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ABSTRACT 

Several architectures exist to measure aerodynamic angles based on physical sensors. As far as 
Unmanned Aerial Vehicle (UAV) is concerned, traditional systems hardly comply with reliability and 
redundancy requirements due to size and weight limitations. A patented virtual sensor, based on 
Neural Network (NN) techniques, named Smart-ADAHRS (Smart-Air Data, Attitude and Heading 
Reference System) has been investigated as a good estimator for aerodynamic angles in simulated 
environment. This paper focuses on flight testing procedures in operative environment and data 
processing for the Smart-ADAHRS validation with real data. As many factors interfere during the 
generation of the NN training set, an accurate choice and integration of the FTI (Flight Test 
Instrumentation) system components becomes crucial. A comprehensive description has been 
included about the FTI equipment and its influence on the neural network performance. Differences 
between numerical simulation and operative environment data are detailed as final aim of this work. 
Finally, feasible solutions are suggested to solve the typical gap between virtual and real scenario, 
both in terms of data analysis and neural network architecture. 

KEYWORDS: aerodynamic angles, flight test, neural network, operative environment comparison, 
virtual sensor. 

NOMENCLATURE

ADAHRS - Air Data, Attitude and Heading 
Reference System 
ADS - Air Data System 
ADU - Air Data Unit 
ANN - Artificial Neural Network 
AOA - Angle of Attack 
AOS - Angle of Sideslip 
FCS - Flight Control System 
FEK - FTE Electronic Kneepad 
FTE - Flight Test Engineer 
GA - General Aviation 
MLP - Multilayer Perceptron 
SFDIA - Sensor Fault Detection, Isolation and 
Accommodation 
SHSS - Steady Heading Sideslip 

TRL - Technology Readiness Level 
UAV - Unmanned Aerial Vehicle 
ULM - Ultra Light Machine 
�� - load factor on ith axis 
� - pitch rate 
�� - impact pressure 
� - roll rate 
� - Angle of Attack 
� - Angle of Sideslip 
� - pitch angle 
� - roll angle 
����� - ith Body axis 

�� - Initial estimation of the signal � 
�̇ - Time derivative of the signal � 
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1 INTRODUCTION 

The continuous challenge of the aeronautical research is mainly related to performance improvement 
and environmental impact reduction of the aircraft and its related products. Nevertheless, a great 
extent of research has been promoted in avionics, aircraft instrument technology for aerodynamic 
angle measurement has not seen significant innovation since the first half of the XX century. When 
developing a new aircraft avionic product, the main challenges are related to low cost, high reliability, 
small size, low weight and eco-friendly features. These requirements are harder to meet when 
considering an Unmanned Aerial Vehicle (UAV). Generally speaking, design requirements for small 
and medium UAV limit available space and maximum take-off weight to strict values (see [1]). 
Moreover, many electronic sensors and hardware components are needed in order to enable remote 
piloting. In order to ensure reliability for UAV systems, aircraft equipment is frequently duplicated or 
triplicated in a typical hardware redundancy. This is in conflict with the previous described design 
approach. For these reasons, software solutions have been developed, such as analytical redundancy, 
with the aim to integrate virtual sensors in modern avionics that introduce the chance to simulate a 
generic system without adding any physical component [2]. One of the most common aircraft system 
is the Air Data System (ADS) which is highly demanding in terms of space, weight and costs. 
Common ADSs are made up of several probes, transducers and Air Data Units (ADUs) and provide the 
pilot (or the Flight Control System (FCS), especially in case of unmanned aircraft) with a complete air 
dataset including all information about aerodynamic interaction between the aircraft and the external 
flow. 
Different ADS sensor configuration exist with the aim to be compliant with specific requirements 
related to particular applications ranging from the General Aviation (GA) to the military aircraft (see 
[3] [4] [5] [6] [7] [8] [9] [10]). However, ADS systems always rely on external sensors. This 
introduces some issues related to position errors, installation, de-icing systems, power requirements 
and maintenance tasks. Recently, literature has intensively investigated the field of SFDIA (Sensor 
Fault Detection, Isolation and Accommodation) [11] [12] [13] and some papers exist proposing 
solutions which tackle ADS sensor faults [14] [15] [16]. However, to the best of our knowledge, the 
TRL (Technology Readiness Level) of those solutions remained low. Moreover, this paper addresses a 
method which aims to reduce the total number of external sensors, instead of accommodating their 
faults. A patented technology, based on soft computing techniques, named Smart-ADAHRS (Smart Air 
Data, Attitude and Heading Reference System, [17]) have demonstrated to be an accurate and 
reliable replacement for complex and expensive traditional ADS (see [18], [19], [20]). The Smart-
ADAHRS technology enables to reduce external ADS devices (sensors and probes) and simplifies the 
entire ADS architecture taking advantage of an innovative sensor fusion algorithm, different from the 
classical Kalman Filter [21] [22]. In fact, only one external source of dynamic and static pressure is 
required. Previous research addressed to validate the algorithm in simulated environment, considering 
sensor noise and atmospheric turbulence [18]. Different architectures have been studied, with 
different input vectors. This paper will focus on the ANN without surface control signal in the input 
vector, which is considered an important simplification [23] that brings significant advantages for 
common ADS [24]. The smart solution proposed here applies an Artificial Neural Network (ANN) to fill 
the gap between a linear estimator and the actual value of the target signal. This methodology can 
virtually obtain a good accuracy on aerodynamic angle values, suitable for typical aircraft control 
systems. Generally speaking, an ANN is an algorithm able to learn an underlined model by means of a 
properly selected training set. After the model has been learned, depending on the architecture, the 
ANN can be applied to other data to obtain regression, voting, pattern recognition and a lot of other 
applications. This paper deals with the regression case and is based on a Multilayer Perceptron (MLP) 
[20]. After being fully validated in a simulated environment, both in clean and turbulent atmosphere 
on the De Havilland DHC-2 Beaver mathematical model [25], the sensor has been tested on an actual 
ultralight aircraft. This paper focuses on the comparison between simulated values and real operative 
environment data obtained during relevant flight tests. As the recorded values are used both for 
training and test ANN patterns, additional care must be taken during the design of the FTI (Flight 
Test Instrumentation) system since it highly influences the learning process. In fact, errors on data 
calibration and signal synchronization, as well as data logger faults or poor FTI sensor performance, 
could affect the ANN training. Moreover, mechanical behaviour of external probes (such as natural 



  

CEAS 2017 paper no. 267 Page | 3 
Comparison Between Numerical Results and Operative Environment 
Data on Neural Network for Air Data Estimation Copyright © 2017 by author(s) 

Aerospace Europe 
6th CEAS Conference 

frequency) might influence the learning phase. Therefore, an accurate analysis of data logs cannot 
take place without a suitable FTI platform. 
This paper begins with a general introduction of the MLP training and of the signal reconstruction 
procedure itself. A comprehensive description of the FTI equipment and of the way it affects the 
output performance is included in Section III. Moreover, statistical features are selected in order to 
analyse the final results at the end of Section III. Differences between numerical simulations and 
operative environment results are detailed as the main aim of this work. Finally, feasible solutions are 
suggested to solve the typical gap between virtual and real scenario, both in terms of data analysis 
and MLP architecture. 

 
2 NEURAL NETWORK FOR AIR DATA ESTIMATION 

As generally known, aerodynamic forces and moments acting on aircraft are function of interactions 
between the body and the external flow [26] [27]. This, indeed, influences vehicle dynamics itself and 
justifies the importance of the determination of what are called Air Data. Monitoring this dataset is 
fundamental and some fatal accidents occurred in the past due to malfunctioning of the ADS [28] 
[29]. ADS is then considered a safety-critical aircraft system, currently made of several external 
sensors (see [24]). This paper deals with the estimation of the relative angles between the aircraft 
Body reference frame and the Air Trajectory frame, the so-called aerodynamic angles: Angle of Attack 
(AOA, or �) and Sideslip angle (AOS, or �). However, this operation is here performed with virtual 
sensors. During the last decades, virtual sensors demonstrated to be cost effective techniques in 
several areas [30] and some research projects were focused on AOA as well. For instance, a 
proposed virtual sensor for the AOA estimation [2] that splits in three parts the signal to recompose: 
a trimmed angle of attack obtained by means of a Takagi-Sugeno fuzzy model, a short period AOA 
obtained from linear short period approximation and a third part calculated by a neural network. In 
[31] the estimation of Calibrated Air Speed (CAS) and AOA are obtained by means of an Adaptive 
Kalman Filter (AEKF). The same paper proposes an approach based on the aerodynamic model 
inversion (AMI), as described in [32]. Among the model-learned solutions, [33] proposes a method 
where the identification of the aerodynamic coefficient, from sparse data, has been conducted using 
ANN trained as described in [34]. A different algorithm is described in [35], where a Functional 
Pooling Nonlinear AutoRegressive with eXogenous excitation (FP-NARX) is applied in order to directly 
obtain the AOA signal. This paper deals with a very straightforward model, suitable for real-time and 
cost effective innovative avionic systems. Consider the following linearization of � and �: 
 

� =  �� + �� ( 1 ) 

� = �� + �� ( 2 ) 

 

where ��  and �� are linear estimation obtained with flight mechanics equations whereas �� and �� 
are the differences between the linear estimations and the true nonlinear angles. According to a 

patented procedure ([17]), the initial estimation of the angle of attack �� and sideslip angle �� is 
augmented with the evaluation of �� and �� based on two MLPs, which process measurements 
obtained with non-protruding sensors (except for the Pitot tube). An MLP consists of a linear 
combination of nonlinear squashing functions (meaning functions bounded by their horizontal upper 
and lower asymptotes). A huge amount of literature exists about the MLP as performing as a 
universal approximator. Refer to [36] [37] [38] [39] [40] [41] for the relevant mathematical 
demonstration. During the training procedure, the weights of the linear combinations are estimated 
solving the non-convex problem of the error function optimization. Different heuristic rules exist and 
the most common is the Levenberg-Marquardt (LM) algorithm. However, this application deals with a 
big amount of data, making the employment of the LM rule not feasible. The training rule applied in 
this article is the Resilient Propagation (RPROP). The complete input vector needed by Smart-ADAHRS 
includes data from the GPS, the ADS and the AHRS (Attitude and Heading Reference System) which 
provide body accelerations, angular rates and attitude, as can be seen in Figure 1. The Pitot-tube is 
the only external source of data. 
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Figure 1: General schematic of the Smart-ADAHRS 

 

Actually, an intrinsic redundancy seems to exist among the set of measurements. However, previous 
research showed that analytic evaluation is indeed feasible for the evaluation of � and �, thanks to 
this apparent redundancy. Analysis of the influence of the input vector on results allowed the 
reduction of the total number of signals effectively needed by the network. At first, control system 
signals where applied as input to the MLPs but in some cases they could be unavailable, as in small 
UAV, Ultra Light Machines (ULMs) or GA aircraft. The following feed-forward predictors are hence 
implemented: 

 

�� = ��(��, ��̇, ��, ��, �, �, ��) ( 3 ) 

�� = �����, ��̇, ��, ��, ��, �, �, ��� ( 4 ) 

 

where �� is the impact pressure, ��̇ is the time derivative of ��, ��, ��, �� are the load factors 

respectively on �����, ����� and ����� axes, � is the roll angle, � is the roll rate, � the pitch angle, � 

is the pitch rate and �� and �� are the initial linear estimation for the angle of attack and the sideslip 
angle respectively. Previous research activities on simulated turbulent environment in [18] showed 
the possibility of considering previous time steps of the input vector in a Time Delay Network. This 
practice however is not here implemented because, at this phase, it was preferred to start with a 
simpler model. Furthermore, the computational cost would increase and the system would require a 
memory buffer big enough to manage an augmented input vector. The main aspect of considering 
the turbulent environment is the necessity of training the neural network using noisy signals which 
are representative of the stochasticity of turbulence. An error, calculated as the difference between 
the estimated angle and the real angle, is considered acceptable if it is bounded between ±2 deg. 
These values, based on the authors’ experience, should not imply critical degradation on the typical 
aircraft control systems, which are designed to tolerate some errors on the input signals. Obviously, 
the only information about the error bounds is not enough because the harmonic content of the 
residuals is also of great interest for such applications. For sake of clarity, a constant error, periodic 
oscillations or white noise acting on the signal will have different consequences. However, the error 
analysis will show a mean error very close to 0 deg, so the bounds will indeed apply only to the 
dynamical behaviour of the residuals. 

 

3 METHODOLOGY 

Previous sections are focused on the advantages of implementing an MLP in an ADS. Moreover, the 
mathematical background needed to fully understand how this algorithm works has been depicted. 
This section starts with the description of how training and test sets have been collected in both 
simulated and real environment. The second part deals with the selection of suitable parameters to 
conduct a proper comparison between simulations and flight testing. 
An ideal solution to perform a comparison between real and simulated scenarios would need the 
implementation of the same aircraft model on a flight simulator, undergoing to exactly the same input 
signals. Unfortunately, this is not possible at this stage. Firstly, a detailed aerodynamic and dynamic 
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identification of the test aircraft was not available at the time of writing this article. The ULM applied 
for the flight test campaign is currently under development and still some modifications on the design 
can occur. Secondly, the flight tests have a parallel final aim of demonstrating aircraft compliance 
with the current technical airworthiness regulations. Moreover, what a real test pilot can actually lead 
is limited by the practical feasibility of the manoeuvres themselves. On the other hand, during 
simulations, the aircraft can be virtually placed in some conditions that a real pilot would not reach for 
security reasons. It must be noted that it is not easy to obtain a time history which can describe the 
entire flight envelope of the aircraft. For these reasons, a simultaneous training with several recorded 
manoeuvres has been carried out, as described in [24]. 

As mentioned above, a set of trajectories have been obtained by means of a flight simulator of the 
DHC-2 Beaver aircraft based on the FDC toolbox [25]. Time histories of the command signals and 
trim conditions have been defined on the basis of the experience gained during previous research. 
Another set of trajectories have been obtained by means of a flight test campaign, where an ULM has 
been equipped with a complete FTI system. This data collection is the result of a collaboration 
between different entities. A prototype of the Smart-ADAHRS, currently able to record all the input 
signals needed by the MLP, has been developed by Politecnico di Torino and AeroSmart srl. Target 
values (AOA and AOS) are measured by the FTI developed by the Politecnico di Milano, which 
manages the flight test campaign of the ULM. The test aircraft is manufactured by Ing. Nando Groppo 
srl and is called G-70. After the selection of suitable training time histories, data have been pre-
processed to span the set [−1; 1]. This is because the Universal Approximation Theorem states that 
an MLP is able to uniformly approximate any function inside the [0; 1]� hypercube. Please note the 
numerical differences between the two lower bounds is not really an issue, because the input layer 
weights will easily scale the input range. The important fact is that the input space is lower-and-
upper-bounded. Before testing the NN, the procedure verifies that the manoeuvre is a subset of the 
training set, for at least the major part. After the pre-processing of the training and test sets, a single 
layer MLP with 13 neurons is trained with simulated data and compared to another MLP trained with 
flight test data. Training is repeated 10 times to avoid local minima and the network with the 
minimum validation error is considered the best solution. The heuristic rule applied for training is the 
RPROP. 

 

3.1 Flight Test Instrumentation 

 

The ultralight aircraft has been equipped with a complete FTI to record all signals necessary to the 
Smart-ADAHRS. As mentioned above, the test equipment can be divided in two main groups. The 
first one, called Mnemosine, is a complete FTI developed by Politecnico di Milano, able to record all 
inertial and air data from various sensors. It features a low cost, reliable, flexible and low intrusive 
solution for flight testing operation and it has been tailored for ULM. The fifth version of this 
equipment is composed by a Mnemosine Main Unit (MMU) that groups the main nodes of the system 
as the GPS unit, a card manager to store data and the galvanically-isolated electrical power supply for 
the entire FTI, with the possibility of using an auxiliary external battery for the on-ground operations. 
Air Data Unit has been maintained independent to keep the installation close to the two air data 
booms, mounted under the wings. The right half-wing air data-boom was equipped with two vanes, 
respectively for AOA and AOS, whereas the left one featured a total pressure probe. Signals coming 
from these probes have been transduced and recorded by an ADS, composed by a micro-controller 
board Olimex STM32-5107 and a signal conditioning module. Moreover, Mnemosine provides a WiFi 
Telemetry Unit complying the 802.11n wireless protocol, using two omnidirectional antennae, 
mounted on the lower aft part of the fuselage. The Flight Test Engineer (FTE) is equipped with the 
FTE Electronic Kneepad (FEK) that allows him/her to mark relevant events of the test flights. Refers 
to [42] for additional information. 

The second group of the test equipment is related to the prototype, subject of this article. It is 
composed by a very high accuracy AHRS named Spatial, integrated with an ADU, both by Advanced 
Navigation® (see [43] and [44]). According to the standard, the AHRS is composed by an inertial and 
a GPS unit integrated with a Kalman-like filter. The output of the ADAHRS is recorded by the Smart-
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ADAHRS prototype. The latter is currently composed by two programmable boards able to record the 
signals in input. Table 1 lists the equipment used during flight tests. 

 

Table 1: FTI description 

System Model (Producer) Role 

ADAHRS Spatial (Advanced Navigation) Main 

ADS Air Data Boom (Aerosonic Corp.) Main 

AHRS MTi (Xsens) Redundancy 

GPS LEA-6R (ublox) Redundancy 

FTI Manager Mnemosine Main 

 

In this investigation, several effects can influence the accuracy of the measurements. For example, 
the reciprocating engine can generate a spectrum of oscillations on the metallic structure of the 
aircraft. Moreover, atmospheric turbulence can affect the Pitot-booms, although tests are not 
performed in heavy turbulent air. Structural vibrations can affect both inertial sensors and the 
aerodynamic fins. The propeller wake itself induces velocity on the Pitot-booms. At the same time, 
each sensor has its own nonlinearities, affecting the quality of the recorded signals. Background 
noises and dynamic response of each sensor must be taken into account when the experiment is set 
up. For these reasons, the signals obtained from flight tests can be much noisier than those coming 
from simulated environment. However, a good training will avoid the data over-fit, allowing the NN to 
learn only the underlined model. 

 

3.2 Data synchronization 

 

A preliminary data analysis induced the authors to consider the heterogeneity of the sampling 
frequency of the different systems (Table 2). 

 

Table 2: Sampling frequency 

System Sampling frequency 

Primary ADS 10 Hz 

Secondary GPS 2 Hz 

Secondary AHRS 50 Hz 

 

Moreover, due to hardware delay, the sampling frequency of the primary ADAHRS is not constant. 
Accurate data pre-processing is hence required to get a unique time base, over which re-interpolate 
every signal. This operation has been performed by means of a properly written MATLAB® routine. 

 

3.3 Comparison Analysis 

 

As indicated above, a method to compare the results obtained by Smart-ADAHRS is needed. The 
selected parameters should give an indication which is independent from the input trajectory or the 
aircraft model. For this reason, the comparison of the time histories is based on the classical 
descriptive statistical features, as upper bound and lower bound, mean error and standard deviation 
(see [45]). Additionally, a graphical comparison of the error distribution before and after the 
application of the nonlinear estimator has been carried out. Moreover, it must be remembered that in 
case of real flight test measurements, the sensor signal is strongly affected by the external noise. In 
order to have an estimation of the signal stability, each signal has been processed with a 20-th order 
median filter. The standard deviation of the residuals between the filtered signals and the actual ones 
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has been computed and compared among the various cases. For similar applications, for example the 
analysis of the bias stability in MEMS sensors, the Allan deviation is often computed [46]. However, it 
must be noted that the information coming from the computation of the Allan deviation are 
influenced by the general trend of the signal. In fact, the Allan deviation is usually evaluated on the 
basis of a null input recording, to study the sensor background noise. In this case, structural 
vibrations, the contingent aircraft dynamics and disturbances related to the sensor installation affect 
the sensor signals in several ways during the trajectory. The analysis of the still sensors would not 
detect the various effects, obtaining a non comprehensive estimation. These techniques should show 
the improvements given by the application of the algorithm with respect to linear estimation.  

 
4 RESULTS 

This section shows the input and output statistical features, comparing the measurements obtained 
from simulations with those recorded during flight test campaigns. 

 

4.1 Training and test set 

 

The training set should cover the widest portion of flight envelope. A several flight manoeuvres were 
conducted by a certified pilot on the same aircraft during a flight test campaign, which was protracted 
for several months. The entire set of recorded flight tests should have generated a comprehensive list 
of manoeuvre, suitable for the construction of the training and test pattern for the ANN. After the 
flight campaign has been completed, suitable time windows of the recorded data have been selected. 
Situations with flap conditions different from 0 deg have been avoided, because flaps definitely 
change the aircraft configurations and training could be degraded. This could be seen as a limitation 
of the current analysis. However, the approach is applicable to every condition despite the flap 
position. Training the network to respond properly in different flap condition is only a matter of 
amount of available training data. Further investigations will be conducted to verify this aspect. 
 
 

Table 3: Training manoeuvres, flight test 

Manoeuvers Total Time [s] 

Sawtooth glides, Dutch Roll 2320 

Sawtooth glides, Dutch Roll 1970 

Phugoid (stick fixed and stick free) 420 

Steady Heading Sideslip 480 
 
 

A brief description of the training and test trajectories applied for the real scenario is resumed in 
Table 3 and Table 4. This selection has been obtained with a trial and error procedure. It should be 
noticed that including a manoeuvre strictly related to the lateral-directional plane as could be the 
Steady Heading Sideslip (SHSS) can improve the final test results. This could be due to the various 
flight conditions that are encountered in a real scenario, hardly limited only to the longitudinal plane. 
After data have been synchronized and prepared to be applied to the ANN, initial promising results 
have been obtained. The error trend is a good symptom for the training and test operations 
conducted with data coming from the operative environment. In fact the error, though not entirely 
bounded into ±2 deg, exceed the limits for a limited amount of time. 
 

Table 4: Test manoeuvres, flight test 

Manoeuvers Total Time [s] 

Sawtooth glides 580 

Sawtooth glides, Phugoid (stick fixed and stick free) 1900 

Sawtooth glides 900 
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For the simulated environment, a set of manoeuvres have been properly defined. As previously 
discussed, the comparison between real and simulated scenario has not been conducted on the same 
aircraft for the same trajectories. Hence, this set of sample manoeuvres has been selected to meet 
two different goals: the first one is to have a good description of the aircraft dynamics, in order to 
obtain a good training set; the latter is to have some sort of similarities with the flight test time 
histories. Table 5 provides a description of the simulated manoeuvres. 

 

Table 5: Simulated manoeuvres 

Manoeuvers Total Time [s] 

Elevator step 2200 

Elevator step (different trim conditions) 2200 

Ailerons step 2200 

Rudder step 2200 

Mixed elevator and ailerons step 2200 

Sawtooth glides 1660 

Stall 1630 

Trim 2200 

Mixed manoeuvre 1070 

 

An example of the sawtooth glide manoeuvres in the simulated environment can be seen in Figure 2. 
The corresponding flown trajectory is in Figure 3. In Figure 4 can be seen an example of a SHSS 
(Steady Heading Sideslip) performed during flight test. 

 

 

Figure 2: Details of simulated sawtooth glides 
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Figure 3: Details of sawtooth glides conducted on 10th June 

 

 

Figure 4: Details of SHSS conducted on 10th June 

 

A graphical interpretation of the ability of a training manoeuvre to cover the flight envelope can be 
conducted with the box and whiskers plots [47]. The normalized input signals used for training in the 
simulated scenario can be seen in Figure 5, whereas the corresponding analysis for the real scenario 
can be seen in Figure 6. Middle lines represent the medians and the boxes delimit the regions 
between the 25th and 75th quartiles. Whiskers extend for 1.5 times the difference between the 75th 
and 25th quartiles before and after the 25th and 75th quartiles themselves. Other data are 
considered outliers and are individually plotted with a red plus sign. As can be seen from Figure 5 and 
Figure 6, a large part of the training set is composed by outliers. In those regions, the training 
performance will be degraded, which implies that a thicker coverage on training is recommended. 
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Figure 5: Graphical visualization of the normalized input range for training (simulation) 
 

 

Figure 6: Graphical visualization of the normalized input range for training (flight test) 

 

A comparison of the standard deviation of the differences between the actual and the filtered signals 
can be performed analysing Figure 7 and Figure 8. It should be noticed that they represent the 
signals already mapped into the [−1;  1]� hypercube. The order of magnitude is similar, maybe due to 
the low order of the median filter, together with the scaling effect of the pre-processing. 

 

 

Figure 7: Residual standard deviation of the training set (simulation) 
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Figure 8: Residual standard deviation of the training set (flight test) 

 

As far as test data are concerned, only some appreciable results are reported. Figure 9 shows the box 
and whiskers plot for the third test trajectory in the simulated environment, corresponding to an 
elevator step in a trim condition which differs from the training set. The entire manoeuvre is clearly a 
subset of the training set. Moreover, the residual standard deviations shown in Figure 11 are very 
low, compared to those obtained during training. 

 

 

Figure 9: Graphical visualization of the normalized input range for test, trajectory #3 
(simulation) 

 

In operative environment, residual standard deviations are of the same order of magnitude of the 
training set as can be seen in Figure 12. At the same time, the shown manoeuvre is not completely 
contained in the training trajectories, as can be seen in Figure 10, where the normalized impact 
pressure distribution contains values greater than 1. 
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Figure 10: Graphical visualization of the normalized input range for test, trajectory #2 
(flight test) 

 

 

Figure 11: Residual standard deviation of the trajectory #3 of the simulated test set 

 

 

Figure 12: Residual standard deviation of the trajectory #2 of the flight test set 

 

4.2 Smart-ADAHRS performance 

 

Two MLPs have been trained with trajectories containing stalls, sawtooth glides and aileron input 
steps; its performance have been evaluated in different manoeuvres, in order to study their 
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generalization capabilities. Training performance are shown in Figure 13 and Figure 14. The observed 
behaviour is quite different. Despite the order of magnitude of the NSSE (Normalized Sum-of-Squares 
Error) is almost the same, in the simulated environment the training operation spreads over solutions 
with different final NSSE. 
 

 

Figure 13: Training performance in terms of NSSE for simulated scenario 

 

 

Figure 14: Training performance in terms of NSSE for real scenario 

 

Using flight test data, the trend is smoother among the 10 training operations. This could be due to 
the noise and signal disturbances, which act on the weight tuning as a leveller of the error function 
local minima. Figure 15 and Figure 16 show a comparison between the target AOA, the linear 
estimation and the output of the Smart-ADAHRS. As it can be seen, in the simulated environment the 
estimation error is smoother than in the flight test case and bounded between [−0.6; 0.6] deg. 
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Figure 15: Output comparison between true angle (��), linear estimation (���) and the 
output of the virtual sensor (���) for trajectory #3 of the simulated test set 

 
 

 

Figure 16: Output comparison between true angle (��), linear estimation (���) and the 
output of the virtual sensor (���) for trajectory #2 of the flight test set 

 

The improvements on the AOA evaluation between the simple linear model and the Smart-ADAHRS 
estimation for the simulated environment can be seen from Figure 17 to Figure 19. 
 

 

Figure 17: Error distributions for trajectory #1 of the simulated test set 
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Figure 18: Error distributions for trajectory #2 of the simulated test set 

 

 

Figure 19: Error distributions for trajectory #3 of the simulated test set 

 

The error distribution for operative environment are shown from Figure 20 to Figure 22. 
 

 

Figure 20: Error distributions for trajectory #1 of the flight test set 
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Figure 21: Error distributions for trajectory #2 of the flight test set 

 

 

Figure 22: Error distributions for trajectory #3 of the flight test set 

 

The error distribution during training is reported in Figure 23 and Figure 24. 
 

 

Figure 23: Error distributions for trajectory #1 of the training set (simulation) 
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Figure 24: Error distributions for trajectory #1 of the training set (flight test) 

 

These promising results show the confirmed reduction of the estimation error between the linear and 
the nonlinear model. These figures provide the evidence that the algorithm can work well also in 
operative environment, where several external disturbances exist on the input signals. A comparison 
on the output performance between simulated and real environments shows an evident increase of 
the final error range. However, it should be noticed that the upper and lower bounds are subject only 
to a slight increase. Moreover, the reduction of the mean error found in the simulated environment is 
confirmed also in the real scenario. Although the FTI equipment has been conceived under the 
requirements of reducing the external sensitivities, a residual error on the target signal is still 
detectable. This obviously affects the training procedure and hence the ability of the nonlinear 
estimator to reduce the estimation error. Table 6 and Table 7 report mean values and standard 
deviations of the residual errors before and after the application of the MLP. Only in one case the 
mean error has been increased. However, this might be considered an outlier and a different training 
set might be useful to avoid this situation. At the same time, the standard deviation has always been 
reduced, in some cases even dropped by an order of magnitude. 
 

Table 6: Test manoeuvres, mean error results 

Environment Trajectory Mean error True – Linear 
[deg] 

Mean error True – Virtual 
Sensor [deg] 

Sim 1 0.106084 0.040867 

Sim 2 0.165387 0.039785 

Sim 3 0.407906 0.055212 

Sim 4 -0.036736 -0.012018 

Sim 5 0.027263 0.028864 

Flt 1 -0.282424 0.261076 

Flt 2 1.148285 0.139737 

Flt 3 1.030891 0.418094 
 

Table 7: Test manoeuvres, standard deviation results 

Environment Trajectory Std error True – Linear 
[deg] 

Std error True – Virtual 
Sensor [deg] 

Sim 1 0.156881 0.058876 

Sim 2 0.578588 0.197637 

Sim 3 0.199369 0.107343 

Sim 4 0.298546 0.058138 

Sim 5 0.017965 0.001207 

Flt 1 5.320422 1.305204 

Flt 2 1.681309 0.664050 

Flt 3 1.726263 0.811165 
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5 CONCLUSION 

The estimation of Air Data without using external sensors is a good challenge for tomorrow aircraft. 
At the same time, aerodynamic angles are fundamental signals for what concerns the control of the 
aircraft. This paper shows how Smart-ADAHRS can be applied to operative environment data with 
good accuracy and how the input pattern should be built in order to obtain good results. After the 
general description of the ANN, the FTI equipment had been described, focusing on main threats that 
can influence the measurements. Analysis of the input data and output performance have been 
carried out studying the main statistical features of the signals. Two versions of the Smart-ADAHRS 
have been obtained training two MLPs respectively with simulated and flight test data. A good 
similarity has been obtained between the two cases, confirming the initial supposition. The behaviour 
during training has been discussed and test performance have been analysed. The showed results 
provide compelling evidence that the underlined model can be learned and the approach can be 
effective in the reduction of the estimation error. 
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