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ABSTRACT 

A new method to compute internal forces in a multi
Lagrange equations are used to study the motion of a system under the action of known external 
forces. If an internal force has to be found, a supplementary mobility is considered in the system and 
the corresponding internal force for the new mo
its first and second orders of derivatives. The method is a general one, but a particular case of 
mechanism used in the dynamics of the airplane elevator is analyzed to verify the validity of the 
proposed method. 
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NOMENCLATURE 

E - Total kinetic energy expressed with the 
base frame 

kQ  - Generalized force 

U  - Analytical function 

 CkJ  - Matrix of inertia of link k about link 

frame k k k kC x y z  

 Ckr  - Position vector of mass center of link 

with respect to the base frame 

1 INTRODUCTION 

Determining internal forces and constraint force are important steps in dynamic analysis, which is the 
base for structure design of a mechanism. As known, calculus of internal forces for a static sys
rigid bodies is common in the field known as strength of materials. According to the standard 
procedure, first, external reactions at external supports need to be computed and next, by using 
sections perpendicular to the rigid body axis, the interna
moment at specified points along the rigid body are calculated based on the principle of equilibrium. 
However, for a complex mechanism with a large number of degrees of freedom, the analysis of the 
constraint forces in dynamic state are extremely difficult. Consequently, the calculus of the intern
forces will encounter a lot of difficulties.
In recent years, the problems related to the dynamic analysis of rigid bodies systems have attracted 
attention of researchers and some of them have got valuable results in their works: based on the 
observation method and the theory of the reciprocal screw system, Zhi and Wang [
and expressed the constraint forces of the kinematic pair of a slider
loop spatial RUSR mechanism by introducing the solution coefficient of the constraint wrench of the 
kinematic pair; Y. Zhao, J. F. Liu and Z. Huang [
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A new method to compute internal forces in a multi-bodies system is presented in 
Lagrange equations are used to study the motion of a system under the action of known external 
forces. If an internal force has to be found, a supplementary mobility is considered in the system and 
the corresponding internal force for the new mobility is found for null value of the mobility, as well as 
its first and second orders of derivatives. The method is a general one, but a particular case of 
mechanism used in the dynamics of the airplane elevator is analyzed to verify the validity of the 

bodies system, constraint, dynamics. 

Total kinetic energy expressed with the 

link k about link 

Position vector of mass center of link k 

 
Ckr  - Derivative of position vector of mass 

center of link k with respect to the base frame
1h  - Internal force 

 k  - Angular velocity vector of link 

respect to the base frame 
 kW  - Virtual work produced by forces acting 
upon the system corresponding to 

 kq  - Virtual displacement
i  - Lagrange multiplier 

Determining internal forces and constraint force are important steps in dynamic analysis, which is the 
base for structure design of a mechanism. As known, calculus of internal forces for a static sys
rigid bodies is common in the field known as strength of materials. According to the standard 
procedure, first, external reactions at external supports need to be computed and next, by using 
sections perpendicular to the rigid body axis, the internal forces such as shear force
moment at specified points along the rigid body are calculated based on the principle of equilibrium. 
However, for a complex mechanism with a large number of degrees of freedom, the analysis of the 

in dynamic state are extremely difficult. Consequently, the calculus of the intern
of difficulties. 

In recent years, the problems related to the dynamic analysis of rigid bodies systems have attracted 
and some of them have got valuable results in their works: based on the 

observation method and the theory of the reciprocal screw system, Zhi and Wang [
and expressed the constraint forces of the kinematic pair of a slider-crank mechanism 
loop spatial RUSR mechanism by introducing the solution coefficient of the constraint wrench of the 
kinematic pair; Y. Zhao, J. F. Liu and Z. Huang [5] used the screw theory to determine all the 
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bodies system is presented in the paper. 
Lagrange equations are used to study the motion of a system under the action of known external 
forces. If an internal force has to be found, a supplementary mobility is considered in the system and 

bility is found for null value of the mobility, as well as 
its first and second orders of derivatives. The method is a general one, but a particular case of 
mechanism used in the dynamics of the airplane elevator is analyzed to verify the validity of the 

Derivative of position vector of mass 

with respect to the base frame 

Angular velocity vector of link k with 

 
Virtual work produced by forces acting 

upon the system corresponding to  kq  

Virtual displacement 

Determining internal forces and constraint force are important steps in dynamic analysis, which is the 
base for structure design of a mechanism. As known, calculus of internal forces for a static system of 
rigid bodies is common in the field known as strength of materials. According to the standard 
procedure, first, external reactions at external supports need to be computed and next, by using 

l forces such as shear force, or bending 
moment at specified points along the rigid body are calculated based on the principle of equilibrium. 
However, for a complex mechanism with a large number of degrees of freedom, the analysis of the 

in dynamic state are extremely difficult. Consequently, the calculus of the internal 

In recent years, the problems related to the dynamic analysis of rigid bodies systems have attracted 
and some of them have got valuable results in their works: based on the 

observation method and the theory of the reciprocal screw system, Zhi and Wang [4] have solved 
crank mechanism and a single 

loop spatial RUSR mechanism by introducing the solution coefficient of the constraint wrench of the 
] used the screw theory to determine all the 
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reactions, as well as the active forces, for 
mobile platform connected to a fixed base by three identical supporting limbs with symmetrical 
kinematic structure) without over
Y. Jiang, T. M. Li and L.P. Wang [
dynamic analysis model of a parallel mechanism based on the deformation compatibility method; A. 
Rotaru, L. Dudici in [7] calculated the reaction wrench componen
linkages of the Stewart platform, by applying the Denavit
principle of virtual work; by using Lagrange equations and the principle of virtual work, I. Stroe and 
S. Staicu [1] calculated the joint forces in the double pendulum; I. Stroe, S. Staicu and A. Cra
determined the bending moment in a compass robotic arm based on Lagrange equations [
As known, by using Lagrange equations, the d
can be obtained easily without considering constraint forces. In addition, if an internal force has to be 
found, a supplementary mobility related to it is considered in the system and the corresponding 
internal force for the new mobi
second derivatives. The paper presents a new method for determining internal forces. Not only this 
method can calculate the internal forces in a rigid body but it can also calculate th
links having translational movement one with respect to the other. A system for controlling the 
aircraft elevator is considered to illustrate the proposed method.

2 METHOD FOR CALCULATI

2.1 Equations of motion of a rigid bodies system

When constraints are expressed by functions of coordinates, the motion of the systems can be 
studied with Lagrange equations for holonomic systems with dependent variables, while if the 
constraints are expressed by veloc
holonomic systems. 
For a non-holonomic system, the Lagrange equations corresponding to a system of 
coordinates  

1

d
d




  
    
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Q a k h
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are completed with the constraints
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By solving a system of h equations 
Lagrange multipliers i  will be found.
From Eq. (1), the equations for the holonomic system can be obtained by replacing the functions 
In the case of a holonomic system, the constraints are of the form

 1 ,..., , 0 , ( 1, 2,..., )  i hq q t i p

From the above formula, the following differe
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h
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By comparing Eq. (5) and Eq. (2)
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well as the active forces, for the spatial 3-RPS parallel manipulator (consisting of a 
mobile platform connected to a fixed base by three identical supporting limbs with symmetrical 

without over-constraint; using Newton-Euler method and d’Alembert’s principle, 
Wang [6] established the force analysis equations and also put forward the 

dynamic analysis model of a parallel mechanism based on the deformation compatibility method; A. 
] calculated the reaction wrench components of all the kinematic pairs of the 

linkages of the Stewart platform, by applying the Denavit-Hartenberg transformation matrices and the 
principle of virtual work; by using Lagrange equations and the principle of virtual work, I. Stroe and 

alculated the joint forces in the double pendulum; I. Stroe, S. Staicu and A. Cra
determined the bending moment in a compass robotic arm based on Lagrange equations [
As known, by using Lagrange equations, the differential equations of motion of a rigid bodies system 
can be obtained easily without considering constraint forces. In addition, if an internal force has to be 
found, a supplementary mobility related to it is considered in the system and the corresponding 
internal force for the new mobility is calculated for null values of mobility as well as its first and 
second derivatives. The paper presents a new method for determining internal forces. Not only this 
method can calculate the internal forces in a rigid body but it can also calculate th
links having translational movement one with respect to the other. A system for controlling the 
aircraft elevator is considered to illustrate the proposed method. 

METHOD FOR CALCULATING INTERNAL FORCES BY USING LAGRANGE EQU

of motion of a rigid bodies system 

When constraints are expressed by functions of coordinates, the motion of the systems can be 
studied with Lagrange equations for holonomic systems with dependent variables, while if the 
constraints are expressed by velocities, the motion is described with Lagrange equations for non

holonomic system, the Lagrange equations corresponding to a system of 

, ( 1, 2,..., )   k i ikQ a k h , 

are completed with the constraints 

0 , ( 1, 2,..., )a q b i p , 

 

equations in Eq. (1), and p equations in Eq. (2), the coordinates 
will be found. 

, the equations for the holonomic system can be obtained by replacing the functions 
In the case of a holonomic system, the constraints are of the form 

,..., , 0 , ( 1, 2,..., )q q t i p , 

From the above formula, the following differential form is obtained: 

0 , ( 1, 2,..., )q b i p . 

Eq. (2), it follows 
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RPS parallel manipulator (consisting of a 
mobile platform connected to a fixed base by three identical supporting limbs with symmetrical 

Euler method and d’Alembert’s principle, 
] established the force analysis equations and also put forward the 

dynamic analysis model of a parallel mechanism based on the deformation compatibility method; A. 
ts of all the kinematic pairs of the 

Hartenberg transformation matrices and the 
principle of virtual work; by using Lagrange equations and the principle of virtual work, I. Stroe and 

alculated the joint forces in the double pendulum; I. Stroe, S. Staicu and A. Craifaleanu 
determined the bending moment in a compass robotic arm based on Lagrange equations [2]. 

a rigid bodies system 
can be obtained easily without considering constraint forces. In addition, if an internal force has to be 
found, a supplementary mobility related to it is considered in the system and the corresponding 

lity is calculated for null values of mobility as well as its first and 
second derivatives. The paper presents a new method for determining internal forces. Not only this 
method can calculate the internal forces in a rigid body but it can also calculate them in a group of 
links having translational movement one with respect to the other. A system for controlling the 

Y USING LAGRANGE EQUATIONS 

When constraints are expressed by functions of coordinates, the motion of the systems can be 
studied with Lagrange equations for holonomic systems with dependent variables, while if the 

ities, the motion is described with Lagrange equations for non-

holonomic system, the Lagrange equations corresponding to a system of h generalized 

 (1) 

 (2) 

 (3) 

, the coordinates qk and the 

, the equations for the holonomic system can be obtained by replacing the functions ika . 

 (4) 

 (5) 

 (6) 



CEAS 2017 paper no.686  
A method for calculus of Internal Forces 

Then, Eq. (1) becomes 

1
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By defining the analytical function
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Eq. (7) can be written in the form

d
, ( 1, 2,..., )

d
   

        k
k k k

UE E Q k h
t q q q

Starting from these h differential equations and using 
coordinates qk and the Lagrange multipliers 

2.2 Calculus of Internal Forces

For a mechanical system with 
coordinates ( 1, 2,..., )kq k h , the Lagrange equations are expressed as follows

*d
, ( 1, 2,..., )

d

   
        k

k k k

E E U Q k h
t q q q

An internal force 1hQ  , as the new generalized force, can be found if a new fictitious mobility 
according to the force is considered. Then the mechanical system becomes one with 
freedom. The equation for the new mobility is 

1 1 1

d
d   

   
       h

h h h

E E U Q
t q q q

Considering again the mechanism, the internal force 
form 

1
1 1 1

d
d

  

    
          h

h h h

E E U
t q q q

3 CALCULUS OF THE INTE

In order to verify the validity of the method presented above, a system for controlling the airplane 
elevator as shown in Fig. 1 is considered as an example to calculate internal forces. For simplicity and 
without generality, the link (1) is supposed as a bar of length 
bar characterized by the length 
radius R2 and the mass m3; the cylinder (4) is represented by radii 
mass m4. 
As shown, the mechanism has one degree of freedom, so 
Then, by using Lagrange equations, the equation governing the motion of the system can be 
obtained easily. However, in order to find the linear and the angular velocities of the links, necessary 
for computing the total kinetic energy, some kinematic relations of the mechanism are needed to be 
determined first. Based on the geometric relation, as shown in 
some important terms are written below:
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By defining the analytical function 

 

can be written in the form 

, ( 1, 2,..., )   Q k h . 

differential equations and using p relations of constraints, the generalized 
and the Lagrange multipliers i  are determined. 

Calculus of Internal Forces 

For a mechanical system with h degrees of freedom represented by the independent generalized 
( 1, 2,..., )q k h , the Lagrange equations are expressed as follows

, ( 1, 2,..., )   Q k h . 
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according to the force is considered. Then the mechanical system becomes one with 
freedom. The equation for the new mobility is  
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CALCULUS OF THE INTERNAL FORCES IN THE AIRPLANE ELEVATOR SYS

In order to verify the validity of the method presented above, a system for controlling the airplane 
is considered as an example to calculate internal forces. For simplicity and 

without generality, the link (1) is supposed as a bar of length l1 and mass m1; the piston rod (2) is a 
bar characterized by the length l2 and the mass m2; the piston body is a plate characterized by the 

; the cylinder (4) is represented by radii R1 and R2, the length 

As shown, the mechanism has one degree of freedom, so   is chosen as generalized coordinate. 
Then, by using Lagrange equations, the equation governing the motion of the system can be 
obtained easily. However, in order to find the linear and the angular velocities of the links, necessary 

kinetic energy, some kinematic relations of the mechanism are needed to be 
determined first. Based on the geometric relation, as shown in Fig. 1, the kinematic relations between 
some important terms are written below: 
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 (8) 

 (9) 

relations of constraints, the generalized 

degrees of freedom represented by the independent generalized 
, the Lagrange equations are expressed as follows 

 (10) 

, as the new generalized force, can be found if a new fictitious mobility 
according to the force is considered. Then the mechanical system becomes one with 1h   degrees of 

 (11) 

is easily obtained from Eq. (11) in the 

 (12) 

IRPLANE ELEVATOR SYSTEM 

In order to verify the validity of the method presented above, a system for controlling the airplane 
is considered as an example to calculate internal forces. For simplicity and 

; the piston rod (2) is a 
late characterized by the 

, the length l4 and the 

is chosen as generalized coordinate. 
Then, by using Lagrange equations, the equation governing the motion of the system can be 
obtained easily. However, in order to find the linear and the angular velocities of the links, necessary 

kinetic energy, some kinematic relations of the mechanism are needed to be 
, the kinematic relations between 
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Figure 1: The system for controlling the aircraft elevator

After computing all the necessary terms, such as kinetic energy 
forces Qk, and taking all their partial derivatives as well as total derivatives with respect to time and 
replacing into Eq. (9), the equation of motion is achieved:

r 1 4A B M F . cos( )      
cy l ,

where 1A f ( )  stands for the inertia component,

2B f ( , )    stands for the Coriolis/centrifugal and gravity components,

 Fcy  is the external force produced by the pressure of the hydraulic cylinder,

 Mr stands for the moment created by the resistance effect of the air.

A

m1, l1
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Figure 1: The system for controlling the aircraft elevator

After computing all the necessary terms, such as kinetic energy E, force function 
, and taking all their partial derivatives as well as total derivatives with respect to time and 

, the equation of motion is achieved: 

r 1 4A B M F . cos( )   , 

stands for the inertia component, 

stands for the Coriolis/centrifugal and gravity components, 

is the external force produced by the pressure of the hydraulic cylinder,

s for the moment created by the resistance effect of the air. 

O1

M

F

m2, l2 m4, l4m3
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C4
C3

 Page |4 
Copyright © 2017 by author(s) 

Aerospace Europe 
6th CEAS Conference 

 (13) 

 (14) 

 (15) 

 (16) 

 
Figure 1: The system for controlling the aircraft elevator 

, force function U, generalized 
, and taking all their partial derivatives as well as total derivatives with respect to time and 

 (17) 

is the external force produced by the pressure of the hydraulic cylinder, 

O4
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As mentioned above, one of the most important applications in using Lagrange equations is the 
possibility to calculate directly the internal forces as well as constraint forces in a rigid bodies
For this case, the constraint force at point O
normal constraint force f


n  with the direction along th

constraint force ft


, with the direction perpendicular to 
plane. 

Figure 2: Diagrams for calculating the normal constraint force (a) 

and the tangent constraint 

The supplementary mobility corresponding to the normal constraint force 
generalized coordinates representing the considered mechanism are chosen as 
shown in Fig. 2a. Subsequently, the normal constraint force can be determined by using Lagrange 
equation and is written in the form

f C D F  
n cy , 

where 3C f ( )  stands for the inertia component,

 4D f ( , )    stands for the Coriolis/centrifugal and gravity components.

Similarly, when the tangent constraint force 

1 2,q q u  , as shown in Fig. 2b
expression of the form 

f f ( , )  
t t . 

Figure 3: Diagrams for calculating the bending moment (a) and shear force (b) 

in the piston rod
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As mentioned above, one of the most important applications in using Lagrange equations is the 
possibility to calculate directly the internal forces as well as constraint forces in a rigid bodies
For this case, the constraint force at point O4 can be considered as the sum of two components: the 

with the direction along the centerline of the cylinder

, with the direction perpendicular to fn


. Both these two forces lie in the vertical 

 

Figure 2: Diagrams for calculating the normal constraint force (a) 

and the tangent constraint force (b) 

The supplementary mobility corresponding to the normal constraint force 
generalized coordinates representing the considered mechanism are chosen as 

. Subsequently, the normal constraint force can be determined by using Lagrange 
equation and is written in the form 

 

stands for the inertia component, 

stands for the Coriolis/centrifugal and gravity components. 

Similarly, when the tangent constraint force ft


 is determined, the generalized coordinates are 
Fig. 2b. Then the tangent constraint force can be obtained and has the 

 

for calculating the bending moment (a) and shear force (b) 

in the piston rod-cylinder system 
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As mentioned above, one of the most important applications in using Lagrange equations is the 
possibility to calculate directly the internal forces as well as constraint forces in a rigid bodies system. 

can be considered as the sum of two components: the 
e centerline of the cylinder, and the tangent 

. Both these two forces lie in the vertical 

 

Figure 2: Diagrams for calculating the normal constraint force (a)  

fn


 is  . Thus, the 
generalized coordinates representing the considered mechanism are chosen as 1 2,q q    as 

. Subsequently, the normal constraint force can be determined by using Lagrange 

 (18) 

is determined, the generalized coordinates are 
Then the tangent constraint force can be obtained and has the 

 (19) 

for calculating the bending moment (a) and shear force (b)  
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Based on the achieved results, the constraint at the point 

and normal constraint forces f , ft n

 

the rigid bodies system. 
For determining the internal forces, including the 
rod-cylinder sub-mechanism, the generalized coordinates 
chosen, corresponding to the case for calculating
The variable indicating the position along the piston rod
moment is calculated, will be denoted with 
force function U will be written as follows:

      
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in which Cky is the vertical coordinate of the mass center of body 
3, 41, 42) with respect to the base frame.
Notice that the expressions of E 
as   varies along the length of piston rod

When   varies in the interval 0
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Based on the achieved results, the constraint at the point O4 is released and replaced by the tangent 

f , ft n

 
. At this moment, they are considered as external forces acting on 

For determining the internal forces, including the shear force and the bending moment in the piston 
mechanism, the generalized coordinates 1 2,q q    as shown in 

chosen, corresponding to the case for calculating the bending moment bdM . 
The variable indicating the position along the piston rod-cylinder subsystem, where the bending 

is calculated, will be denoted with  . The expressions of the kinetic energy 
will be written as follows: 

      
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, 

1 1 21 21 22 22 3 3 41 41 42 42C C C C C CU m gy m gy m gy m gy m gy m gy      , 

is the vertical coordinate of the mass center of body k in the mechanism (
with respect to the base frame. 

E and U depend on  , since the positions of the mass centers change 
varies along the length of piston rod-cylinder. 
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is released and replaced by the tangent 

. At this moment, they are considered as external forces acting on 

force and the bending moment in the piston 
as shown in Fig. 3a are 

stem, where the bending 
. The expressions of the kinetic energy E, and of the 

 (20) 

 (21) 

in the mechanism (k = 1, 21, 22, 

, since the positions of the mass centers change 

 (22) 

 (23) 

 (24) 

 (25) 

 (26) 

 (27) 

 (28) 

 (29) 
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After replacing the partial and the total derivatives with respect to time of the terms in the Lagrange 
equations, the bending moment can be obtained as

bd
d E E UM
dt
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After replacing the partial and the total derivatives with respect to time of the terms in the Lagrange 
equations, the bending moment can be obtained as 
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After replacing the partial and the total derivatives with respect to time of the terms in the Lagrange 
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corresponding to the supplementary 
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For determining the shear force along the piston rod
1 2,q q s   are chosen, as shown in 

be also determined directly. 
In the inverse dynamics, the link (1) is imposed by the law of motion expressed as

0 2
0 , ( )

2
t t rad


    , 

and the moment Mr has the expression

49.10
M ,( )


r Nm , 

where 0 0, ( / ); , ( / )
180 90

rad s rad s   

For a simulation, a system for controlling the aircraft elevator with the following geometric and inertia 
characteristics is considered: 

1 2 4 1 2 3 40.5 ( ) , 1( ) , 1( ); 2( ) , 4 ( ) , 1( ) , 5 ( ).      l m l m l m m kg m kg m kg m kg

By using MATLAB software, the bending moment 

4
2 2

ll x


   
 

" along the length of piston rod

and Fig. 5, respectively. Based on the proposed method, the internal forces can be calculated at any 
position of the mechanism, corresponding to the value of the rotation angle 
showed results for the special case when 

calculated for the static system mentioned below. The variations of the normal constraint force 

and the tangent constraint force 
in Fig. 6, Fig. 7, respectively. 

Figure 4: Variation of the bending moment 
along the piston rod-cylinder at

Figure 5: Variation of the shear force along 
the piston rod-cylinder at 
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force along the piston rod-cylinder subsystem, the generalized coordinates 
are chosen, as shown in Fig. 3b. By proceeding in a similar way, the 

In the inverse dynamics, the link (1) is imposed by the law of motion expressed as

 

has the expression 

 

2
0 0, ( / ); , ( / )

180 90
rad s rad s    . 

For a simulation, a system for controlling the aircraft elevator with the following geometric and inertia 

1 2 4 1 2 3 40.5 ( ) , 1( ) , 1( ); 2( ) , 4 ( ) , 1( ) , 5 ( ).      l m l m l m m kg m kg m kg m kg

By using MATLAB software, the bending moment Mbd, and the shear force 

along the length of piston rod-cylinder subsystem are released as shown in 

, respectively. Based on the proposed method, the internal forces can be calculated at any 
position of the mechanism, corresponding to the value of the rotation angle  . However, the paper 
showed results for the special case when 0 ( )rad  , with the aim to compare them with the results 

calculated for the static system mentioned below. The variations of the normal constraint force 

and the tangent constraint force ft


with respect to the rotation angle   are also calculated as shown 

Figure 4: Variation of the bending moment 
cylinder at θ = 0 (rad) 

Figure 6: Variation of the no
force versus rotation angle 

Figure 5: Variation of the shear force along 
at θ = 0 (rad) 

Figure 7: Variation of the tangent 
constraint force versus rotation angle 
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cylinder subsystem, the generalized coordinates 
By proceeding in a similar way, the shear force can 

In the inverse dynamics, the link (1) is imposed by the law of motion expressed as 

 (42) 

 (43) 

For a simulation, a system for controlling the aircraft elevator with the following geometric and inertia 

1 2 4 1 2 3 40.5 ( ) , 1( ) , 1( ); 2( ) , 4 ( ) , 1( ) , 5 ( ).      l m l m l m m kg m kg m kg m kg  

force R with respect to "

cylinder subsystem are released as shown in Fig. 4 

, respectively. Based on the proposed method, the internal forces can be calculated at any 
 . However, the paper 

, with the aim to compare them with the results 

calculated for the static system mentioned below. The variations of the normal constraint force fn


, 

are also calculated as shown 

of the normal constraint 
rotation angle θ  

Figure 7: Variation of the tangent 
rotation angle θ  
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In order to verify the results above, the system for controlling the aircraft elevator at the position 
0  (rad) is simplified as a static system, which is considered a

concentrated forces. Then, by using the section method to compute manually the shear force and the 
bending moment, the results shown in 

Figure 8: The internal force diagram of the simplified model

4 CONCLUSIONS 

The paper presented a new method for determining the shear force and the bending moment in a 
mechanism, by using the Lagrange equations. Based on the method, internal forces in certain rigid 
bodies of a mechanism were calculated, in dynamic state, at any p
of time, provided the supplementary mobilities are consistent with the constraints imposed to the 
mechanism. Besides, constraint forces at some positions can be calculated directly. Therefore, a 
closed mechanism can be transformed to an open o
kinematic relations.  
The results obtained by using the proposed method are compared to the ones obtained by using a 
well-known method. So the validity of presented method is verified.
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In order to verify the results above, the system for controlling the aircraft elevator at the position 
(rad) is simplified as a static system, which is considered as a beam acted by distribu

concentrated forces. Then, by using the section method to compute manually the shear force and the 
bending moment, the results shown in Fig. 8 were obtained. 

Figure 8: The internal force diagram of the simplified model
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