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ABSTRACT 

This research proposes a decision supporting tool which identifies cost-optimal maintenance decisions for 
a given planning period. Simultaneously, the reliability state of the component is kept at or below a given 
reliability threshold: a failure limit policy applies. The tool is developed to support repair-or-replacement 
decision making for composite components likely to suffer impact damage. As a core part of the tool, a 
cost minimization problem is defined and solved using a search tree algorithm with heuristic constraints. 
Application to a case study which utilizes historical damage data and subsequent simulation shows the 
potential of the tool to identify cost-minimal maintenance decisions. The decision support tool is capable 
of incorporating a wide range of parameters to study preventive maintenance decision making in depth.  
 
1 INTRODUCTION 

The latest generation of wide-body transport aircraft shows a significant increase in composite structures, 
as evidenced in the Boeing B787 and the Airbus A350 XWB. The B787 is the first commercial aircraft to 
use Carbon Fiber Reinforced Plastic (CFRP) for the entire pressurized fuselage [1]. Besides the fuselage, 
B787 uses composites for the windows, wings, tails and stabilizers, resulting in approximately 50 % share 
of the total weight [2]. The introduction of composites into primary structures brings the advantage of 
weight savings and therefore potential for generating fuel savings for airlines. However, compared to the 
decades-long experience with aluminium structures, there is a relative lack of experience of using and 
maintaining composites in these primary aircraft structures. In particular, the frequency, severity and 
rectification of impact damage are difficult to forecast, as limited historical data is available. This poses a 
challenge with respect to ensuring aircraft airworthiness over longer periods of time. Consequently, 
conservative approaches are adopted to ensure safe aircraft operations. In addition, regulatory 
requirements on maintenance stipulate the implementation of reliability programs to monitor and improve 
aircraft reliability over time.  
Within the research domain of reliability engineering, significant amounts of research have been 
performed under the assumption of non-repairable systems, as noted by previous authors [3-5]. 
However, this assumption is not valid for composite systems, which can be characterised as being 
repairable. When considering existing research on repairable systems [6-12], it can be generally noted 
that strong assumptions are made when connecting reliability output with maintenance planning and 
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control. Costs are sometimes treated as a continuous function rather than a discrete time event, which 
does for instance not match with composite impact damage events. Frequently, repairs are assumed to 
bring the component back to an ‘as-good-as-new’ state, which may not be true for particular composite 
impact damage failure modes. Furthermore, maintenance planning solutions are often obtained using 
optimization techniques which only estimate the solution area (as shown in [7], [8] or [12]). 
Combinatorial, precise calculations are avoided due to the extensive computational effort involved in such 
an approach. Taking into account the mismatch between the aforementioned strong assumptions and 
real-life maintenance applications as well as the use of imprecise solution methods, a lack of application 
of existing optimization models for preventive maintenance can be distinguished in practice [13].  
Given these factors, this research aims to develop a practical decision supporting tool, which identifies 
cost-optimal maintenance decisions for a given planning period. Simultaneously, the reliability state of the 
component is kept at or below a given reliability threshold. The tool applies to composite components 
likely to suffer impact damage.  
In Section 2, existing techniques to perform reliability analysis for composite components are 
investigated, together with uptake in preventive maintenance decision making. Subsequently, Section 3 
describes how failure of repairable components is modelled using a Generalized Renewal Process (GRP). 
Furthermore, modelling of maintenance cost as discrete time events is described, which allows to 
realistically represent practical conditions. Reliability and cost serve as inputs towards optimization of 
long-term planning problems, where application of a Search Tree algorithm allows to find a precise 
combinatorial solution. In order to reduce the computational effort and solve long term planning 
problems, realistic heuristic constraints are identified and applied. The reliability, cost and optimization 
models are implemented in a decision support tool. In Section 4, a numerical case study has been 
devised on the basis of simulated damages generated by a Monte Carlo approach. Results are presented 
and analysed. Sensitivity analysis is employed to present the impact of selected parameters on the 
resulting maintenance costs. Finally, conclusions and recommendations for future research are given. 
 
2 THEORETICAL CONTEXT 

Preventive maintenance (PM) is a scheduled maintenance event, which triggers a planned maintenance 
task. It is often assumed that a component is replaced at a PM maintenance event. However, for 
repairable components, such as composites, both types of maintenance action (repair or replacement) 
can be feasible. The aim of the preventive maintenance is to improve the reliability state of the 
component. Several subpolicies can be identified as part of preventive maintenance; in this paper, the 
focus is on a failure limit policy [14], where the reliability of a given component must not drop below a 
given threshold.  
To apply a failure limit policy towards maintenance planning, it is imperative to estimate component 
reliability. As indicated by [3-5], many research efforts have focused on non-repairable systems. The 
general approach when analysing the reliability state of a non-repairable system is to use renewal theory, 
which reduces the considered system to a single component [4] with only two states: operating and 
failed. Such a system neglects the influence of imperfect maintenance by assuming that the state of the 
component after maintenance is as good as new. This assumption is not necessarily valid for systems 
consisting of composites, which are 1) repairable in nature and 2) may not be subject to maintenance 
which brings the condition back to an as-good-as-new state. As such, reliability models for repairables 
which are able to incorporate repair efficiency should be considered to model composite components. 
Examples are Generalized Renewal Processes, with Kijima Type-1 and Type-2 models seeing considerable 
uptake in scientific literature [15, 16].  
In order to develop a maintenance schedule for preventive maintenance, traditional approaches rely on 
algorithms with the ultimate goal to decide whenever a component should be replaced or be repaired. In 
[6], a study is presented which solves the problem of optimal preventive maintenance (PM) under the 
assumption of an infinite time horizon. The author assumes that the failure rate increases with the 
number of carried out repairs. It is shown that depending on the initial assumptions, the developed 
schedule results into two unique solutions (replacement only policy and repair only policy). In [7], an 
algorithm is presented which creates a preventive maintenance policy for the case of imperfect 
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maintenance under the assumption of a constant improvement factor (i.e., repair efficiency). The 
improvement factor describes the quality of performed maintenance. The maintenance actions are carried 
out whenever the system reaches the predefined maximum failure rate. The cost estimation is based on 
constant cost factors for replacement and repair which both are influenced by the interest rate over time. 
The same authors made an extension one year later in [8] by presenting a branching algorithm with 
effective dominance rule to reduce the computational time. In [9], an optimal replacement model using 
three states (operating, replacement and repair) is introduced. The assumption of minimal repairs is 
made. It means after the component is repaired the reliability of the component is as good as shortly 
before failure (as good as old). The states are changing at time of failure (corrective maintenance). In 
[10], the repair limit analysis is extended by including the changing force of mortality with the age of the 
unit. In [11], the improvement factor as a function of repair cost and age of the unit is proposed. It 
presents an algorithm with two states of a system (operating or failed). The cost estimation is done 
based on an average cost-rate between cycles. Finally in [12], the problem of reliability-based periodic 
preventive maintenance planning for systems with deteriorating components is studied. The model shows 
three states (simple service, preventive repair and preventive replacement). The infinite planning horizon 
is divided into equal intervals. For any interval, a decision between those states must be made.  
Generally, a lack in implementation of developed models and policies was recognized in [13]. It is caused 
by made unrealistic assumptions, leaving a gap between theory and practice [13]. A common assumption 
is the estimation of maintenance cost as a continuous function (e.g. in [7-10]). This assumption does not 
always reflect reality since maintenance costs can be related to discrete events such as impact damage, 
where the actual costs are strongly dependent on the occurred damage. Furthermore, an assumption of a 
constant improvement factor missing any connection to the reliability analysis was noticed (e.g. in [7-9]). 
In [10], a fuzzy graphical solution method for determination of the improvement factors is presented. 
This method neglects any direct reliability data dependence showing a dependence on maintenance cost 
and system age. In [9], the improvement factor is neglected completely by providing only one type of 
repair (minimal repair). 
Furthermore, maintenance planning solutions are often obtained using optimization techniques which 
only estimate the solution area (as shown in [7, 8, 12]). Combinatorial, precise calculations are avoided 
due to the extensive computational effort involved in such an approach. 
 
3 DECISION SUPPORT TOOL FOR PREVENTIVE MAINTENANCE PLANNING 

On the basis of the preceding discussion, a decision support tool has been developed with the capability 
to incorporate the output of reliability models for repairable systems and discrete event cost modelling. 
Furthermore, it incorporates an optimization approach tailored towards structured exploration of the 
solution space. In the next subsection, the logic flow and main elements of the decision support tool are 
highlighted. This is followed by a more in-depth look at the related cost models and optimization 
approach.  
 
3.1 Decision support tool: logic and flow 

The decision supporting tool logic is presented in Figure 1. The starting point is the availability of 
maintenance data, where for a given component the occurred damage, type of repair and time of failure 
are listed. Based on that data the reliability parameters can be obtained. Reliability analysis is performed 
using a repairable system approach, namely the Generalized Renewal Process (GRP), where the concept 
of virtual age is introduced to model system condition and associated repair effectiveness. In essence, a 
virtual age of 0 corresponds to a new component, with subsequent use being reflected by an increase in 
virtual age. Subsequent repair activities can ‘turn back the clock’; with a fully effective repair, the 
component is repaired to an as-new state. However, repairs can also be less than 100% effective, 
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resetting virtual age only partially. Based on historical event data (e.g. failure times or damage 
occurrence times), the GRP model can be used to estimate the intensity function 𝜆(𝑡) and its associated 
parameters, utilizing Monte Carlo simulation for parameter estimation.   
 

 

Figure 1: Decision support tool flowchart 

To make the connection between reliability analysis and subsequent planning optimization, the decision 
support tool is realized using three states: operating, repaired and replaced. In keeping with the failure 
limit policy, the switch between states is triggered by the maximal allowable value of the intensity 
function 𝜆𝑚𝑚𝑚 , whenever the component intensity function 𝜆(𝑡) reaches 𝜆𝑚𝑚𝑚 . The policy is visualized in  
Figure 2. 
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Figure 2: Failure limit policy and repair / replacement impact 

 
Over time, a maintenance schedule can be composed. This schedule is constituted by a sequence of 
states, including repair and replacement decisions. The next subsection describes the approach to model 
and optimize this scheduling effort.  
 
3.2 Optimization Approach  

The components of the optimization problem can be captured in the following description: 
“For a given time period, find a maintenance plan, which optimizes the cost of preventive maintenance, 
by simultaneously keeping the reliability state of the system at or below a predefined threshold”.  
 
Optimization model  
The objective function and associated constraints are stated below: 
 

𝑀𝑀𝑀 𝐶 (𝐷, 𝑡) (1) 
 
Where  D =  Maintenance Decision, with       
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Where 𝑡1 is the time of the first maintenance event, which depends on the intensity function obtained 
from reliability analysis as well as the maximum attainable value of the intensity function; 𝑡𝑖 represents 
the 𝑖𝑡ℎ maintenance event where a component is restored to its virtual age, which is dependent on the 
improvement factor 𝛼 (also known as repair effectiveness); and 𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is time required to fulfil the 
maintenance event, which may be a repair or a replacement action, and is therefore dependent on the 
maintenance decision.  
To evaluate cost, replacement cost and repair costs are considered for preventive maintenance. The costs 
for replacement are calculated using: 

RC =  RC����  ∙ (1 + r)t (5) 

Where RC���� represents the summed costs of replacement activity and component purchase price (see eq. 
6), with r representing an inflation rate which is applied using operational time t.  
 

𝑅𝑅����  = 𝑅𝐶𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎 + 𝑅𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (6) 

The costs for repair are calculated using:  
 

𝑀𝑀 = 𝑀𝑀�����  ∙ (1 + 𝑚)𝑡 (7) 

Where 𝑀𝑀����� represents a constant repair cost, which is subsequently inflated by a rate 𝑚.  
 
Solution technique 
To solve the introduced optimization problem, a Search Tree Algorithm is applied. This is a well-known 
technique which allows to explore the state space of a given problem by its predefined tree paths. That 
way it allows generating combinatorial solutions. The logic of the algorithm is presented below as a 
pseudo algorithm.1 
 
Create initial node 
Calculate the upper limit of maintenance events - n 
 
for i = 1 : n 

for j = 1 : 2 i 
Create Node 

if (⟨condition 1⟩) & (⟨condition 2⟩) &. . .& (⟨condition n⟩) 
Save Node 

else 
Branch Node 

 
end 

end 
end 
 
A generic example of a binary search tree is given in Figure 3. To maintain overview, only the return of 
the reward function 𝐶 is shown. The reward function is also known as the objective function. It is the 
function which has to be optimized (e.g. cost function). The decisions are marked by the letters R and M. 
Using backwards iteration, the total reward can be obtained (see green route in Figure 3). Backwards 
iteration means that starting from the end node, the total reward is calculated by following the unique 
path to the initial node. The nodes values are summed up to generated the total reward of the solution 
(see eq. 8).  

𝐶𝑠𝑠𝑠,1 = 𝐶1.1.1 + 𝐶1.1 + 𝐶1 + 𝐶0 (8) 
                                                
1 The actual algorithm was programmed in Matlab R2014b 
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In order to explore the complete state space and find the optimal solution, this procedure has to be done 
for each path. The set of solutions 𝐶𝑠𝑠𝑠 contains each possible path, which can be used to establish the 
optimal solution (see eq. 9).  

𝐶𝑠𝑠𝑠 = min [𝐶𝑠𝑠𝑠,𝑖] (8) 
 

 

Figure 3: Symmetric binary tree with backwards iteration 

 
To restrict the number of possible options (and thereby the search space and associated computationtal 
time), heuristics can be used to constrain the search. Examples will be shown in the next section.  
The Search Tree algorithm has been implemented in the decision support tool to solve the 
aforementioned optimization problem. The decision support tool output consists of the minimum cost 
solution, which comprises a sequence of maintenance  activities (repair or replacement decisions at 
specific points in time), with associated total costs (consisting of the summed repair and replacement 
decisions over the life of a component).  
 
4 RESULTS 

4.1 Input 

The decision support tool (DST) has been implemented in Matlab. On the basis of this tool, a numerical 
case study has been performed to test and validate the functionality. The available inputs are presented 
in Table 1, with Table 2 showing the inputs related to the results presented in this section. For some 
variables, the values can be varied across a range (e.g. the improvement factor, which varies from 1 
(‘bad-as-old’) to 10 (highly effective repair, though not ‘as-good-as-new’); time of first maintenance; cost 
coefficient). With respect to the latter, the cost coefficient is introduced to describe the relation of 
replacement cost to the cost of repair. For instance, a factor of 3 represents the case where the costs for 
the replacement are 3 times higher than the costs for repair. Furthermore, two entries are of particular 
note:  

1) Option for damage simulation: a Monte Carlo simulation which generates damage events 
over time can be incorporated. The underlying distribution of the MC simulation is based on 
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distribution fitting of historical data of damage events on secondary composite structures (e.g. 
flaps, slats).  

2) Probability of damage occurrence: the MC simulation generates damage events, but these 
have to be translated to failure modes. Five failure modes (debond; delamination; through 
damage; surface damage; heat damage) are considered. Each is associated with a certain 
(constant) probability of occurrence, which is applied to the MC output to generate failure mode-
specific events. The probabilities of occurrence are generated on the basis of historical data of 
impact events and associated consequences. 

3) Search heuristics: For the heuristics, it is assumed that a composite component can be 
repaired five times in a row before a replacement needs to be performed. Additionally, it was 
assumed that the optimal solution cannot be obtained by replacing a component twice in a row. 
This assumption is not valid if the cost for replacement and the cost for repair are nearly the 
same. Both assumptions are used to branch corresponding combinations allowing to solve long 
term planning problems.  

 

Table 1: DST general settings 

 

Table 2: DST case study settings 

 
 
4.2 Results and sensitivity analysis 

With the parameter settings as given in Table 2, the MC simulation for damage has been run 100 times 
per damage event occurrence, helping to generate an acceptable spread in damage type probabilities.  
 

 

Figure 4: Cost optimal solution 

 

 

Figure 5: Reliability behaviour in optimal 
solution 
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Figure 4 visualizes the cost optimal output. Here, the proposed optimal solution can be observed as a 
sequence of repair and replacement decisions, in the order MMMRMRMMRMMM, with M representing a 
repair decision and R representing a replacement decision. The associated costs and times can be 
observed in the graph. Figure 5 shows the resulting reliability behavior over time, with a clear 
representation of the failure limit policy, as well as the effect of repair efficiency (i.e., improvement 
factor) on the failure rate.  
To investigate the effect of parameter settings, a systematic sensitivity analysis has been performed. The 
majority is omitted here, but one parameter variation is shown as a representative example. Table 3 
shows the related inputs, where the improvement factor is studied across a range from 1 – 15. To allow 
for a full search, the heuristic constraints have been omitted in the analysis. The output of the sensitivity 
analysis is visualized in Figure 6. An increase in improvement factor corresponds to an increased repair 
quality, which leads increased preference for repair decisions. Two unique solutions, being repair only 
and replacement only policies, can be identified at the edges of the improvement factor range. 
 

 

Table 3: Sensitivity analysis settings 

 
 

 

Figure 6: Improvement factor sensitivity 

 
5 CONCLUSIONS 

A decision supporting tool has been presented which identifies cost-optimal maintenance decisions for a 
given planning period. It uses the failure limit policy in combination with a Generalized Renewal Process 
modelling approach to ensure maintenance action before a critical threshold. By incorporating a Search 
Tree optimization technique in combination with heuristics, the formulated cost optimization problem can 
be solved successfully, leading to identification of cost-minimal maintenance decisions. The decision 
support tool is capable of incorporating a wide range of parameters to study preventive maintenance 
decision making in depth.  
Limitations of the proposed solution concern the use of historical data from secondary composite 
structures to simulate damage to primary structures. Both the frequency of failures and the failure mode 
distribution may vary significantly for primary structures, as the operational characteristics for these 
structures can be quite different. Furthermore, the used solution technique is only capable of fast 
generation of solutions if the number of nodes is limited, or if heuristics are used to direct the search. 
Alternative solution techniques will be investigated in future research. 
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