e-04 1.053 e-04 1.049 e-04 

Delay time until 
begin of erosion 

tdelay 0.01 0.9 0.7 0.0256 0.0254 

Root mean square 
error of prediction 

RMSE - - 6.5 % 2.38 % 2.36 % 

4 CONCLUSIONS AND FUTURE WORK 

A mathematical model is developed to predict the pressure-time profile of a star-perforated solid 
propellant grain. The developed tool is capable of predicting the performance of a test case that was 

experimentally tested with a reasonable accuracy. The prediction accuracy of the model is enhanced 

by tuning the grain ballistic and geometric parameters using a hybrid GA/SA. Upon performing the 
hybrid optimization technique, the prediction model tool becomes more accurate. Further work should 

focus on improving the prediction accuracy of the model during the exhaust phase. The developed 



  

CEAS 2017 paper no. 698 Page | 10 
Anwer E. A. Hashish, M. Y. M. Ahmed, H. M. Abdallah, M. A. Alsenbawy Copyright © 2017 by Anwer E. A. Hashish 

Aerospace Europe 
6th CEAS 2017 Conference 

technique can be alsoutilized in predicting of grain geometry to satisfy a predefined performance. The 
model can be enhanced by incorporating different grain geometries.  
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