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ABSTRACT 

The standard way of formulating optimization problems applied to aircraft design is based on the 

assumption that the underlying system is deterministic, i.e., that the knowledge associated with the 
design variables and with the system dynamic is not characterized by uncertainty. However, in real 

conditions randomness impacts the formulation of the design process in multiple ways and the 
system outputs (i.e., the key performance indicators and the design constraints) are also affected by 

uncertainty. A system designed under deterministic assumptions may therefore have an unreliable 

behavior due to the fluctuations associated with the input random variables. This problem can be 
tackled by adopting a probabilistic approach and re-formulating the design optimization problem with 

an additional set of constraints associated with the robustness / reliability of the target system. This 
work addresses the problem of optimizing the geometry of a turbofan engine nacelle subject on 

reliability constraints. An advanced, machine-learning based framework is adopted in order to (a) 
investigate the system behavior through an adaptive design of experiments technique and (b) build 

accurate surrogate models of the system dynamics. These surrogate models are then employed to 

run a set of probabilistic studies at an affordable computational cost. The results of these 
investigations include (a) an extensive suite of analyses aimed at characterizing the uncertainty 

associated with the output quantities of interest; (b) a robust optimization of the engine nacelle 
geometry and (c) an assessment of the reliability of the optimized design. The improved performance 

and reliability of the design, together with the limited number of overall system evaluations required 

to run the analyses, demonstrate the effectiveness and the engineering applicability of the proposed 
approach. 

KEYWORDS: Uncertainty Quantification, Computation Fluid Dynamics, Robust Design Optimization, 
Reliability Assessment, Propulsion System 
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Latin 

ADOE - Adaptive Design of Experiments 
CFD - Computational Fluid Dynamics 

DOE - Design of Experiments 
FOSM - First Order Second Moment 

FORM - First Order Reliability Method 

the engine axis 
IGES - Initial Graphics Exchange Specification 

LES - Large Eddy Simulation 
MC - Monte Carlo 

MPP - Most Probable Point 
MUSCL - Monotonic Upwind Scheme for 

Conservation Laws 

RANS - Reynolds-averaged Navier-Stokes 
SORM - Second Order Reliability Method 

TVD - Total variation diminishing 
𝑁𝑀𝐶 - Monte Carlo population size 

pdf - Probability density function 
𝑝𝑓 - Probability of failure 

𝐻 - Altitude 

𝑀 - Mach number 

𝑇0 - Total temperature 

𝑝0 - Total pressure 

𝑝0,𝑒𝑛 - Average total pressure at the engine 

intake 
𝑑𝑡ℎ - Inlet throat diameter 

𝑑0 - Diameter of the inlet leading edge 

𝐾 - Thickness coefficient of the inlet lip 

𝑅𝐶𝑈𝑅𝑉 - Leading edge curvature radius 

𝑃 - Engine thrust 

𝑃𝑖𝑑 - Ideal engine thrust 

𝑃𝑒𝑓𝑓 - Effective engine thrust 

𝑑𝑃𝑒𝑓𝑓 - Effective thrust loss 

𝐹𝑋 - Projection of the external drag force on  

Greek 
𝜎 - Standard deviation 

𝛽 - Reliability index 

𝛿 - Total pressure loss ratio 

𝜈 - Total pressure recovery ratio 

Subscripts 
𝐶𝑅 - Cruise 

𝑇𝑂 - Take off 

∞ - Ambient flow 

 

1 INTRODUCTION 

In a typical design process developed under a deterministic paradigm, all input parameters are 
considered to be known without uncertainty. In this context, all manufacturing processes are 

assumed to produce identical structures that will operate at the same environmental conditions. This 
is typically not true because the presence of non-predictable effects associated, for example, with 

imperfections occurring in the manufacturing process or with the non-exact definition of the target 

operating conditions, have a considerable impact on the reliability of the system in terms of structural 
instabilities. 

The aim of this study is to optimize the geometry of a turbofan engine nacelle by adopting a 
probabilistic approach, according to which the input system parameters are considered as random 

quantities and therefore also all the output quantities are associated with probability density 

functions. This approach allows re-formulating the optimization problem by introducing a new set of 
robustness / reliability constraints that are directly associated with the probability of failure or with 

the robustness of the target system instead of being inferred from implicit knowledge or experience. 
The advantages of adopting this approach are multi-fold: it enables the possibility to assess the 

reliability of the target system in terms of quantities defined in a rigorous probabilistic context instead 
of handling subjective, experience-based and heuristic values; as a consequence, the approach can 

yield an optimized system that is sufficiently reliable but is typically associated with increased 

performances. 
Uncertainty quantification techniques are well-known to be computationally demanding because an 

accurate characterization of the uncertainty associated with the output quantities of interest requires 
a large number of system evaluations. In this study, these burdens are circumvented by adopting an 

approach based on surrogate models, according to which a machine learning-based, adaptive Design 

of Experiments technique is used to build a dataset of system results together with the corresponding 
surrogate models. The latter are then employed to run the system evaluations associated with the 

uncertainty analyses and the reliability optimization. 
This study is developed within the context of the European AGILE project [1]. AGILE targets a 

significant reduction (i.e., 40%) of the time required to implement and solve realistic multidisciplinary 

design optimization studies. The key enablers are provided by (a) a suite of advanced optimization 
techniques and strategies; (b) a framework that supports the collaboration aspects between the 

involved partners and (c) a knowledge-based information technology [2-5]. In the context of AGILE, a 
key target of the current work consists on assessing the effectiveness and the suitability of the 

uncertainty analyses techniques on conventional multi-disciplinary design problems. These 
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methodologies will then be applied to novel aircraft configurations during the upcoming phases of the 
project. 

The remainder of this manuscript is organized as follows. Section 2 provides the theoretical 
framework and the methodologies adopted to optimize the geometry of a turbofan engine nacelle 

under reliability constraints. These techniques have been applied to the test case described in Section 

3, while Sections 4 and 5 present the results and main conclusions, respectively. 

2 THEORETICAL FRAMEWORK AND METHODOLOGIES 

This section provides an overview of the techniques employed to run the uncertainty quantification 
analyses and of the numerical simulation tools used to model the behavior of the target propulsion 

system. 

2.1 Uncertainty Quantification framework 

A probabilistic approach is adopted to formalize the randomness associated with the input design 

variables and to characterize the uncertainty associated with the system outputs. Among the available 
numerical techniques, the current work considers the MC and the FOSM methods. 

The Monte Carlo method requires generating a number of random samples distributed according to 
the pdfs of the input design variables. For each of these samples, a system evaluation is performed in 

order to obtain a collection of results that are used to approximate the target pdf of the outputs of 

interest. 
The First Order Second Moment method approximates the system dynamics with a first-order Taylor 
expansion evaluated at the mean value of the input variables. The estimated variance, �̂�𝑦𝑖

2 , associated 

with a target system output, 𝑦𝑖, is then evaluated as 

�̂�𝑦𝑖
2 = ∑ (

𝜕𝑦𝑖

𝜕𝑥𝑗
)

2

𝜎𝑥𝑗
2𝑁𝑥

𝑗=1  (1) 

where 𝑁𝑥 is the number of random design inputs while the terms (
𝜕𝑦𝑖

𝜕𝑥𝑗
) and 𝜎𝑥𝑗

2 , 𝑗 = 1, … , 𝑁𝑥, are the 

coefficients of the Taylor expansion and the variance with respect to the design inputs 𝑥𝑗, 

respectively. 
The main advantage of MC is to provide an estimation of the entire pdf associated with the system 

outputs, enabling the possibility to infer the shape of the pdf and a set of key indicator like the 

quantile values or the probability of failure. All these quantities can be directly inferred from the 
collection of system evaluations results. On the other hand, MC typically requires a large number of 

system evaluations to obtain an accurate estimation of the quantities of interest, and the rate of 
convergence with respect to the size of the population, 𝑁𝑀𝐶, is typically low (e.g., the sample mean 

and variance converge to their true values proportionally to 1 √𝑁𝑀𝐶⁄ ). Moreover, it suffers from the 

curse of dimensionality when the system behavior is strongly affected by the mutual interactions 

between the input variables. 

The numerical evaluation of the derivatives defined in Eq. 1 typically requires a limited number of 
system evaluations (i.e., equal to 𝑁𝑥 if they are computed through a forward finite-difference 

scheme) and this renders the FOSM approach more affordable from the computational point of view. 

Nevertheless, FOSM does not directly allow estimating the values of quantiles or probabilities of 
failure and the latter can only be assessed by introducing assumptions on the functional form of the 

corresponding pdf. Being FOSM a method based on a linear approximation of the system dynamics, it 
is not reliable when the dependence between inputs and outputs is highly non-linear. 

The use of a probabilistic approach opens the road to the possibility of defining the design 

optimization problem not only in terms of deterministic quantities but also by considering robustness 
constraints. The robustness of the system is assessed by analyzing the value of the standard 

deviation associated with output quantities of interest. In terms of reliability, the First Order Reliability 
Method and the Second Order Reliability Method will be considered in this study. The goal of FORM 

and FOSM consists on estimating a reliability index that can be used to assess how far the optimal 
design is from the boundary of the feasible region. The reliability index, 𝛽, associated with a given 

value of the design variable is calculated by identifying the closest point on the boundary of the 

feasible region, named Most Probable Point, through a gradient-based optimization algorithm. The 
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value of 𝛽 is then set equal to the distance between the design point of interest and the MPP. This 

distance is computed in a standardized space where all random variables are mutually uncorrelated 

and characterized by values of the mean and of the standard deviation equal to 0 and 1, respectively. 

A first-order (FORM) or second-order (SORM) approximation of the feasible region boundary centered 
at the MPP is then computed in order to estimate the probability of failure, 𝑝𝑓, of the design under 

study. 

2.2 Adaptive Design of Experiments and surrogate modelling framework 

The ability to run accurate uncertainty analyses on the target design system is often limited by the 

large number of entailed system evaluations. These computational burdens can be alleviated by 
adopting an approach based on surrogate models. 

Surrogate models are analytical functions built on the basis of the results obtained through a design 
of experiments and using regression (e.g., least squares) or interpolation (e.g., Kriging or Radial Basis 

Function) algorithms. By definition, they can provide only approximated outputs, the quality of which 

largely depends on: (a) the DOE plan (e.g., factorial, Latin Hypercube, etc.); (b) the number of 
experiments computed during the DOE and (c) the type of algorithm used to interpolate / fit the data 

produced by the DOE. The major difficulties in this context consist on the identification of (a) the 
most appropriate DOE plan and (b) the best algorithm for building the surrogate model once the 

results of the DOE have become available. 

These aspects are addressed by adopting a machine-learning Adaptive DOE approach. The ADOE is 
an iterative DOE technique in which the data produced during previous iterations are analyzed to 

distribute the design points of the next iteration in areas of the parameters space considered of 
interest. A key aspect of the ADOE is the capability to automatically identify the best type of 

surrogate model on the basis of the available set of results. The reader is referred to [6] for more 
details on the machine-learning algorithms embedded in the ADOE methodology and on the relevant 

analytical and industrial benchmark studies. 

In this work, the ADOE is employed to efficiently explore the design space and to build accurate 
surrogate models of the system under study. These surrogate models are then used to run the 

system evaluations entailed by the uncertainty analyses and by the robust optimization applied to the 
design of the engine nacelle. 

2.3 Engine analyses 

The engine analyses are performed using the commercial software GasTurb v12 [7-8] Level 1. The 
Level 1 engine simulation tool entails a set of 0-level simulations of engine components (compressors, 

turbines, combustor, etc.) that are considered as black-box systems and are characterized by a low 
detailed modelling capability. 

The engine analysis module evaluation is based on the following inputs: operational assumptions, 

Entry into Service time, engine configuration, power offtake/overboard bleed. The set of output 
variables delivered by the tool consists on: engine installation losses, engine flight envelope, intake 

pressure recovery description, thrust specifications and engine sizing, thrust reverser ability, engine 
technical deliveries, engine performance for different operating conditions, engine dimensions 

description, engine sizing rules, automatic handling of air bleed. 
In this work, the engine performance characteristics for the target operating envelope are calculated 

according to a steady state engine performance simulation for an unmixed Geared Turbo Fan with 

high By-Pass Ratio. 

2.4 Propulsion aerodynamic analyses 

The propulsion aerodynamics analysis tool is based on the method of nacelle aerodynamic design and 
optimization described in [9]. It is a fully automated tool chain consisting of four blocks: geometry 

constructor, grid generator, CFD solver and post-processor (see Fig. 1). The result of the geometry 

constructor block run is an IGES file containing the geometrical model with specified values of input 
parameters. The generated file is used to build the computational grid. CFD calculations are then 

carried out using the TsAGI in-house code Electronic Wind Tunnel (EWT-TsAGI) [10]. The EWT-TsAGI 
software package realizes the concept of “Electronic Wind Tunnel” and has the capabilities to simulate 

a wide range of stationary or non-stationary gas flows with complex geometry on the basis of Euler, 
Navier-Stokes, LES or RANS equations. The CFD solver of EWT-TsAGI is based on the finite-volume 

numerical method that has the second-order approximation in all variables and includes the Godunov-
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type TVD scheme for approximation of convective fluxes (MUSCL). The stationary solution is obtained 
using a linearized implicit scheme which has the first approximation order in time. In the current 

work, it is used a stationary solver for RANS equation system closed by Spalart-Allmaras turbulence 
model [11]. For modeling the engine, special boundary conditions are used. The nozzle boundary 

condition is represented by the total pressure and total temperature values corresponding to the 

engine operating mode. The engine intake boundary condition is set by constraining the air mass flow 
rate through the nozzle with the intake mass flow rate. 

 
Figure 1: CFD analysis tool chain 

3 TEST CASE AND SENSITIVITY ANALYSES 

The objective of the test case is to apply uncertainty analyses and robust optimization techniques to 

the design of the nacelle of a turbofan engine. The design process has been set up by considering the 

technical requirements of a regional aircraft model conceived in the context of the AGILE project [1]. 
A key aspect concerning the engine simulations consists on the correct adjustment of the engine 

automatic control system. These adaptations have a direct influence on the engine output parameters 
computed on the basis of the random fluctuations affecting the input variables and are applied in 

order to match the same level of engine installed thrust as in the reference (deterministic) conditions. 
The assumption is realistic because the engine parameters associated with the engine automatic 

control system are typically tuned to match the thrust level required in the considered flight condition 

(such as takeoff or cruise). 
Several sensitivity analyses were performed in order to identify (a) the most influencing geometrical 

parameters, (b) the input variables affected by uncertainty; (c) the key performance indicators and 
(d) the reliability constraints associated with the design of the target system. These aspects were 
analyzed by considering two different flight regimes: cruise (𝑀 = 0.78, 𝐻 = 11000 m) and takeoff 

(𝑀 = 0, 𝐻 = 0 m). The associated CFD analyses were performed on an axisymmetric structured grid 

composed by 57600 hexahedral cells (see Fig. 2). One CFD calculation took about 6 minutes using 50 
cores of a supercomputer. 

 
Figure 2: General overview of the computational grid used to run CFD calculations 

Experimental and numerical studies have shown that the aerodynamic performance of the nacelle of 
a turbofan engine with separate jets depends on approximately twenty parameters defining the 

geometry of the nozzle, the inlet and the outer cowl. The most critical step is to design the geometry 
of the air intake by taking into account two competing behaviours: it should ensure a flow without 

separation in the inlet duct and minimize the aerodynamic drag. The greatest interest in the inlet 
design process is the cruise and takeoff regimes. Fig. 3 displays the typical flow patterns observed at 

the inlet region and shows that the streamlines evaluated at takeoff regime are characterized by a 
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pronounced curvature. The flow turns around the lip of the inlet and, if the inlet is too sharp, flow 
separation may occur. 

 
Figure 3: Flow patterns at cruise (left) and takeoff (right) regimes 

Previous studies (for example [12]) showed that the key geometrical parameters affecting the 
characteristics of the inlet flow are (a) the leading edge curvature radius, 𝑅𝐶𝑈𝑅𝑉, and (b) the thickness 

coefficient of the inlet lip, 𝐾, determined as (see Fig. 4) 

𝐾 =
𝑑0

𝑑𝑡ℎ
− 1 (2) 

The dimensionless lower and upper boundaries for 𝑅𝐶𝑈𝑅𝑉 and 𝐾 were defined as [0, 1]. 

 
Figure 4: Inlet geometrical parameters 

An example of how the lip thickness coefficient and the leading edge curvature radius can impact the 

flow field at the engine intake is provided by Fig. 5, showing that the appearance of flow separation 
in the inlet duct is typically associated with small values of 𝐾 and small values of 𝑅𝐶𝑈𝑅𝑉. 
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Figure 5: Flow field computed at takeoff regime by adopting small (a) or standard (b) 

values of 𝑲 and small (c) or standard (d) values of 𝑹𝑪𝑼𝑹𝑽 

The effective thrust loss, 𝑑𝑃𝑒𝑓𝑓, evaluated at cruise regime is associated with the aerodynamic 

efficiency of the nacelle and is therefore adopted as the key performance indicator to be minimized 
during the optimization of the design. The value of 𝑑𝑃𝑒𝑓𝑓 is computed as 

𝑑𝑃𝑒𝑓𝑓 = (1 −
𝑃𝑒𝑓𝑓

𝑃𝑖𝑑
) ∙ 100% (3) 

where 

𝑃𝑒𝑓𝑓 = 𝑃 − 𝐹𝑋 (4) 

From a reliability point of view, the variable that quantitatively describes the presence of flow 
separation in the inlet duct is the total pressure loss ratio, 𝛿, evaluated at takeoff regime. 𝛿 is defined 

as 

𝛿 = (1 − 𝜈) ∙ 100% =
𝑝0,∞−𝑝0,𝑒𝑛

𝑝0,∞
∙ 100% (5) 

Values of 𝛿 > 1 indicates the occurrence of flow separation and are therefore associated with 

unfeasible designs. 
From a probabilistic point of view, the random input variables are those associated with the operating 

conditions of the target system. A set of probability density functions has been defined for the 
ambient total temperature and pressure values at cruise and takeoff regimes. As reported in Table 1, 

these pdfs are assumed to be normal and characterized by a mean and standard deviation equal to 

the reference value and to 1% of the reference value of the quantity of interest, respectively. 

Table 1: Reference values and probability density functions associated with the input 

random variables 

Name Description Statistical 

distribution 

Reference and 

mean value 

Standard 

deviation 

𝑇0,∞,𝑇𝑂  Ambient total temperature at takeoff Gaussian 288.15 K 2.88 K 

𝑝0,∞,𝑇𝑂  Ambient total pressure at takeoff Gaussian 98960 Pa 989.60 Pa 

𝑇0,∞,𝐶𝑅  Ambient total temperature at cruise Gaussian 243.07 K 2.43 K 

𝑝0,∞,𝐶𝑅  Ambient total pressure at cruise Gaussian 33685 Pa 336.85 Pa 

A set of intermediate variables, namely temperatures and pressures evaluated at engine core and fan 
and at cruise and takeoff flight conditions (for a total of 8 variables) are also considered. The flow 

chart depicted in Fig. 6 describes the variables involved in the test case together with their inter-
dependencies and the inputs / outputs of the involved analysis tools. 

a)

c)

b)

d)
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Figure 6: Flow chart describing tools and variables considered in the test case. 

The workflow described in Fig. 6 has been implemented in the process integration and design 

optimization platform Noesis Optimus [13]. The built-in capabilities of Optimus are also used to (a) 
run the machine-learning based ADOE plan with the automatic submission of the CFD simulations to a 

supercomputer hosted at the TsAGI facilities, (b) build the required surrogate models and (c) run the 

uncertainty quantification analyses described in Section 4. The corresponding simulation workflow is 
displayed in Fig. 7. In this workflow, the random input variables contained in the “Inputs_operating” 

array are used to compute the outputs of the engine analysis through a surrogate model. These 
outputs, together with the values of the nacelle geometry parameters, are mapped to the file 

“params.in” that is employed to run two CFD simulations at takeoff and cruise regimes, as described 
in Section 2.4. The output file produced by the calculation, “results.out”, is then parsed in order to 
extract the values of 𝛿 and 𝑑𝑃𝑒𝑓𝑓 at takeoff and cruise conditions, respectively. 

 
Figure 7: Optimus workflow used to integrate the two analysis tools and to automate the 

CFD analyses 

Engine Module
(CIAM)

Nacelle CFD
(TsAGI)

Input random 
variables

Intermediate 
variables

Input 
shape design 

variables

Output 
variables

Surrogate models of 
engine module:
Evaluation of 
intermediate variables 
(Outputs_engine array)
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4 RESULTS AND DISCUSSION 

The robust optimization of the target design relies on the presence of an accurate surrogate model of 

the system under study. This surrogate model is evaluated as follows: 
1. A DOE plan was executed for the engine analysis tool described in Section 2.3. Considering 

the relatively regular shape of the system response, this DOE analysis was performed by 

merging the results obtained from an orthogonal and a Latin Hypercube [14] sampling plans; 
2. The results of these experiments were then imported in Optimus and employed to (a) build a 

first-order Least Squares model of the engine analysis tool and (b) embed this surrogate 
model in the Optimus workflow depicted in Fig. 7; 

3. The ADOE strategy (see Section 2.2) was finally applied to execute a total number of 305 
workflow runs and to automatically identify the best surrogate model that links the system 

inputs (i.e., random variables and geometrical parameters) to the output quantities of 

interest. All the uncertainty analyses described below have been performed by means of the 
surrogate models identified by the ADOE algorithm. 

The first study aims at characterizing the behavior of 𝑑𝑃𝑒𝑓𝑓 and 𝛿 within the design space. Fig. 8 

shows that the most efficient designs (represented by lower values of 𝑑𝑃𝑒𝑓𝑓) are associated with 

small values of 𝑅𝐶𝑈𝑅𝑉 and 𝐾. The impact of these geometrical parameters on the feasibility of the 

design is demonstrated by the fact that 𝛿  displays values greater than 1 (i.e., indicating the presence 

of flow separation) in areas of the domain associated with small values of 𝐾. 

 
Figure 8: Contour plots describing the dependency of 𝒅𝑷𝒆𝒇𝒇 and 𝜹 on 𝑲 and 𝑹𝑪𝑼𝑹𝑽 at 

reference ambient pressures and temperatures. The dashed line identifies the boundary 
of the feasible region (𝜹 = 𝟏) 

An uncertainty quantification study was performed to investigate the impact of the randomness 
associated with the ambient pressure and temperature values on the standard deviation of 𝛿, 𝜎𝛿. A 

set of analyses was performed through FOSM and MC by evaluating 𝜎𝛿 as a function of 𝑅𝐶𝑈𝑅𝑉 and 𝐾 

at 400 points uniformly distributed within the design space. The impact of the Monte Carlo population 
size, 𝑁𝑀𝐶, was also assessed by considering three different values of 𝑁𝑀𝐶 equal to 100, 1,000 and 

10,000. In this study, FOSM was coupled with a forward finite difference scheme to compute the 

derivatives defined in Eq. 1 and therefore required only 5 system evaluations (i.e., one plus the 
number of random variables) in order to evaluate 𝜎𝛿 at a given point of the design space. The MC-

based approach requires a number of evaluations equal to 𝑁𝑀𝐶. 

The uncertainty associated with 𝑑𝑃𝑒𝑓𝑓 was always very small in magnitude (not shown) and was 

therefore considered negligible. Fig. 9 displays the contour plots of 𝜎𝛿 as a function of 𝑅𝐶𝑈𝑅𝑉 and 𝐾 

and shows that the FOSM- and MC-based results are in good agreement with each other. The largest 
discrepancies are observed for small values of 𝐾 and values of 𝑅𝐶𝑈𝑅𝑉 close to 0 and 1, where the 

values of 𝜎𝛿 obtained by FOSM are overestimated of about 10% with respect to their MC 

counterparts. As expected, the MC-based results are affected by random noise and tend to converge 
to a smooth solution as 𝑁𝑀𝐶 approaches the value of 10,000.  
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Figure 9: Variation of 𝝈𝜹 with 𝑲 and 𝑹𝑪𝑼𝑹𝑽 evaluated with FOSM and with MC for different 

values of 𝑵𝑴𝑪. The dashed line identifies the boundary of the feasible region (𝜹 = 𝟏) 

The contour plots depicted in Fig. 9 show that the areas located near the boundary of the feasibility 
region (i.e., where 𝛿 is close to 1) are associated with relatively large values of 𝜎𝛿 whose magnitude 

is close to the values of 𝛿. For this reason, the design optimization problem cannot be defined 

adopting a traditional deterministic approach where (a) the operating condition are set equal to their 
reference values and (b) the constraint is defined by imposing the inequality 𝛿 < 1. In fact, this would 

most likely lead to an unreliable system, where flow separation phenomena will occur due to the 
random deviations affecting the real operating conditions. 

An effective approach consists of introducing a constraint in order to enforce the system reliability 

within an appropriate confidence interval. Fig. 10 illustrates the behavior of the variable equal to 
𝛿 + 6𝜎𝛿 within the design space and the effect of adopting the reliability constraint defined as 

𝛿 + 6𝜎𝛿 < 1 on the position of the boundary of the feasible region. Clearly, the adoption of this 

constraint reduces the area of the feasibility region. 

 
Figure 10: Contour plots showing the dependency of 𝜹 + 𝟔𝝈𝜹 (center) and 𝒅𝑷𝒆𝒇𝒇 (right) on 

𝑲 and 𝑹𝑪𝑼𝑹𝑽. The dashed lines denote the boundary of the feasible region obtained by 

setting 𝜹 = 𝟏 (a) and 𝜹 + 𝟔𝝈𝜹 = 𝟏 (b) 
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A robust design optimization strategy has been defined in order to identify the most efficient design 
subject to the reliability constraint defined as 𝛿 + 6𝜎𝛿 < 1. The optimal values of the design variables 

are found on the basis of a gradient-based algorithm and corresponds to 𝐾 = 0.72 and 𝑅𝐶𝑈𝑅𝑉 = 0.19. 

The histograms representing the pdfs of the estimated geometrical parameters and a summary of 

their key statistical characteristics are reported in Fig. 11. 

 
Figure 11: Histograms of 𝒅𝑷𝒆𝒇𝒇 (left) and 𝜹 (right) obtained on the basis of a MC analysis 

with 𝑵𝑴𝑪 = 𝟏𝟎, 𝟎𝟎𝟎 and by setting 𝑲 and 𝑹𝑪𝑼𝑹𝑽 to their optimal values 

A conclusive analysis is performed through FORM and SORM in order to compute the reliability index, 
𝛽, and the probability of failure, 𝑝𝑓, associated with the optimized design. The two approaches 

required an additional number of 146 and 156 system evaluations, respectively. The output values of 
the FORM analysis are given by 𝛽 = 3.96 and 𝑝𝑓 = 3.8 ∙ 10−5 while the estimates obtained through 

SORM are 𝛽 = 4.44 and 𝑝𝑓 = 4.5 ∙ 10−6. Regarding 𝛽, the two results are in good agreement with 

each other. The discrepancies observed for the estimated probability of failures can be ascribed to the 

different levels of the approximation of the limit state function adopted by the two approaches. Given 

the relatively small number of additional system evaluations entailed by SORM with respect to FORM, 
for the test case under study it can be concluded that the second-order based approach should be 

preferred over the first-order one for the assessment of the target system reliability. 

5 CONCLUSIONS 

The aerodynamic efficiency and the reliability of a turbofan engine nacelle are strongly influenced by 

its target operating conditions. Considering that these conditions in reality are affected by random 
fluctuations, optimizing the nacelle geometry under deterministic assumptions is likely to produce an 

output design whose efficiency and reliability do not encompass the entire spectrum of operating 
conditions. This work adopts a probabilistic approach to formulate a design optimization problem 

subject to reliability constraints. A key aspect consists on the employment of a framework based on 
machine learning techniques in order to reduce the number of system evaluations required to perform 

the uncertainty analyses. The proposed methodology allowed characterizing the uncertainty of the 

system outputs and to find an optimal design for the geometry of the engine nacelle subject to the 
target reliability constraint. The results include an assessment of the reliability of the optimized design 
measured according to the reliability index, 𝛽, and the probability of failure. 
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