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ABSTRACT 

Aircraft requires fossil fuel to power engines. This fact brings as a consequence releasing polluting 
particles to the atmosphere. Among these particles, carbon dioxide has gained special importance due 

to its contribution to global warming. Aware of this problem, the aeronautical community has been 
improving over time to reduce fuel consumption. One way of reducing fuel requirements is by 

improving the aircraft’s reference trajectory. Finding the altitudes and speeds that minimize the fuel 

consumption needed to fly a given mission brings as consequence reducing the pollution released to 
the atmosphere. There is also the advantage of reducing the flight cost. This paper proposes an 

algorithm able to find those speeds and altitudes while fulfilling the RTA constraint by using the 
particle swarm optimization algorithm. This paper has two main objectives. The first objective is to 

analyze if the algorithm is able to find more economical solutions than the shortest path trajectory by 

taking weather into consideration. The second objective is to observe if the algorithm provides 
trajectories respecting current flight constraints. Fuel consumption was computed by interpolating 

data obtained from a numerical performance database. Weather information was obtained from data 
provided by Weather Canada. Results showed that the algorithm was able to find economical 

trajectories respecting their current traffic constraints. 

 

KEYWORDS: TRAJECTORY OPTIMIZATION, PARTICLE SWARM ALGORITHM, FUEL 

CONSUMPTION, OPERATIONS, AIRCRAFT. 

NOMENCLATURE 

Bx –Leading particles position  

cx – Particle’s position fixed influence 

Bx – Leading particles position  

Rx – Leading particles random influence 
ffl – Fuel flow lower limit 

ffH– Fuel flow higher limit 
Sd–Distance segment 

Wl– Aircraft weight lower limit 

WH– Aircraft weight higher limit 

Greek 

φ– Aircraft heading 
ԑ– Flight time tolerance 

ω–Inertia value 
 

Subscripts 
i - Dimension 

k – Current iteration 

1 INTRODUCTION 

Human development has brought the undesirable consequence of pollution. This is the case of 
burning fossil fuel to power engines for industries such as aviation, automotive, and transportation in 

general. Among the polluting particles released to the atmosphere, we can find Carbon Dioxide (CO2), 

Nitrogen Oxides (NOx), Sulphur, Hydrocarbons, and etcetera. In the last years, CO2 has been given 
special importance due to its contribution to global warming and wind patterns changes. For this 

reason, the aeronautical industry has set itself the goal of reducing CO2 emissions to 50% of those 
recorded in 2005 by the year 2050[1]. This ambitious goal requires different improvements in 
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manyengineering areas, especially as it is expected that aircraft number will increase in the next 

years[2]. New generation of aircraft will not be able to meet these goals by itself as a result of 
aerospace industry[3]. For these reasons, improvements in operations should as well be conducted to 

meet pollution goals.  

 
As a matter of fact, there are studies analyzing continental United States flights, where it was 

concluded that airline politics and airspace constraints do not allow aircraft to fly at their optimal 
speeds and altitudes[4, 5]. Another study in Turkish airspace concluded that aircraftsmay load 

morefuel than needed, resulting in more expensive flights [6]. 
 

Before taking off, there are specialized airline teams which compute the most economical trajectory 

by taking into account different aspects such as weather, loads, flight distance, and air traffic 
restrictions. These trajectories are also known as flight plans. Air Traffic Management (ATM) 

approves, or provides modification to the flight plan before it can be followed. Just before taking-off, 
the crew loads the authorized flight plan in a device called Flight Management System. The flight plan 

(or reference trajectory) can only be changed prior vocal Air Traffic Control (ATC) authorization. The 

change on the trajectory can be performed for either, ATC or crew request. 
 

Different algorithms in the literature have addressed the aircraft reference trajectory optimization.One 
of the first reference trajectories studies consisted in the constant descent cruise concept [7]. 

Lidenwas a pioneer in this research where he computed the optimal aircraft altitude [8], the influence 
of winds on the optimal trajectory [9]; he developed an algorithm able to optimize trajectories while 

fulfilling the Required Time of Arrival (RTA) constraint [10]. The RTA is, as its names suggests, a 

constraint which requires the aircraft to arrive at a given waypoint at a given time. As pointed out by 
Liden, winds are important to reduce fuel burn. Headwinds reduce the ground speed, and tailwinds 

increment it. Staying more time airborne logically requires more fuel. Important wind currents, called 
jet streams, were later analyzed,and it was shown that by successfully following them (or avoiding 

them if they were headwinds) could lead to important fuel and flight time savings[11]. 

 
The Continuous Descent Approach (CDA) corresponding to a constant path instead of the typical 

step-descent approach has proved to give important fuel savings, and to reduce noise [12, 13]. An 
algorithm based on soft dynamics programming with neural network was developed while fulfilling 

the RTA constraint [14]. An algorithm able to optimize the cruise trajectory for an aircraft while 

avoiding obstacles was developed using the Dijkstra’s algorithm [15].Reducing the Mach number can 
help reducing fuel burn for long flights, however flight time will be increased [16]. Another study 

optimized the Mach number for a constant altitude cruise, similarly, fuel burn reductions were 
reported due to  aircraft speed reduction [17]. Not only speed, but also altitude is helpful to reduce 

fuel burn. In [18], an algorithm able to find the optimal constant cruise altitude and mach number 
was developed. The beam search algorithm was implemented to execute step climbs (changes in 

altitude during cruise) to a pre-defined route in order to save fuel [19]. The golden search section 

was used to find the optimal altitudes for short flights [20]. The Dijksta’s algorithm was also used to 
optimize the lateral reference trajectory by taking advantages of winds[21]. 

 
There are algorithms such as those exposed in [14] which optimize the flight trajectory by changing 

altitude (vertical reference trajectory), and the lateral reference trajectory (these are also called 3D 

trajectories). As shown in [22] where the optimal lateral reference trajectory is computed, then its 
corresponding optimal vertical reference trajectory is computed. There are also algorithms that 

optimize the trajectory for constant altitudes while modifying the aircraft’s heading, direction, and 
altitude (3D) in order to provide trajectories avoiding contrails (clouds generated by aircraft) 

formation zones [23, 24]. Dynamic programming was also used to optimize flights in 3D, and to meet 
the RTA constraint (4D flight) [25].Multiphase Mixed-Integer Optimal Control was also been 

implemented to optimize a 4D trajectory by taking into account contrails [26]. 

 
Most of the algorithms above mentioned are deterministic algorithms. There is another type of 

algorithms called metaheuristic algorithms. These algorithms are normally based on nature findings. 
These algorithms are functioning by exploring the search space, and by adding random values for its 

exploration when local optimal solutions are obtained. Genetic algorithms were implemented in order 
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to optimize the lateral reference trajectory [27], the 3D reference trajectory with constant Mach 

number [28], and with varying Mach number[29].The artificial bee’s colony was implemented to 
optimize the vertical reference trajectory while fulfilling the RTA constraint [30]. The ants’ artificial 

colony optimization algorithms were used to optimize the Mach number for a constant altitude flight 

[31] and to optimize the lateral reference trajectory [32].  
 

This paper has two main objectives. The first objective is to analyse if the algorithm is able to find 
more economical solutions than the shortest path trajectory while fulfilling the RTA constraint. The 

second objective is to observe if the algorithm provides trajectories respecting current flight 
constraints such as trajectories that do not change altitudes or headings too often by creating zig-zag 

like trajectories. It is desirable to have trajectories that keep their heading and their altitude constant 

for certain flight segments. 
 

This paper is divided in different sections. Firstly, the Aircraft Fuel Burn model is described. Secondly, 
the optimization problem is defined. Thirdly, the search space, the fuel burn methodology, and the 

Particle Swarm Optimization algorithm used to find the optimal trajectory are explained. Finally, 

results and conclusions are given.  

2 AIRCRAFT FUEL BURN MODEL 

The fuel burn model is given under the form of database. As this algorithm will focus on the cruise 
phase, only the Mach cruise phase, the Mach climb phase, and the Mach descent phase will be the 

ones used. 
 

This database is also called numerical performance model, and it was developed from experimental 

flight data. This database can be represented as a black box as shown in Fig. 1. 
 

 
Figure 1: Numerical performance model cruise and climb/descent phases 

All inputs must be provided in order to obtain the desired outputs. These inputs define the current 

aircraft’s flight envelope and consist of altitudes, Mach numbers, gross weights, and the ISA standard 

temperature deviations (ISA dev). The outputs are thefuel flow for cruise phase, the fuel burn, and 
the horizontal traveled distance to climb from the reference altitude (normally 0 ft.) to the targeted 

altitude. 
 

3 PROBLEM DEFINITION 

As the goal of the algorithm is to find the combinations of waypoints that reduce the fuel burn, the 
objective function can be written as shown in next Eq. 1 – Eq. 5. 

 

𝑚𝑖𝑛( 𝐹𝑢𝑒𝑙 𝐵𝑢𝑟𝑛)  (1) 

Subject to: 

𝐸𝑇𝐴 = 𝑅𝑇𝐴 ± 𝜀  (2) 

𝑀𝐴𝐶𝐻 ∈ 𝑀𝐴𝐶𝐻𝐷𝐵  (3) 

𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 ∈ 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝐷𝐵  (4) 

𝑊𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑠 ∈ 𝐺𝑟𝑖𝑑  (5) 
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wherethe Estimated Time of Arrival (ETA) should meet the Required Time of Arrival (RTA) within a 

given error (ԑ). The selected Mach numbers and altitudes should be available in the numerical 
performance model (DB), and the selected waypoints should be contained in the grid which will be 

described in Section 4.2. 

4 METHODOLGY 

This section aims to describe the way in which the fuel burn is computed from the aircraft model, the 

search space and the optimization algorithm. 
 

4.1 Fuel burn computation 

The numerical performance database described above gives information only if the inputs have 

exactly the expected values. For those values that are not the exact ones as those of the numerical 

performance model, linear interpolations are performed in order to obtain the required outputs. For 
example, if the fuel flow for a given segment is required for a weight Wr, by considering that altitude, 

Mach number and temperature are the same, the process in Fig. 2 is followed: 
 

 

 
 

 

Figure 2. Fuel flow computation for a required weight 

 
With the fuel flow knowledge, it is possible to determine the fuel burn to fly a segment (Sd) by 

computing the ground speed with Eq. 6. 

 

𝐺𝑆 = 𝑇𝐴𝑆 ± 𝑊𝑆 ∗ (𝜑 − 𝑊𝐷)  (6) 

 

Where GS stands for Ground Speed, WS for Wind Speed, WDfor the wind angle, and φ is the 
aircraft’s heading. 

 
The fuel required to fly a constant altitude cruise segment (Sd) is then given by Eq. 7: 

 

𝐹𝑢𝑒𝑙 𝐵𝑢𝑟𝑛 = 𝐹𝑢𝑒𝑙 𝐹𝑙𝑜𝑤 ∗ (
𝑆𝑑

𝐺𝑆
)  (7) 

Finally, the fuel burn sum of all segments provides the total fuel burn. A more detailed discussion 

about the way of computing fuel burn using a numerical performance model can be found in [33]. 
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4.2 The Search Space 

The search space is modeled under the form of a unidirectional weighted graph G (V,E) where V are 
the available nodes where the aircraft can fly to, and E are the links between every node. For the 

algorithm, every node is connected to its consecutive neighbors. The weights defined under the graph 

concept (not the aircraft weight) are defined as the flight cost to fly from a given waypoint to the 
other waypoint.  

 
For this paper, this graph (search space) is created using a reference trajectory as it will be shown 

later. Two graphs can be identified, the vertical and the lateral. The vertical graph consists in flight’s 
distance and altitude, while the lateral graph consists in the geographical coordinates. The vertical 

graph is shown in Fig. 3. 

 

 
Figure 3: Vertical reference trajectory graph 

 
The lateral graph is shown in Fig 4.  

 

 
Figure 4: Lateral reference trajectory graph 

 

Combining both graphs bring as a consequence a 3D search space described in Fig. 5.  
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Figure 5: 3D reference trajectory graph 

 

The aircraft begins the flight at the Top of Climb (ToC), and ends the flight at any of the available 
Top of Descents (ToDs). 

 

4.3 The Optimization Algorithm 

The optimization algorithm is based on the Particle Swarm Optimization (PSO) theory. The PSO 

algorithm reproduces the social behavior of animals, such as the fish school or the displacement of 
bird flock. The operationof this algorithm is different than the operation of other social 

algorithms.Contrary to ant colony or bee colony algorithms which are also based on the intelligence of 

a group, the PSO algorithm hasa leader. This leader can be replaced if another member of the group 
is better. In nature, this replacement can be seen as the bird flock leader rotates as he gets tired. 

 
For the aircraft trajectory optimization, each particle represents a trajectory. There is also the local 

leader, which is defined as the most economical particle from a group of particles. Different groups 
form a set. Thus, the global leader is the most economical particle of the whole set of particles.  

 

The PSO works using iterations. At every iteration, each particle moves within the search space from 
its current position towards the leaders. In other words, the particle’s motion is influenced by its 

current position, and also by the leader positions. The algorithm mutates the trajectory for each 
dimension (i) using iterations. Dimensions are altitudes, geographical coordinates, and Mach 

numbers. This motion can be defined with Eq.8. 

 

𝑀𝑖(𝑘 + 1) =  𝜔𝑅𝜔𝑀𝑖(𝑘) + 𝑐1𝑅1(𝐵𝑙 − 𝑋𝑖(𝑘)) + 𝑐2𝑅2(𝐵𝑔 − 𝑋𝑖(𝑘)) (8) 

 

where iis the currentparticle, and kis the current iteration. Mis the computed motion,X is the particle’s 
location,Bgis the global optimal particle position,Blis the best local particle position,c1 and c2 are 

positive constants, which influence the particle’smotion with respect to the global and the local 
leaders. Parameter ω refers to the particle’s inertia. Three random parameters calledRω, R1 and R2 

(with values between 0 and 1)determine the influence of ω, Bl, and Bg respectively, on the particle’s 
motion.The new particle position is then defined with Eq. 9: 

 

𝑋𝑖(𝑘 + 1) =  𝑋𝑖(𝑘) +  𝑀𝑖(𝑘 + 1) (9) 
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The algorithm first mutates the trajectory in aircraft geographical coordinates and altitude, and 

thenmodifies the Mach numbers in order to meet the RTA constraint. The algorithm is defined in the 
next steps.  

 

1. Initial trajectories are generated. 
a. 25 random trajectories are generated. 

b. Those trajectories are assigned to a group. 
c. If the maximal number of groups are reached, the algorithms goes to step 2, 

otherwise, step 1a is executed. 
2. The trajectories’ flight costs are computed. 

3. The most economical trajectory for each group is selected as the local optimal trajectory.  

4. The most economical trajectory from all trajectories is selected as the optimal trajectory. 
5. The displacement (motion) for each trajectory in each dimension is computed with Eq. 8. 

6. Each trajectory position is updated with Eq. 9. 
7. The Mach number is modified with the aim to reach the RTA constraint. 

8. The new trajectories costs are computed. 

9. The most economical trajectory for each group is selected as the local optimal trajectory. 
10. The most economical trajectory from all trajectories is selected as the optimal trajectory. 

11. If the maximal number of iterations is reached, the algorithms deliver the most economical 
4D trajectory, otherwise, Step 5 is executed. 

 
The algorithm provides the most economical combination of Mach numbers that fulfill the RTA 

constraint within the given limits ԑ. 
 
Since the algorithm goal is to fulfill the RTA constraint, it is desirable that the algorithm selects as 

leaders the economical trajectories having a realistic possibility to fulfill the RTA constraint. The 
trajectory cost is then re-defined as shown in Eq. 10. 

 

𝐹𝑙𝑖𝑔ℎ𝑡 𝐶𝑜𝑠𝑡 = 𝐹𝑢𝑒𝑙 𝐵𝑢𝑟𝑛 +  𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑇𝐴 (10) 

 

wherethe parameter PenaltyRTA can take three different values depending on the ETA and RTA 

relationship.  
 

If the ETA is equal to the RTA, the PenaltyRTA value is equal to 0.  
 

If the ETA is within the RTA limits, then Eq.11 is used. 

 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑇𝐴 = 𝑎𝑏𝑠(𝐸𝑇𝐴 − 𝑅𝑇𝐴) ∗ 𝐹𝑢𝑒𝑙 𝐵𝑢𝑟𝑛  (11) 

wherethe ETA and RTA difference is given in hours. 
If the ETA is over the RTA limits, Eq. 12 is used. 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑇𝐴 = 1.1 ∗ 𝐹𝑢𝑒𝑙 𝐵𝑢𝑟𝑛 +  𝑎𝑏𝑠(𝐸𝑇𝐴 − 𝑅𝑇𝐴) ∗ 𝐹𝑢𝑒𝑙 𝐵𝑢𝑟𝑛  (12) 

 

It should be remarked that this PenaltyRTA is a fictitious cost that is only taken into account to reject 
trajectories not meeting the RTA constraint.  

5 RESULTS 

The algorithm was tested using the numerical performance model of a long haul, 2 engines aircraft 

with a maximal takeoff weight and a ceiling altitude of 41,000 ft. 

The analyzed flights are described in Table 1. 
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Table 1: Great Circle Trajectories Between Analyzed Flights  

Number of flight City Pairs Distance (nm) 

 Departure Airport Arrival Airport 2981 

1 Montreal (YUL) Paris (CDG) 2981 

2 Montreal (YUL) Vancouver (YVR) 1990 

3 Toronto (YYZ) London (LHR) 3085 

4 London (LHR) Cancun (CUN) 1409 

5 Boston (BOS) Ponta Delgada (PDL) 2080 

6 Calgary (YYC) Gran Canaria (LPA) 4427 

7 Montreal (YUL) Amsterdam (AMS) 2975 

8 Chicago (ORD Amsterdam (AMS) 3574 

9 Toronto (YYZ) Innsbruck (INN) 3611 

10 Amsterdam (AMS) Cancun (CUN) 4477 

11 Montreal (YUL) Bucharest (OTP) 3943 
 

5.1 A case study 

In this results Section, it is intended to observe a solution in detail. In order to observe it, the 
11thflight taking place from Montreal to Bucharest was selected. The reference flight reported a cost 

of 64,031 kg. The optimized cost was of 58,025 kg, meaning a 9.37 % of fuel burn savings. The RTA 
constraint was fulfilled within 14 seconds. As shown on Fig. 6, the reference trajectory is at the fixed 

altitude of 32,000 ft, whereas the optimal trajectory altitude begins at 38,000 ft. After having flown 

around 800 nm, a step climb is required for the aircraft to continue its flight at the altitude of 40,000 
ft.  

 

 
Figure 6: Vertical Reference Trajectory for the Great Circle and the Optimal Trajectory 

 

The lateral reference trajectory can be seen in Fig. 7. 
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Figure 7: Lateral Reference Trajectory for the Great Circle and the Optimal Trajectory 

 
Fuel savings can be explained as beginning the flight at a higher altitude and changing the flight level 

to altitudes where the engines are more efficient. The optimal lateral reference trajectory was 

computed by placing it near the upper search space limit. The reason is that winds are favorable in 
that region.  

5.2 Fuel Burn Savings for Different Flights 

This set of results presents the optimization algorithm potential on saving fuel burn. Different 

trajectories were selected, and their flight cost was computed following the geodesic route (shortest 
path) at 32,000 ft at a Mach number of 0.8. Fuel burn and savings for different flights are shown in 

Fig. 8. 

 

 
Figure 8: Fuel Burn Savings for Different Flights 

 

All flights are optimized using this algorithm. The maximal fuel saving is of 9.91%, the minimal 
optimization is of 6.26%, thus the average optimization is of 8.11%. The optimization percentage (%) 

is normally dependent on the wind influence. The results shown in Figure 8 are optimistic as the 

reference trajectory does not execute step climbs. 
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All flights as well were able to reach the RTA constraint. For them, the tolerance was set to 15 

seconds. The RTA constraint difference can be seen in Table 2. 
 

Table 2: Required Time of Arrival Fulfillment for Different Flights 

Flight 
Reference 

Arrival Time 

(hh:mm:ss) 

RTA 

hh:mm:ss 

Optimal 
Arrival Time 

(hh:mm:ss) 

RTA 

Difference (s) 

YUL-CDG 16:50:43 16:54:00 16:53:45 -14 

YUL-YVR 14:03:40 14:03:00 14:02:47 -13 

YYZ-LHR 17:03:32 17:07:48 17:07:34 -13. 

LHR-CUN 21:26:48 21:57:36 21:57:27 -9 

BOS-PDL 17:17:27 17:16:12 17:15:57 -14 

YYC-LPA 18:06:54 18:08:13 18:07:58 -14 

YUL-AMS 15:00:06 15:01:48 15:01:33 -14 

ORD-AMS 16:19:36 16:19:48 16:19:33 -14 

YYZ-INN 15:37:45 15:36:36 15:36:21 -14 

AMS-CUN 16:17:28 16:21:00 16:20:54 -6 
 

For all flights, the RTA constraint was fulfilled. The optimal ETA was always reached before the RTA. 
This fact could be explained as the aircraft consumes less fuel as discussed in [16, 17]. 

5.3 Fuel Burn Savings for Real Flights. 

The last set of tests were aim to evaluate the PSO flight optimization against real trajectories 
obtained from flightaware®. The flight information for three long-haul flights: Calgary (YYC) to 

Cancun (CUN), Edmonton (YEG) to Punta Cana (PUJ), and YYC to Varadero (VRA) is shown in Table 
3. The RTA objective was the reported time of arrival for the selected as flown flights. For the 

algorithm a tolerance of 30-second was provided. 

Table 3 4D trajectory optimization RTA fulfillment  

Flight 

Reference 

Flight 
Fuel Burn 

(kg) 

Optimized  
Flight 

(kg) 

Savings 
(kg) 

RTA 4D ETA 
RTA 

Difference 

(s) 

YYC-CUN 29,123 28,719 
404 

(1.39%) 
22h07m46s 22h07m56s 10 

YEG-PUJ 42,170 41,594 
576 

(1.37%) 
19h44m48s 19h44m33s 15 

YYC-VRA 33,458 32,849 
609 

(1.82%) 
15h40m54s 15h40m31s 23 

 

As it can be observed in Table 3, the algorithm was able to reduce the fuel burn and meet the RTA 

constraint within the imposed 30-second limit. This performance was possible because the algorithm 

could give better altitudes and take advantage of winds. 
 

Comparing these results against the ones shown in Fig. 8, it can be seen that evidently, the fuel 
saved diminished. This is normal as the trajectories in Table 3 flight at realistic altitudes and lateral 

trajectories. Nevertheless, results in Table 3 show that there exists the opportunity to improve those 

trajectories and save fuel.  
 

The lateral and the vertical reference trajectories proposed by the 4D reference trajectory algorithm 
are compared to the as-flown trajectory for one flight in Fig.9 and Fig. 10, respectively. The optimal 

trajectory is represented in orange and the as-flown trajectory is shown in blue  
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Figure 9.Lateral reference trajectory and the search space limit  

for the Calgary to Punta Cana flight 

 
Figure 10.Vertical reference trajectory and the search space limits  

for the Calgary to Punta Cana flight  

 

As shown in Fig.9, the optimal lateral trajectory diverges slightly from the reference trajectory; in this 
case, due to favorable winds. The vertical reference trajectory is quite similar to the real flight 

trajectory as shown in Fig. 10, with the main difference that the developed algorithm proposed 
beginning the cruise phase at 32,000 ft instead of 34,000 ft. The vertical trajectory delivered by the 

PSO algorithm proposed three 2,000 ft step climbs, and the reference algorithm executed only two 

step climbs: one 2,000 ft step climb, and one 4,000 ft step climb. Both flights ended at the same 
altitude (40,000 ft). These small differences provided the fuel savings reported in the last column of 

Table 3 
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6 CONCLUSIONS 

This article gives three different conclusions. The first one is that the algorithm is able to provide 
economical trajectories. The second one is that the algorithm is able to fulfill the RTA constraint. The 

third and last conclusion is that the algorithm provides trajectories that respect ATC constraints such 

as constant altitude segments and constant Mach numbers. As future work, it is desirable to analyze 
as flown flights to quantify the algorithm potential to optimize real reference trajectories. 
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