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ABSTRACT   

A decision support framework is proposed, allowing for the integration of aircraft maintenance work 
progress monitoring into the aircraft maintenance planning decision support process. The framework 
is able to monitor the progression of planned maintenance by analysing real-time data on work 
progress. This can be used to explore optimal task planning in case of delays or maintenance being 
ahead of schedule. Using a combination of reliability analysis, cost analysis, decision alternative 
generation and ranking yields a decision support tool which is able to deal with the stochastic nature 
of maintenance task execution. Case study results indicate that the framework is able to generate 
decision alternatives with a lower total cost than the reference alternative, while at the same time 
optimising the maintenance planning, resulting in a possible reduction of the maintenance costs of 45 
to 90% (depending on parameter settings).  
 
KEYWORDS: Maintenance planning, work progress monitoring, decision framework 

1 INTRODUCTION 

Aircraft maintenance is a crucial part in the airline business: proper maintenance ensures fleet 
airworthiness and exerts a direct influence on the operating cost of an airline [1]. Maintenance 
planning is an essential element of maintenance management [2], aiming at ensuring system function 
and life, ensuring safety and human well-being. Aircraft maintenance management is the combination 
of all tasks/actions which retain an item or a system in, or restore it to, a normal state in which it can 
perform its required function Accurate, reliable and flexible planning may contribute directly to the 
efficiency of maintenance. Various approaches exists towards the optimisation of aircraft maintenance 
planning [1, 3-7]; general objectives are to minimise costs and delay, while at the same time 
maximising aircraft availability. Unfortunately, the majority of approaches in the state of the art fail to 
incorporate the stochastic nature of maintenance execution: deterministic assumptions are made to 
arrive at optimal planning of maintenance tasks. In reality, upon execution of planned tasks it is 
frequently found that tasks take more (or less) time than expected. Sometimes, tasks can lead to 
new, unscheduled maintenance tasks, each with their own demands in terms of task time and 
resources. With the advent of work progress monitoring systems (e.g., time registration and status 
updates using mobile tools [8], an opportunity is opening up to address this gap between research 
and practice.  
Consequently, the goal of this research is to integrate aircraft maintenance work progress monitoring 
into the aircraft maintenance planning decision support process. In order to achieve this objective, a 
decision framework for maintenance planning is proposed. The framework is able to monitor the 
progression of planned maintenance by analysing real-time data on work progress. As such, the time 
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horizon considered spans an upcoming set of maintenance tasks (i.e., a short-term period covering 1 
to 2 planned maintenance opportunities at maximum, which covers 24-48 hours), as opposed to 
problems which address longer-term time horizons (weeks, months or even years, including major 
letter checks). Though (maintenance) literature uses the terms planning and scheduling 
interchangeably, the short time horizon covered in this research effort will be referred to as planning. 
Having noted this, real-time work progress data can be used to explore optimal task planning in case 
of delays or maintenance being ahead of schedule. Using a combination of reliability analysis, cost 
analysis, decision alternative generation and ranking yields a decision support framework which is 
able to deal with the stochastic nature of maintenance task execution.  
To validate these claims, the state of the art with respect to maintenance planning is briefly 
considered first (Section 2). This is followed by an introduction of the proposed approach in Section 3. 
Subsequently, the decision framework and its constituent models are applied to a case study 
incorporating data from a European maintenance, repair and overhaul (MRO) operator. Results show 
that the framework is able to address aircraft maintenance planning in an effective way, taking 
criticality and various cost factors into account. Framework validation and sensitivity analysis are 
performed, followed by conclusions and recommendations for future research. 

2 THEORETICAL CONTEXT 

Existing approaches to maintenance planning optimisation fall within the broader category of 
maintenance optimisation models. Typically, these models aim to find the optimum balance between 
the costs and benefits of maintenance, while taking relevant constraints into account (e.g., resource 
availability), and to find the most appropriate moment to execute maintenance [2, 9]. In general, 
maintenance optimisation models cover four aspects [2]: 

• A description of a technical system, its function and its importance. 
• A modelling of the deterioration of the system in time and possible consequences of the 

deterioration for the system. 
• A description of the available information about the system and the actions open to 

management. 
• An objective function and an optimisation technique which helps finding the best balance 

between the costs and the benefits of maintenance. 
 
Maintenance optimisation models can be classified into two main streams, namely qualitative and 
quantitative models. Qualitative models include maintenance approaches such as Reliability Centered 
Maintenance (RCM) [10] and Total Productive Maintenance (TPM) [11]. Quantitative models on the 
other hand include deterministic and stochastic models. A wide variety of models is available, 
including classical optimal replacement theory (including age-based, block-based and opportunity-
based models [2, 9, 12-14], Bayesian models [15], heuristic approaches [7] and applications of 
various optimization techniques (such as (non-)linear programming [6, 16], dynamic programming 
[7], and evolutionary techniques such as genetic algorithms [17, 18]) to the maintenance domain.  
A shared shortcoming of this range of models is a lack of generalizability, data availability and 
associated practical applications [2, 9]. Decision support systems (DSS) can help in bridging this gap. 
A decision support system is a system that is able to support the choice between alternatives. In 
other words, it is able to answer ‘what-if’ questions [9]. Furthermore, it can be helpful for the 
maintenance engineer in terms of time and effort that has to be put into the decision support 
process. The decision support system can help the user in the decision process by gathering and 
analysing data. Analysis typically consists of generating a number of alternatives and indicating which 
alternative is the best based on certain criteria or parameters.  
There are two types of decision support systems, namely operational and strategic. Strategic DSS are 
generally more used for one-off problems at a higher level (systems or units). Since they are different 
each time, there is no need for complicated databases and extensive amounts of data. Operational 
DSS on the other hand are developed for repetitive problems, including planning and scheduling of 
maintenance [9]. Two prior research efforts are of particular interest.  
The first contribution [14] describes an operational DSS named PROMPT. The objective of PROMPT is 
to give decision support for opportunity based preventive maintenance. According to Ab-Samat and 
Kamaruddin [19], opportunity maintenance is best described as the planning and scheduling of 
maintenance activities to repair a component, whilst at the same time opportunistically repair/replace 
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other components in the system, with the aim to avoid future failures and reduce the amount of 
machine downtime. The optimization problem faced by PROMPT is summarized by Dekker and van 
Rijn [14] as ‘Plan and schedule a number of maintenance packages, each consisting of one or more 
activities, at randomly occurring opportunities of a restricted duration.’ The authors [14] further state 
that the planning would include determining the long-term optimal policy, whereas the scheduling 
should indicate at a given opportunity which packages should be carried out at which priority, given 
the established long-term optimal policy. A drawback of PROMPT is the fact that it addresses 
opportunity maintenance only. Opportunity maintenance is forward-looking: it does not consider 
information gathered during actual execution of maintenance tasks. 
The second relevant contribution discusses a maintenance decision support framework used for 1) 
addressing short-term operational maintenance decisions at line maintenance and for 2) deferring 
maintenance actions that affect the aircraft’s dispatch [1]. The decision support framework has two 
main objectives, namely, having a high aircraft operability and low maintenance costs. The framework 
generates and ranks decision alternatives on the basis of multiple criteria, such as reliability, cost and 
resource availability. Drawbacks of the proposed support framework are its reliance on simplified 
forecasting assumptions regarding maintenance execution, in which maintenance execution time is 
modeled using normal distributions; actual execution time is not incorporated. Furthermore, the 
framework is tested using simulated data; validation using real-life maintenance data has not 
reported on in publicly available literature.  
 

3 A DECISION SUPPORT FRAMEWORK FOR MAINTENANCE PLANNING 

There is a need to address the mentioned shortcomings in the state of the art and to capitalize on 
increased capabilities to monitor actual maintenance task execution in real-time. Here, a decision 
support framework is proposed which is able to adjust and (re-)optimize maintenance planning on the 
basis of real-time work progress monitoring data, allowing the identification of multiple decision 
alternatives and suggesting an optimal outcome for various scenarios. The framework is given in Fig. 
1. 
 

 

Figure 1: Decision support framework for maintenance planning 

 
Assuming availability of the input data mentioned in Fig. 1, the decision point must first be 
determined. Since the monitoring of work progress is a real-time process, the decision point is set to 
be the time during the planned maintenance at which the aircraft maintenance planner/dispatcher 
invokes the framework to analyse the current situation and associated decision alternatives. The 
decision point strongly influences the latitude for alternative generation and associated maintenance 
planning. If a decision point is chosen early during the execution of maintenance, few tasks will have 
been executed. This leaves less opportunity for delays or being ahead of time, whereas the number 
of decision alternatives will be larger (given the higher amount of tasks that still need to be 
executed). In contrast, a late decision point leads to more accurate assessment of delays or time 
wins, but leaves less space for decision alternatives.  
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Given a choice for the decision point, the framework will start the analysis of work progress by 
determining for each task in the planning what its current state is. There are three states in which a 
task can be: 

• Completed: This is the case when a task is started and finished before the decision point. 
• In progress: This is the case when the execution of a task has already started, but is not 

finished before the decision point. 
• To be done: This means that a task is not yet started and therefore still needs to be 

performed. 
When all the tasks are evaluated, a status list of the planned tasks is generated, indicating the 
current situation. There are three possible situations that can occur when monitoring and analysing 
work progress of previously planned maintenance tasks. The first of these is the default situation, 
when execution of planned maintenance tasks is going as planned and no actions are required. The 
other two situations are covered in Sections 3.1 and 3.2, which expand on the framework 
components and functionality. 
 

3.1 Situation 2 – Delay 

The second situation is one where one or more maintenance tasks are not performed on time and 
therefore a delay has occurred. A decision framework is proposed which incorporates a number of 
steps (with attendant models) to move from delay determination to a ranked list of decision 
alternatives. The associated flowchart is given in Fig. 1.  
 

 

Figure 2: Decision framework flowchart for situation 2 (delay) 

For situations with delay in process execution, the following steps are incorporated into the decision 
support framework: 
 

1) Delay determination: The first step in the analysis is to determine the current delay of the 
planned maintenance. The current delay is calculated by subtracting the planned start time 
from the actual start time of the current task, using the relation 
𝑡𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐𝑑𝑐𝑐 = 𝑡𝑠𝑐𝑑𝑐𝑐_𝑐𝑐𝑐𝑐𝑑𝑐𝑐𝑐𝑑𝑠𝑐 − 𝑡𝑝𝑑𝑑𝑐𝑐𝑑𝑑_𝑐𝑐𝑐𝑐𝑑𝑐𝑐𝑐𝑑𝑠𝑐 . If delay occurs, a choice may have to be 
made with respect to which tasks are prioritized for execution: it is very feasible that not all 
tasks can be executed anymore, given the incurred delay.  

2) Task determination & initial ranking: tasks that still need to be done are derived from 
the generated task status list (see introduction of Section 3), after which an initial ranking is 
generated to determine which tasks take precedence in execution. For the initial ranking, the 
remaining maintenance tasks are just ordered in the sequence they were originally planned.  

3) Ranking parameter evaluation: to determine which task(s) are most suitable for 
execution in the limited time left due to the incurred delay, various ranking parameters are 
adopted and evaluated. In this research, the following parameters are included: 

a. Criticality & Remaining Useful Life: remaining useful life (RUL) of components 
related to specific maintenance tasks is adopted from available prognostic models, or 
classical reliability model output. If the RUL of a component is sufficient to make it to 
a next planned maintenance opportunity, it is seen as non-critical. If the RUL is not 
sufficiently large to make it to the next opportunity, the component is assumed to fail 
between the current and next maintenance opportunity, with attendant 
disadvantages. Therefore, the component is labelled ‘critical’ when this condition 
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applies. Critical components are prioritized, i.e., ranked highest in the tasks to be 
performed in the remaining maintenance time. Subsequently, the remaining non-
critical components are ranked in order of RUL magnitude (the lower the RUL, the 
higher its ranking).   

b. Maintenance cost: cost is calculated for execution of a task at the current 
(planned) time, at the next maintenance opportunity (e.g. the next planned A-check), 
or at an unplanned instance (when a component breaks down unexpectedly in 
between maintenance opportunities). Contributing cost elements include labour, 
overhead and component costs.  

c. Operational risk: if a maintenance task is postponed to a next opportunity, a 
certain risk is incurred that the related component will not survive until that time. As 
such, operational risk is calculated by taking the probabilities of planned and 
unplanned maintenance and multiplying these with their respective costs. This 
approach is akin to that of Papakostas et al. [1]. These probabilities are assessed by 
evaluating component time-to-failure data using lifetime distributions (e.g. Weibull 
and normal distributions) and assessing goodness-of-fit characteristics. Next, the 
cumulative distribution function of a chosen distribution can be set to a certain value 
𝑎, representing an assumed value of lifetime at which a component failure occurs. 
This value is set at a baseline value of 75% for this study; sensitivity analysis is 
performed in the results section to investigate the effect of this assumption. 

4) Decision alternative generation: the next step is to define the remaining time to plan 
tasks in, which can be estimated by calculating the time between the start point and the end 
of planned maintenance. The start point, in turn, is defined as the time at which the task that 
is in progress at the time of the decision point is finished. This is in fact unknown, as task 
completion is stochastic. Here, an assumption is made that the mean time denoted for the 
task at hand (available from historic data) can be added to its starting time.  
With the remaining time for planning known, alternatives can be generated. This is a two-
step procedure: first, the tasks denoted as critical are pushed to the top of the list and will 
definitely be executed during the current planned maintenance. Second,  every combination 
of 𝑘 tasks from the set of 𝑛 non-critical tasks is explored, using the binomial coefficient �𝑐𝑐�. 
In other words, every combination of 𝑘 tasks of the set of 𝑛 non-critical tasks will be added 
together with the critical tasks to the new maintenance planning, creating a different 
alternative every time. This is done for every possible value of 𝑘. The tasks that are not 
included in an alternative will be deferred to the next maintenance opportunity. An example is 
given in Fig. 3.  
 

 

Figure 3: Generation of decision alternatives  
5) Decision alternative evaluation and final ranking: Now that all the alternatives are 

generated, the time necessary for every alternative is calculated. This is done by using a 
Monte-Carlo simulation. For all the tasks of an alternative, a completion time is simulated 
10000 times. The MC simulation is based on an underlying distribution composed by the 
maintenance operation task time distribution of the considered tasks, which are estimated 
using historical data. Every alternative exist out of a combination of the remaining tasks. The 

Critical tasks: 6, 10 Non Critical tasks: 8, 9, 7

k=1 k=2 k=3
8 8, 9 8, 9, 7
9 8, 7
7 9, 7

Alternatives Tasks in alternative
Alternative 1 6, 10
Alternative 2 6, 10, 8
Alternative 3 6, 10, 9
Alternative 4 6, 10, 7
Alternative 5 6, 10, 8, 9
Alternative 6 6, 10, 8, 7
Alternative 7 6, 10, 9, 7
Alternative 8 6, 10, 8, 9, 7

Binomial Coefficients 
or Combinations
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time necessary to complete an alternative is equal to the sum of the generated expected 
values for all the tasks within the alternative. An example is given in Section 4.  
With the time necessary for every alternative being established, the final step is to evaluate 
and rank the decision alternatives. Evaluation comprises calculation of the total costs of every 
alternative, which is a sum of the maintenance costs, operational risk and flight delay costs. 
Flight delay costs are based on the characteristics of a decision alternative, where a flight 
delay may be incurred if a set of tasks takes more time than originally planned for a 
maintenance check. The costs of this (potential) delay are evaluated by applying the 
following equation 

 
𝐶𝐶𝐶𝑡𝑑𝑑𝑑𝑑𝑑(𝐴𝐴𝑡) = 𝐶𝐶𝐶𝑡𝑑𝑑𝑑𝑑𝑑𝑝𝑝(𝐴𝐴𝑡) ∙ 𝑃𝑎𝑃 ∙ 𝐿𝐿 

Where 𝐶𝐶𝐶𝑡𝑑𝑑𝑑𝑑𝑑𝑝𝑝(𝐴𝐴𝑡) is the delay cost per passenger associated with a decision alternative, 
𝑃𝑎𝑃 represents the maximum number of passengers and 𝐿𝐿 represents the load factor. Delay 
costs per passenger are calculated on the basis of the piece-wise linear function presented by 
Cook [20], which incorporates soft and hard delay costs.  
A ranked list of alternatives is composed based on the total costs, with the alternative with 
the lowest costs being ranked highest. This list is finalised by a reference alternative, which 
reflects a decision to carry on with the original maintenance planning.  
 

3.2 Situation 3 - Ahead of schedule (opportunity maintenance) 

The final possible outcome to be evaluated is one where work is ahead of schedule. This creates a 
possibility to perform some maintenance tasks that were not originally planned, otherwise known as 
opportunity maintenance. One has to decide what maintenance tasks to perform during the 
opportunity, taking the restricted duration and time of the opportunity into consideration.  
The decision framework proposed in Section 3.1 is adapted to incorporate a number of steps which 
deal with opportunity maintenance. The output is similar: a ranked list of decision alternatives. The 
associated flowchart is given in Fig. 4. 
 

 

Figure 4: Decision framework flowchart for situation 3 (opportunity maintenance) 

The constituent models, inputs and analysis of situation 3 are closely related to the approach 
highlighted in Section 3.1. The focus is however on the determination of how much time is available 
to perform additional tasks, which can occur in two forms: either maintenance is ahead of schedule at 
the decision point, or planned maintenance is completed before the planned end time. In both cases, 
the flowchart as given above applies. Two major differences with respect to the approach highlighted 
in Section 3.1 are discussed: 

1) Opportunity maintenance tasks: These tasks can be drop-out tasks from previous 
planned base maintenance or tasks that could not be executed at line maintenance. The list 
of opportunity maintenance (OM) tasks is a combination of these tasks. 

2) Total cost evaluation: delay cost is incorporated into the total cost evaluation. This bears 
some explanation: why consider delay cost when you have time left? The reason is 
straightforward: when opportunity tasks are selected, these fill up the remaining time and are 
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stochastic in nature themselves. As such, adoption of opportunity tasks can lead to 
unanticipated delays.  

The remainder of the decision framework is the same as described for situation 2.  

4 RESULTS  

Implementation of the decision framework has been performed in Matlab, in a single integrated 
format for situations 1, 2 and 3. This is possible because of the high degree of overlap in steps 
employed to generate, analyze and rank alternatives. In this Section, a case study application is 
discussed. The input data used for this case are described first, followed by case study results. The 
Section is wrapped with validation.  
 

4.1 Input data 

The case study application incorporates data from an European MRO provider. The data consists of 
maintenance package data (including package number, task IDs, aircraft registration numbers, and 
Maintenance Planning Document (MPD) codes), data on interval limits and task execution (including 
historical data on man-hours spent on maintenance tasks), reliability data (including ‘raw’ time-to-
failure data for selected components), and cost data. The data spans 47 tasks related to the A2.26 
maintenance package from the Airbus A320 MPD. This set is split up into two subsets: 1) 25 tasks 
representing a de-phased A-check, constituting the planned task list; 2) 22 tasks that can be 
considered for opportunity maintenance (under situation 3 of the framework).  
On the basis of the available data, the following variables are estimated or calculated: 

• Maintenance task time distributions: the available data on man-hours spent per 
maintenance task is used to fit probability distributions and estimate the associated 
parameters. Maximum Likelihood Estimation (MLE) is used for parameter estimation. 
Goodness-of-fit is assessed using a χ2 test statistic.  

• Component RUL: in this case study, the RUL is simply assumed to be the difference 
between the component interval limit as described in the MPD (given in flight hours, cycles or 
calendar time) and its current accrued use (similarly in flight hours, cycles or calendar time). 
No use is made of RUL estimation using prognostic approaches; ergo, the selected RUL is 
purely derived from the preventive maintenance limits imposed by the maintenance program. 
This is, in effect, a conservative approach.   

• Reliability estimates: the reliability data is used to establish failure and survival 
distributions for the component population under consideration. This informs the calculation 
of operational risk during evaluation of decision alternatives.  

 
4.2 Case study results 

To generate aggregated results and verify the functionality of the framework, the input data has been 
used to simulate execution of the planned set of tasks for 1000 iterations. Given the stochastic nature 
of many of the inputs, both the delay and opportunity maintenance situations are encountered. For all 
1000 simulated cases, several assumptions have been taken: personnel required for a task was set at 
1, cost rates were assumed to be equal at different maintenance locations, and part costs were not 
incorporated into total cost calculations due to a paucity of data.  
As a first step, Table 1 presents an overview of the task status list, with associated planned and 
actual start times for 3 out of the 1000 simulated cases. Each of these 3 cases represents a particular 
situation: on-time (situation 1), delay (situation 2), and opportunity (situation 3). From this point on, 
results are presented for the delay case, i.e., 1 of the 1000 simulated cases. This is representative for 
presenting the framework functionality and output. In section 4.3, some generalized conclusions 
(covering the full set of 1000 simulated cases) are presented.  
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Table 1: Task status list (including planned and actual start times) for 3 cases 

 
 
Table 2 presents the initial ranked list of the remaining tasks associated with the selected delay case. 
Note that there are 4 critical tasks and 9 non-critical tasks. The generation of decision alternatives will 
consequently lead to 512 alternatives, as �90� + �91�+. . . +�99� = 512. 

Table 2: Initial ranking list of remaining tasks 

 
After generation of decision alternatives, the associated maintenance costs, operational risk, 
anticipated delay (on the basis of MC simulation of the remaining task times), delay costs and total 
costs are evaluated. Delay costs have been calculated on the basis of an A320 two-class configuration 
(having a maximum of 168 passengers) and a load factor of 80%. The resulting final ranked list of 
decision alternatives is (partially) shown in Table 3, giving the best and worst five outcomes. 
Alternative number 512 is the worst outcome in this particular delay case, and corresponds to the 
reference case, where it is assumed that the original planning is executed. A clear difference of 
approximately 2230 euro can be discerned between the total cost of the best and worst alternative.   

Table 3: Decision framework output for selected delay case - five best and worst decision 
alternatives 
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4.3 Validation 

A systematic validation process has been carried out, in which the impact of different settings for the 
decision point and labor costs are explored in tandem with the aggregated simulation results. This 
lends more insight into framework performance and output, going beyond the (restrictive) results of a 
single delay case as discussed in the previous section.  
Six cases are explored: three cases assume that cost of labor is equal at the current and next 
maintenance location, with case 1 having a decision point at 25% of the planned maintenance time 
(PMT), case 2 a decision point at 50% PMT, and case 3 a decision point at 75% PMT. Cases 4 to 6 
cover the same decision point settings, but cost of labor is assumed to change from current to next 
location, with a factor of two being applied. For each case, 1000 iterations are simulated, leading to 
aggregate output per case. Each case takes 1 to 2 minutes to compute. 
 

 

Figure 5: Total cost of best alternative 

 

Figure 6: Comparison of mean total cost 

Fig. 5 shows the total cost of the best alternative (aggregated for 1000 iterations) for cases 1 up to 6. 
Three main observations can be made: first, the mean cost decreases when the decision point occurs 
later in the PMT. This can be explained by the fact that maintenance cost is smaller at a later stage in 
the PMT, as there are simply less maintenance tasks remaining to be executed. Secondly, the 
variation is higher at later stages in the PMT. This is motivated by the fact that there is less ‘buffer’ to 
absorb the variance in the remaining set of maintenance tasks. Finally, the total cost of the best 
alternative is higher for the second group of cases (i.e., cases 4-6). This relates to the influence of 
the assumption regarding maintenance costs at different locations.  
Several additional parameters have been subjected to sensitivity study. While detailed results are not 
represented here, this analysis shows that the impact of the probability of failure and the cost of 
unplanned maintenance has a very small impact on the output of the decision framework.  
Fig. 6 gives a comparison of mean total cost for the best alternative with respect to the reference 
alternative. The difference in the mean total cost ranges from approximately 500 to 2500 euro, 
resulting in potential maintenance cost reductions of 45% to 90%. The reason why the mean total 
cost of the reference alternative is generally much higher than the mean total cost of best alternative 
is due to the fact that delay cost (biggest part of cost of reference alternative) is often much higher 
than the operational risk cost (biggest part of the best alternative).” 

5   CONCLUSIONS 

A decision support framework has been proposed to assist in operational maintenance planning, 
allowing the use of work progress data to adjust and re-optimise planning. The stochastic nature of 
maintenance task execution can be incorporated by using the proposed framework. Case study 
results indicate that the framework is able to generate decision alternatives with a lower total cost 
than the reference alternative, while at the same time optimising the maintenance planning, resulting 
in a possible reduction of the maintenance costs of 45 to 90% (depending on parameter settings).  
Future research will investigate the impact of the probability of failure and the value of cost of 
unplanned maintenance, as well as introducing more realistic assumptions with respect to manpower 
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availability and allocation. Furthermore, task deferral including extension of the planning horizon 
beyond the next maintenance check is subject to study. As a final element, heuristics are considered 
to mitigate the effect of combinatorial explosion when considering larger sets of tasks. 
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