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ABSTRACT 

Aircraft design requires possessing huge amount of data analyses which are executed consecutively 
as well as parallel with different configurations. Throughout the design process many experts 
contribute to the design from different specializations not only with well-known handbook methods 
but also using engineering intuition like heuristic principles.  These practical experiences which are 
aimed to be gained by a training algorithm are the main motivation of this research. In this study, a 
hybrid method is used to replace the random walk method of some optimization algorithms. The goal 
is to improve the steps for convergence and the results of a multidisciplinary optimization problem 
with changing number of design variables, which normally require over 1000 function evaluations to 
converge. An example aircraft design problem is used to determine if there are improvements in 
convergence steps while searching the whole design space. The results show that the applied 
technique increases the efficiency of the optimization for the early stages of aircraft design. 

KEYWORDS: artificial intelligence, probabilistic neural networks, aircraft design, multidisciplinary 
optimization 

NOMENCLATURE 

m - Number of variables 
pt - Number of patterns for one variable 
n - Number of training points 

k - Number of intervals 
ptm - Number of total patterns 
f(x) - Probability density function

1 INTRODUCTION 

Optimization for air vehicles is a complex process with depending on many design variables and the 
highly non-linear physics models. Besides that, the optimization process of an air vehicle has relatively 
lower local minimums with increasing variable numbers while considering other kind of optimization 
problems which have many local gradient changes. An artificial intelligence technique is applied here 
to reduce divergence relative to well-known algorithms like genetic algorithm and simulated 
annealing, with the required number of runs for convergence as the objective for changing number of 
design variables.  
 
The motivation of this study has many bases. At first, an aircraft mission is a perfect closed loop 
process with the law of conservation of energy. Clearly, it has standard segments and each segment 
and its requirements – inputs and outputs – are well-known. In other words, this closed loop system 
is more conservative than many statistical problems and it is worth to use directed search methods 
for aircraft design. However, when the number of independent design variables increases, then the 
statistics based methods are helpful at intermediate steps of an optimization algorithm. In this study, 
probabilistic neural networks, which was introduced by [2], is taken as an accelerator of the 
optimization algorithm for its success on classification and pattern recognition. The method is given in 
detail in the following part of this study. 
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In addition to having a closed loop process feature, at the beginning of the design process researches 
may have huge number of data from wind tunnel tests as well as from flight tests at least for the 
conventional aircrafts. All of these data with engineering sense of experienced engineers, which is 
inseparable throughout a design process, have great value on all of the design phases. Learning from 
data, which is data mining, with the combination of engineering sense has very precious fine tuning 
effect on a design with knowledge based methods. Some of the complex interactions can also be 
estimated with relative magnitudes just from the data at hand at the beginning of the design process, 
which accelerates the calculations and force the results to converge to better values. With more 
philosophy, these complex but systematic machines, aircrafts, with dependent and independent 
variables with known interactions to each other in an optimization process can be improved with the 
algorithms which mimic pattern recognition property of human intelligence, i.e. Artificial Intelligence 
(AI), for the early as well as ensuing stages of design. 
 
Further, optimization process of an aircraft can be structured with two main sub functions, 
optimization part and aircraft design part, which also includes many sub-optimization loops. The 
selection of the independent variable values and the constraints with their ranges has a direct effect 
on the performance of an optimization process. Any poor selection of a design point on a design 
space cost extra time, which may be totally useless. Therefore, not only the optimization part itself 
also the aircraft design part expends runtime, which can be thought as the multiplication of these 
times. Thus, the total process should be improved not to select unfavorable design points in order to 
save the run time and have better convergence for optimum design. 
 
If the structure of the analysis is concerned widely used methods like regression and kriging do 
interpolations between set of points collected from the comparison of dependent and independent 
variables. The idea in this study is to use instantaneous associations between dependent and 
independent variables. Besides considering pointwise approximated linear/nonlinear relations, the 
behavior of the dependent variable can be stored while shifting one design point to another. With 
storing instantaneous behaviors of variables, redundant candidate design points can be avoided 
during the optimization process.    
 
In this paper, with a given training data set the relations between independent variables and 
dependent variables are examined and then search areas are selected based on the successful 
changes on objective function values. Stored successful actions on the variables are considered as 
patterns and classified according to the function values. Resultant successful patterns are used to 
extend and deepen the design search space with the help of probabilistic neural network algorithm 
introduced by [2] and also dealt with here in detail in methodology part.  
 

2 ARTIFICIAL INTELLIGENCE IN AIRCRAFT DESIGN 

Knowledge based systems, computational intelligence and hybrids are specified as the tools of 
artificial intelligence in [3]. The introduced hybrid method in this study is composed of agents and 
probabilistic neural network algorithm. Agents work on gridded search space to find out and sort the 
shifting actions of the values, and probabilistic neural networks is used for classification of the 
successful and promising patterns.  
 
Recently, the use of artificial intelligence tools continues to increase in aircraft multidisciplinary design 
optimization due to their successful implementations. A Knowledge based engineering approach to 
support aircraft multidisciplinary optimization was used by [4] to develop both conventional and novel 
geometries. Finite element analysis models are generated and time reduction is gained with the 
automated method.  
 
Another method, Concurrent Learning was used with adaptive neural network based approximate 
models by [5] for a nonlinear fixed-wing aircraft model. Non-iterative two models were used to 
estimate limit and control margins. Network weights were updated from both past and current 
information, with which resultant values were better calculated. 
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To decrease the aircraft design cycle time [6] used two different artificial intelligence algorithms, 
neural networks and fuzzy logic. Aircraft weight, engine thrust and wing area were determined with 
the applied methods for the early phase of the aircraft design process. A specific class of light 
business jets is selected as a design case to approximate the take-off wing loading and take-off thrust 
loading. The actual results are approximated about ten percent for the preliminary design phase. 
 
A fuzzy logic based artificial intelligence algorithm was applied to an unmanned combat aerial vehicle 
control system by [7]. The success of the algorithm was proved in high fidelity simulation 
environment. The algorithm was found to be highly responsive to complex situations and 
uncertainties. 
 
As introduced, artificial intelligence methods with knowledge based techniques are used by many 
designers to improve the design solutions and the required run time. In this paper a hybrid technique 
is used to increase the efficiency of the optimization process. Two different test cases, Rastrigin 
function[1] , Binh and Korn function[14]; and a design case, a supersonic air vehicle mission, were 
applied. Due to having many local minimums and wide search space Rastrigin function is one of the 
good test methods for single objective optimization with its flexibility to increase the independent 
design variables. Binh and Korn function is used for proving the effectiveness of the algorithm in two-
objective optimization. Then, the optimization algorithm is implemented to a supersonic air vehicle 
mission with the objective to get minimum unit cost with initial sizing calculations [15].   
 
The method studied here has advantage on other guided random search techniques with assigning 
the directions on the search space for the variables while searching the promising grids. With this 
method the training sets are used to decide on the next search space with the produced values of the 
cumulated runs. In the next section the methodology is explained more in detail. 
 

3 METHODOLOGY 

Optimization problems are defined as gathering many challenging variables and obtaining the best 
solution space. Although one may not have any time constraint the selected search method directly 
affects the quality of the results. Meanwhile one technique may be successful for one type of problem 
whereas it may fail in another type of problem. Because of that, researchers try to develop a common 
tool that can adapt to different situations.  Especially for the complex projects executed between 
different scientist, or departments, or even different companies it becomes a must a unique tool 
controllable by everybody to catch the better solutions. 
 
The optimization technique used in this study depends on probabilistic neural network algorithm, and 
this type of neural network is applied here for its success on pattern recognition and classification. In 
this hybrid method the advantages of both gradient based and evolutionary algorithms were used. In 
an optimization process the run time and the convergence characteristics are affected by increasing 
the number of variables drastically. This complicacy is overcome with a hybrid technique in this study.  
 
The method works as an accelerator of the optimization part. This technique does not remove the 
main function of the optimization process but improves the random selection of the variables values. 
As illustrated in Fig. 1 the variable numbers and first set of training points are introduced to the 
program at first. Since the number of training points another concern for the success of the AI 
algorithms, two different cases are tested. For the design case selected in this study, training points 
are kept small enough for the startup and for each pattern 10 training points are randomly selected.  
Depending on the problem characteristics the number of training points can also be selected relative 
to the number of independent variables. As a second case increasing number of training points with 
increasing variable numbers like km where k is the number of intervals on a pattern and m is the 
number of independent variables. 
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Figure 1: Flowchart of the algorithm 

After selecting the number of training points, which are applied on each grid, the randomly selected 
variable values are sent the design part. Then the results are compared with each other to build up a 
correlation matrix which shows the changes in the independent design variable values and the 
objective values. This means, if the training point number is n, the number of resultant combinations 
between these training points will be n.(n-1). These combinations carry the knowledge of the 
decrement/increment effects between these points. At that stage, increment is symbolized as 1 and 
decrement as -1. If there is no change between the compared values it can be taken as 0. This 
numbering system will be used for next steps for handling the correlations as patterns. If the 
objective is to minimize the fitness function the correlation patterns with the objective correlation 
value -1 are taken as the successful patterns, others are left as unsuccessful patterns. Additionally, 
depending on the lower and upper bounds of the dependent and independent variables, the search 
space for each variable is divided in k intervals, and the interval values are stored. With bipolar (also 
0) values and intervals, each combination of training points can be processed as patterns. Each 
variable has number of patterns, pt, calculated as in Eq. 1: 
 
𝑝𝑝𝑝𝑝 = 2 ∗ (𝑘𝑘 + � (𝑘𝑘 − 𝑖𝑖))𝑘𝑘

𝑖𝑖=1           (1) 
 
If the number of design variables is m, then the number of total patterns that can be tried is ptm. As 
an example, for one variable and 5 intervals the possible patterns are illustrated sequentially in Fig. 2; 
for two variables and 5 intervals the patterns are illustrated in Fig. 3. Then, for the first training data 
set from the total patterns the unattempt patterns can be extracted. 
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Figure 2: Patterns for one variable (k=5) 

At that point, probabilistic neural networks come into action. Probabilistic neural networks use Bayes 
Strategy instead of using sigmoidal activation function that is widely used with an exponential 
function in back-propagation algorithm. This method can compute nonlinear decision boundaries, 
which can be updated immediately with a new data, and can also be operated in parallel [2]. Because 
of its structure, it is faster than back-propagation especially for pattern recognition and classification. 
Probabilistic Neural Networks were explained more in detail in [2] and also mentioned here a little 
through this reference. 
 

 
Figure 3: Patterns for two variables (k=5) 
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While classifying patterns the decision rules are set to minimize the expected risks. These rules or 
strategies are called Bayes Strategies and can be applied to any number of categories [2 and 8]. 
Considering the categories A and B; the state θ with the category A is θA, and with the category B is 
θB, and also the probability density functions are fA(x) and fB(x) respectively. Also, IA and IB are the 
loss functions related with the decisions d(x) = θA  when θ = θB  and d(x) = θB  when θ = θA  (the 
losses are taken to be equal to zero when the decisions are correct). Further, hA and hB are the priori 
probability of occurrence of patterns from category A and B, and hB = 1- hA. 
 
Then, for a state θ based on a set of measurements represented by a p-dimensional vector xt = 
[x1…xj…xp] the Bayes decision rule is written as in Eq. 2: 
 
 
𝑑𝑑(𝑥𝑥) = 𝜃𝜃𝐴𝐴  𝑖𝑖𝑖𝑖 ℎ𝐴𝐴𝐼𝐼𝐴𝐴𝑖𝑖𝐴𝐴(𝑥𝑥) >  ℎ𝐵𝐵𝐼𝐼𝐵𝐵𝑖𝑖𝐵𝐵(𝑥𝑥) 
             (2) 
𝑑𝑑(𝑥𝑥) = 𝜃𝜃𝐵𝐵  𝑖𝑖𝑖𝑖 ℎ𝐴𝐴𝐼𝐼𝐴𝐴𝑖𝑖𝐴𝐴(𝑥𝑥) < ℎ𝐵𝐵𝐼𝐼𝐵𝐵𝑖𝑖𝐵𝐵(𝑥𝑥) 

 
 
Also, the boundary between the region in which Bayes decision d(x) = θA  and the region in which 
Bayes decision d(x) = θB is given as in Eq. 3: 
 
𝑖𝑖𝐴𝐴(𝑥𝑥) = 𝐾𝐾𝑖𝑖𝐵𝐵(𝑥𝑥)           (3) 
 
Where 
 
K = ℎ𝐵𝐵𝐼𝐼𝐵𝐵

ℎ𝐴𝐴𝐼𝐼𝐴𝐴
           (4) 

 
The ratio of the loss functions, hB / hA , can be set to -1 if there is no reason for biasing the decision. 
According to Parzen [9] a family of estimates of f(x), at all points x the probability density function is 
continuous, is given with Eq. 5: 
 

𝑖𝑖𝑛𝑛(𝑥𝑥) = 1
𝑛𝑛λ
� 𝑊𝑊�(𝑥𝑥−𝑥𝑥𝐴𝐴𝐴𝐴)

λ
�

𝑛𝑛

𝑖𝑖=1
         (5) 

 
Eq. 6 is for weighting function W(y) and states that weights are not bounded and cannot reach 
infinity: 
 
𝑠𝑠𝑠𝑠𝑝𝑝−∞<𝑦𝑦<∞|𝑊𝑊(𝑦𝑦)| < ∞          (6) 
         
where sup indicates the supremum. 
 
∫ |𝑊𝑊(𝑦𝑦)|𝑑𝑑𝑦𝑦 < ∞∞
−∞           (7) 

 
lim𝑦𝑦→∞|𝑦𝑦𝑊𝑊(𝑦𝑦)| = 0          (8) 
 
and 
 
∫ 𝑊𝑊(𝑦𝑦)𝑑𝑑𝑦𝑦 = 1∞
−∞            (9) 

 
In Eq. 5, let λ is chosen as a function of n then λ = λ (n), and 
 
lim𝑛𝑛→∞ 𝑛𝑛λ(𝑛𝑛) = ∞          (10) 
 
Parzen [9] proved that the expected error goes to zero with the number of training samples going to 
infinity: 
𝐸𝐸|𝑖𝑖𝑛𝑛(𝑥𝑥) − 𝑖𝑖(𝑥𝑥)|2 → 0 𝑎𝑎𝑠𝑠 𝑛𝑛 →  ∞ 
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Murthy [10 and 11]) relaxed the assumptions of the absolute continuity of the distribution F(x) and 
Cacoullos [12] extended Parzen’s results for multivariate case. Then the multivariate estimates are 
found by Eq. 11 as: 
 

𝑖𝑖𝐴𝐴(𝑥𝑥) = 1
(2𝜋𝜋)𝑝𝑝/2𝜎𝜎𝑝𝑝

1
𝑚𝑚

 × � 𝑒𝑒𝑥𝑥𝑝𝑝 �(𝑥𝑥−𝑥𝑥𝐴𝐴𝐴𝐴)𝑇𝑇(𝑥𝑥−𝑥𝑥𝐴𝐴𝐴𝐴)
2𝜎𝜎2

�
𝑚𝑚

𝑖𝑖=1
       (11) 

 
where σ is the smoothing parameter and has a very important influence on the approximations 
  
The probabilistic neural networks like feed forward networks have parallel structure. This type of 
neural networks is very flexible to accepting new data and easy with one-step only learning 
technique. It does not learn from trials, instead learns from experience that others made for the 
neural network. Therefore it depends on the functions used inside the neuron. Because of these 
characteristics, the probabilistic neural networks are faster than back-propagation and they perform 
well with few training points. In this study, probabilistic neural networks are preferred to use for their 
advantages and success on the pattern recognition and classification, and also tolerance the usage of 
binary-bipolar numbering combination.   
  
As an example, in Fig. 4 the usage of probabilistic neural networks in the hybrid algorithm is 
illustrated for two variables, X1 and X2, and the objective, Y. At first, the successful and unsuccessful 
patterns are distinguished according to their influence on the objective function. If the objective 
function is decreasing (for finding minimum) with a pattern then the pattern is defined as the 
successful pattern and shown here with arrow headed blue lines. Head of the arrow shows the 
direction of the action. If it is away from the lower bound of the variable it means the variable value 
is increased at the successive point and has the interval value of 1 for that variable. If it is in opposite 
direction then the value for that interval becomes -1. If the pattern has an effect on the objective 
function to increase then the pattern is defined as unsuccessful pattern and shown with red headed 
lines. The directions of the arrows and the numbering for the successful patterns are also valid for 
these unsuccessful patterns. 
 
After collecting the successful and unsuccessful patterns, probabilistic neural network is trained. Then 
untried patterns are picked out from the combined set of total possible patterns which are formed 
with the variable and interval numbers. Untried patterns are applied on the trained neural network 
and the possible successful and unsuccessful patterns are distinguished. Fig. 4 shows how 
probabilistic neural network selects promising patterns from the successful and unsuccessful patterns.  
It actually passes the patterns which have one or two digit differences from the successful patterns 
and their combinations.  As a result, as in the Fig. 4b the promising pattern would be similar to one of 
the gray lines and headed according to the other successful patterns which may be neighboring, 
parallel or both. From the performance values of the tried patterns, neighboring patterns which have 
greater probability to minimize the fitness function are selected with the help of probabilistic neural 
networks. These promising patterns send to the design part, which includes the fitness function, and 
calculated results are turned with their patterns to further deliberation. These successful patterns are 
eliminated based on three criteria.  
 
The pattern: 

• that minimizes the results; 
• that has the equal resultant values (due to probability of convergence); 
• that has the minimum result (due to probability of convergence). 

 
 
At the end of this process throughout the design space there would not be any untraced space just 
from the first set of training points. For the next step, as in Fig. 4c, a pattern is selected and next set 
of training points are applied to this area. Further, the following step would like Fig 4d. The process 
will continue with the successful and promising successful grids on the search area in the loop as in 
the flowchart of the algorithm in Fig. 1.  
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Figure 4: Selecting promising patterns with PNN 
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When the required criterion for terminating the program is reached then the process is ended with 
the minimum value (or maximum value for the maximization). If the fitness is not at the desired level 
then the selected successful patterns is sent to the design part for generating further training points 
for the related intervals as described on the flowchart in Fig. 1. The loop is repeated until the desired 
optimum reached. 
 

3.1 Test Case I 

As an initial case, Rastrigin function[1] due to it is large search space and large number of local 
minimums is used to test the algorithm. For n-dimensional domain, it is given as: 
 
𝑖𝑖(𝑥𝑥) = 10𝑛𝑛 + � [𝑥𝑥𝑖𝑖2 − 10cos (2𝜋𝜋𝑥𝑥𝑖𝑖)]𝑛𝑛

𝑖𝑖=1         (12) 
 
and xi ∈ [-5.12, 5.12], Rastrigin function has a global minimum at x=0  where f(x) = 0. It is shown at 
Fig. 5 for two independent variables: 
 
For this test case, the number of independent variables, the interval numbers for the patterns and the 
number of training points are taken as 2, 4 and 10, respectively. 
 
Results show that, the required number of evaluations for hybrid AI, 20, is almost one third of the 
evaluations of simulated annealing algorithm, 60, which converges to local minimums with changing 
starting point. 
 

 
Figure 5: Rastrigin function for two variables 

 
 

3.2 Test Case II 

The hybrid technique is used for Binh and Korn function[14] function for two objective optimization 
which is given by Eq. 13: 
 
𝑖𝑖1(𝑥𝑥,𝑦𝑦) = 4𝑥𝑥2 + 4𝑦𝑦2  
            (13) 
𝑖𝑖2(𝑥𝑥,𝑦𝑦) = (𝑥𝑥 − 5)2 + (𝑦𝑦 − 5)2 
 
 
Constraints: 
 
𝑔𝑔1(𝑥𝑥,𝑦𝑦) = (𝑥𝑥 − 5)2 + 𝑦𝑦2 ≤ 25 
            (14) 
𝑔𝑔2(𝑥𝑥,𝑦𝑦) = (𝑥𝑥 − 8)2 + (𝑦𝑦 + 3)2 ≥ 7.7 
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Search domain: 
 
0 ≤ 𝑥𝑥 ≤ 5 
            (15) 
0 ≤ 𝑦𝑦 ≤ 3 
 
Two objective optimization problems are as simple as single objective optimization problems. For both 
minimizing functions it is simply integrating the functions into one fitness function by adding them.  
Fig. 6 shows the results of the hybrid method and genetic algorithm for Binh and Korn function. The 
effectiveness of the hybrid method is seen for the non-dominated points. On the other hand, the 
required time and evaluation number for the convergence for the hybrid method is almost same as 
genetic algorithm. However, further improvements can be done by eliminating the points which 
comes from the similar or partially related intervals. In another way, the intervals which are covered 
by another pattern should be extracted from successful pattern cluster, and the intervals that share 
the same boundaries could use a common matrix. 
 
 

 
Figure 6: Binh and Korn function 

 
 

3.3 Design Case 

An unmanned supersonic aircraft, whose conceptual design model is given in detail Ref. 13, is taken 
as the design case for a single objective optimization. That covers a general mission of a combat 
aircraft which consists of take-off, climb, cruise, loiter, descent, combat, climb, cruise, descent and 
landing. The objective is to reduce the unit cost of the aircraft. As a single objective optimization 
problem, the variables are compared with the resultant cost and patterns are selected to decrease 
this objective function. Wing span, wing sweep angle, vertical tail sweep angle, horizontal and vertical 
tail volume coefficients, loiter time and payload are selected as the design variables.  
 
The upper and lower bounds of the variables are listed on Table 1. Optimization is made for 3, 4, 5, 6 
and 7 variables. They are selected according to order of the table. The minimum point is reached at 
the point where the unit cost is $ 17.49 million for each changing number of variables’ runs. The 
dependent and the independent variables are listed on the Table 2.  
 
Because, always it is worth to mention the number of training points for a neural network, in this 
study two different runs for each variable set are included as fixed (n=10) and changing number of 
training points (n=km). 
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Table 1: Design variables and their boundaries 

  

Wing 
span 
(m) 

Wing 
sweep 
angle 
(deg) 

Vertical 
tail sweep 

angle 
(deg) 

Horizontal 
tail volume 
coefficient 

Vertical 
tail volume 
coefficient 

Loiter 
time 

(hour) 

Payload 
(kg) 

Upper bound 15 50 55 0.45 0.45 0.75 2500 
Lower bound 8 30 35 0.40 0.40 0.10 1500 

 
 
 
 

Table 2: Variables and optimization results 
Airfoil wing NACA64A210 W0 (kg) 5763 
Airfoil horizontal tail NACA0012 We (kg) 3112 
Airfoil vertical tail NACA0012 Wf (kg) 1151 
F110-GE-100 with ab (kN) 129.4 Static margin % 2.5 
Maximum Ceiling (ft) 55000 W/Stakeoff 360 
Cruise altitude (ft) 40000 Range (km) 2168 
Mcruise 1.37 Endurancemax (hour) 2.4 
CD0 0.0234 Vcorner (km/h) 569 
CLacmax takeoff 1.3 Available sustained load factormax 9.0 
Wing area (m2) 16 Number of turns 3 
Aspect ratio 4 Wing span (m) 8 
Taper ratio 0.216 Wing sweep angle (deg) 30 
Fuselage length (m) 7.93 Vertical tail sweep angle (deg) 35 
Horizontal tail sweep (deg) 35 lHTco 0.4 
T/W 1.08 lVTco 0.4 
Engine bypass ratio 0.87 Wpayload (kg) 1500 
Quantity 500 Loiter (hour) 0.1 

Cost ($ million) 17.49  
 

 
 
For the first case, 10 training points are given for the first run and for the following each successful 
iterations. The interval number is kept small and selected as 2 for the increasing number of variables. 
Optimization results for a fixed number of training points at 10 are given in Table 3, and for the 
changing number of training points, proportional to the interval number and the variable numbers are 
given at Table 4. For the first case, when the number of training points are fixed the network lose its 
success with the increasing number of variables. Also, as Table 3 and Table 4 are considered at the 
same time; when the training points are more than the required value (as for n=3), the network is 
highly trained and it does not let enough patterns to be included in the promising pattern set. Thus 
the success of the method decreases. And also, for the increasing number of variable numbers (m>3) 
the fixed number of training points are less than the required level, then the success of the promising 
patterns of the optimization diminishes. This effect is seen in both of the tables, Table 3 and Table 4. 
For a relative number of intervals and variable numbers, the results are gathered in Table 4 after 
calculating each pattern values, and it is seen that with increasing number of variable numbers, the 
success of the algorithm increases because of eliminating less promising patterns, which come from 
more digit changes.  
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Table 3: Optimization results for fixed number of training points (n=10) 
Number of variables 7 6 5 4 3 
Number of training points 10 10 10 10 10 
Number of intervals 2 2 2 2 2 
Total pattern number 279936 46656 7776 1296 216 
Used patterns 90 90 76 84 58 
Unused patterns 279846 46566 7700 1212 158 
Successful patterns 45 45 38 42 29 
Unsuccessful patterns 45 45 38 42 29 
Promising patterns 147638 24109 4011 614 83 
Total promising patterns 147683 24154 4049 656 112 
Successful promising patterns 125287 21861 3737 611 106 
Success of the method 0.848 0.905 0.923 0.931 0.946 

 
 

Table 4: Optimization results for changing number of training points (n=km) 
Unit cost ($ million) 17.49 17.49 17.49 17.49 17.49 
Time (sec) 410 218 122 74 50 
Number of variables 7 6 5 4 3 
Number of training points 128 64 32 16 8 
Number of intervals 2 2 2 2 2 
Total pattern number 279936 46656 7776 1296 216 
Used patterns 12586 3076 718 138 32 
Unused patterns 267350 43580 7058 1158 184 
Successful patterns 6323 1543 363 70 16 
Unsuccessful patterns 6323 1543 363 70 16 
Promising patterns 134851 22052 3587 583 92 
Total promising patterns 141174 23595 3950 653 108 
Successful promising patterns 138166 22980 3836 629 103 
Success of the method 0.979 0.974 0.971 0.963 0.954 

 
 

4 CONCLUSION 

The new hybrid technique studied here is used for Rastrigin function, Binh and Korn function and for 
a supersonic aircraft discrete mission to minimize the unit cost. It is proved that the used hybrid 
artificial intelligence method increases the efficiency of the optimization and improves the design 
task; and it is seen to be competitive to the other optimization techniques.  
 
In addition, the number of training points and variables are found out as the determining parameters 
on the efficiency of the hybrid algorithm. While increasing the values of these parameters the 
convergence is improved but the cycle time and the memory usage are also increased. 
  
In this study, it is shown that the probabilistic neural networks with the combination of rule based 
agent systems the optimization of a design is possible and has advantages on different type of 
problems. Although, searching the whole design area with promising patterns expends the run time it 
also helps to reduce the calculation time for poor design points which are experienced by the previous 
trials. 
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