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ABSTRACT 

In this paper, a fundamental approach to analyzing the maneuverability of spacecraft with mounted 

control moment gyros is addressed by searching feasible angular momentum. The geometrical array 
of control moment gyros considered is a roof array also known as a 2-SPEED system. Due to the 

simplicity of the singularity envelope of the array considered, it is reasonably practical to conduct 

rotational performance analysis of the spacecraft. This maneuverability analysis technique uses a 
unique chart developed in this work, which allows a guaranteed maximum torque output and angular 

momentum at any time without concern about the singularity problem of the control moment gyros. 
Therefore, the purpose of this paper is to provide a conservative method for maneuverability analysis 

of a spacecraft with installed control moment gyros by searching allowable maximum angular 
momentum. This method is demonstrated using an illustrative example. 

KEYWORDS: Angular Momentum Analysis,Roof Array, Two-Parallel Single-Gimbal Control Moment 
Gyros. 

1 INTRODUCTION 

The capability of the control moment gyros to generate control torque is significantly greater than 
provided by reaction wheels of the same power.  The higher capability of torque generation, 

however, has a cost: there is a certain direction in which no control torque can be produced. The 

singularity problems of the devices make developers hesitate to apply control moment gyros (CMGs) 
as primary actuators for spacecraft attitude maneuvers. This principal difficulty in employing CMGs is 

a well-known geometric singularity problem. To overcome this issue, many researchers have been 
focused on the steering logic of CMG assemblies to avoid the geometrical singularity efficiently [1, 2]. 

Some representative techniques include the well-known singularity robustness inverse 

algorithm[3]and the singularity avoidance steering law by null motion[4]. Furthermore, the optimal 
control technique was introduced into the steering law by minimizing the singularity index and gimbal 

angular rates simultaneously[5]. It has been proven that the optimal steering law is the generalized 
form combined both of the singularity robustness inverse algorithm and the steering law by null 

motion.However, the singularity robustness algorithm always involves torque errors in producing the 
torque command to avoid the geometrical singularity. The drawback of the steering logic by null 

motion is that it cannot escape the elliptic singularity due to the little or no existence of null space. 

For actual applications, it is undesirable to introduce control torque errors and to enter the elliptic 
singularity. Consequently, no encounter with singularity is better than managing the singularity with 

robust steering laws. 
Limitations related to the geometrical singularity have caused some researchers to focus on the 

singularity itself[6]. At first, the singular surface concept was invented by defining a unit singular 

vector. The internal and external singularities connected with the total amount of angular momentum 
of a CMG array were examined. The elliptic and hyperbolic singularity concepts corresponding to the 

existence of null spaces used to avoid or escape the singularity were introduced. The Binet-Cauchy 
identity technique has been used to determine all possible singular gimbal angles[7].Due to the 

visualization of singular surfaces, many notations were derived about how to avoid or escape the 
geometrical singularity. 

There remains a great deal of effort being directed toward solving the singularity problem while 

using CMGs as primary actuators for a high agility spacecraft[8,9]. One of the primary reasons not 
having solved the singularity problem already, might be that maneuverability analysis of a spacecraft 

with CMGs installed is quite difficult while analysis of rotational maneuverability by reaction wheels is 
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trivial. Even though maneuverability analysis of a spacecraft before flight is mandatory, there is very 
little analytical and practical information dealing with maneuverability analysis in the literature. Using 

CMGs of proper size is an important task for spacecraft attitude control system designers to meet the 
requirement for rapid rotational maneuverability because CMGs are very expensive. Steering an array 

of CMGs is a difficult task, and little practical approach to determine the maneuverability of such a 

spacecraft is provided in the literature[10,11]. Thus, offering a practical singularity-free 
maneuverability analysis method for a spacecraft with CMGs installed is the major motivation for this 

work. 
From a practical point of view, the configuration of the CMG assembly examined in this work is a 

roof array known as a 2-SPEED(Two Scissored Pair Ensemble, Explicit Distribution) system. This is 
important because this platform has different characteristics for singular surfaces. This means that 

roof array have singular surfaces, where it is much easier to avoid singularity when compared to the 

pyramid array. This property will be reviewed shortly in the next section. The hardware parameters of 
CMGs, such as the maximum gimbal rates, maximum torque, and maximum angular momentum will 

also be considered.  A new finding for the agility performance analysis presented in this paper is 
establishing a feasible angular momentum chart of the CMG array, augmented with the singular 

surface and hardware limits. By inspecting the proposed angular momentum chart  with respect to a 

specified control torque,  a guaranteed safe zone can be constructed in which the singularity does not 
occur and the CMG parameters do not meet or exceed the hardware limits. In other words, the safe 

zone can be interpreted as the allowable maximum angular momentum envelope.  Consequently, it is 
possible to specify an allowable angular momentum with the developed chart for each axis at all 

times without any concern for the singularity problem.  Therefore, once the parameters required for 
the performance analysis are obtained, the same method used for conventional reaction wheel 

assemblies can be employed directly to evaluate the rotational agility of a spacecraft using the CMG 

array. This approach will dramatically reduce the computational burdens in selecting very suitable 
CMGs for an initial 'spacecraft attitude control system design' to meet the requirement for high 

rotational maneuverability. 
 

2 SINGULAR SURFACES OF VARIOUS CMG ARRAYS 

Let us examine a few representative array ofsingle-gimbal CMGs useful for understanding the 
characteristics of the singularity. 

2.1 Pyramid Array 

The well-known representative array of CMGs for three-axis attitude control systems of a spacecraft is 

the pyramid configuration depicted in Fig. 1  

 
Figure 1: Pyramid array of four single-gimbal CMGs 

 

where 
3

i Rγ and 
3

i Rh  are the gimbal vector and angular momentum vector of i-th CMG, 

respectively.Then, the total angular momentum vector of the CMG system is described as 
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where ,i ih denote the gimbal angle and magnitude of the angular momentum of i-th CMG, 

respectively. Note that the magnitude of each angular momentum vector is in general identical from a 

practical point of view. Now, let us assume that the capacity of angular momentum of the four CMGs 

is equal without loss of generality such that ih h .  

Next, by differentiating the angular momentum vectors in Eq. 1, the three-axis torque vector can 

be obtained in matrix form as 
.

( )Aτ γ γ                         

( 2 ) 

where 
4

1 2 3 4[ , , , ]T     R  is the gimbal angular rate vector, and 
3 4A R is the Jacobian 
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where  iτ  represents the torque vector generated by the  i-th CMG. 

 
2.2 Roof Array 

Let us examine the special case of pyramid arrays with the skew angle of / 2 . This is the  2-SPEED  

single-gimbal CMG systems employed by Crenshaw[12]. Because this array has two orthogonal pairs 
of two parallel single-gimbal CMGs, it is also called a Roof Array configuration due to its geometrical 

shape, as illustrated in Fig. 2.  

 
Figure 2: Roof array configuration 

 

 

The angular momentum vector for this configuration is given simply by 
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and the corresponding Jacobian matrix is expressed as 
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Next, the two-parallel single-gimbal CMG configurations depicted in Fig. 3 are also of practical 
importance.  

 
Figure 3: Two-parallel single-gimbal CMG configurations 

 

 The total angular momentum vector of this array in matrix form is also given by 
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and the Jacobian matrix 
2 2A R is defined as 
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3 TWO-PARALLEL SINGLE-GIMBAL CMG CONFIGURATIONS 

As described in the previous section, the roof array consists of two orthogonal sets of the two-parallel 

single-gimbal control moment gyroscopes (TPCMGs). Each TPCMG can produce 2-axis control torque. 

For complete three-axis torque generation, one of the two TPCMGs, for example, has to produce 
control torque along the x and z-axes while the other must produce torque for the y and z-axes. In 

this case, the capacity of the angular momentum and torque along the z-axis can be twice by the two 
TPCMGs. 

Note that 1 2     is an internal singularity, while 1 2  is a saturation singularity. The 

corresponding singular vector of the TPCMGs illustrated in Fig. 4 can be the zero-angular momentum 
vector (internal singularity) where two CMGs are aligned in opposite directions, or the 2h angular 

momentum vector (external singularity) where two CMGs are aligned in the same direction. Note that 

no redundancy exists as there are two CMGs for the two-axis torque generation. 
Using Eq. 7 the gimbal angular rate vector for a torque command is simply expressed as 

1( ) cA  γ τ            ( 8 ) 
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From this equation the gimbal rate vector is computed uniquely, meanwhile for the pyramid 
configuration it is imperative to use the pseudo-inverse algorithm. 

 

 
Figure 4: The singular condition of two-parallel single-gimbal CMGs 

 
3.1 Single-axis Torque Generation 

The importance of Eq. 8 is that the gimbal rate can be uniquely mapped through gimbal angles for a 
specified torque command.  In this simulation, the maximum gimbal rate was limited to 1.0 rad/s with 

the angular momentum of 1 Nms. Thus, the maximum torque output is 1.0 Nm in this case. It is 

obvious from the numerical simulation results displayed in Fig. 5 that for arbitrary chosen initial 
gimbal angles, the continuous single-axis torque generation can be successively accomplished until 

the CMGs enter the 0h or2h singular condition. To meet the continuous torque command exactly near 
the singularity, it is imperative to speed up the gimbal rate; however, it is not possible to generate 

the additional continuous torque due to the hardware limit. The determinant of the Jacobian matrix is 
also depicted in Fig. 5. It is a very reasonable and important property that the angular momentum of 

x or z-axis remains constant while the single z or x-direction torque command is conducted. 

Meanwhile, the angular momentum in the coincidence axis for the torque command varies until the 
CMG pairs fall into the singularity. 
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3.2 Analysis by Gimbal Spaces 

Now, the gimbal angular rate vector needs to be further investigated in gimbal spaces.  For randomly 

chosen initial gimbal angles of 1 2( , )  , a few simulations were performed again to produce single-

axis constant torque. The portraits of the angular rate vectors in gimbal spaces are plotted in Fig. 6.  

Note that the slanted centerline is relevant to the 2h singularity of TPCMGs since 1 2  , while the 

dotted lines corresponding to  1 2 180      represents the 0h singularity.  It is discernible that the 

singular lines mapped by gimbal spaces are much more easily identified than the singular circles 
mapped by angular momentum spaces in the previous section. The magnitude of the arrows 

displayed represent the angular speed of the gimbals at that position to conduct torque generation 
without errors. The approach to the singular lines coincides with determinant of the Jacobian matrix 

going to zero. As seen from Fig. 6, an interesting revelation shows that there exist different patterns 

of gimbal angular rate vectors that might produce the single-axis torque generation along x or z-axis 
direction.  All the trajectories finally end meeting at one point on the singular line with their unique 

trajectories not crossing the curves at all. This phenomenon leads to the same outcomes illustrated 
by the examples in Fig. 6. 

To show concretely why each gimbal migrates along the distinguished trajectory, let us put the 

trajectories in Fig. 6 on the angular momentum contour. The resulting overlay of the figures is 
illustrated in Fig. 7. The trajectories for z or x-axis torque commands are exactly in tune with the 

constant curve of x or z-axis angular momentum, respectively.  This is very surprising, but very 
transparent results happen that are seemingly expected from the case studies conducted in the 

previous section.  

 

Figure 5:Constant torque generation 

example of TPCMGs for x and y-axis, 

respectively. 

Figure 6: Portrait of the gimbal 
angular rates for constant 

torque generation by TPCMGs 
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Next, let us define a feasible gimbal 

space for TPCMGs to conduct a desired torque command exactly under the restricted gimbal angular 
rates. That is, even if TPCMGs aren't on the singular lines, there is a space in which it is impossible to 

satisfy the constant torque command without errors due to the hardware limit. The feasible gimbal 

spaces could be given by using Eq. 8. For a given cτ  one can evaluate all of the gimbal angular rate 

vectors as a function of the gimbal angles 1  and 2 . The feasible gimbal space for torque generation 

can be determined using a simple criterion. That is, the gimbal angles satisfying the condition 

max ‖ ‖γ  evaluated from Eq. 8 is regarded as the feasible gimbal space, where   


  denotes 

the infinite norm such that 1 2max[ , ]  ‖ ‖γ  and 
.

max  represents the hardware limit of the 

gimbal rates. Otherwise, the gimbal vector could be treated as belonging to a singular space where 

the TPCMGs cannot meet the torque command exactly. The resulting infeasible gimbal space, (blank 
area in the figure), is illustrated in Fig. 8 for a few reference torque values about the x and z-axis.  As 

the level of reference torque is decreased or (increased), the singular space is also reduced or 
(enlarged). 

 

3.3 Analysis by Gimbal Spaces 

For 2-axis rotational agility analysis with hardware limits, let us first define the desired maximum 

torque vector, maxτ , guaranteed to be produced  at all time. The maximum gimbal rate vector which 

is the hardware limit also needs to be divided into two parts. This division is reserved for each axis to 
guarantee a certain torque output at all times. By selecting the maximum desired gimbal rate for the 

x-axis control torque as maxx  , the allowable maximum angular rate remaining for z-axis control 

torque is constrained as 

maxz x               ( 9 ) 

The singular space augmented with the hardware limit of each axis can be determined using the 

criterion of max ‖ ‖γ by assuming that max is replaced with ether x  or z . 

Putting the angular momentum contours and the singular spaces in one place leads to a feasible 

angular momentum (FAM) chart uniquely designed for this paper to enable rotational performance 
analysis of TPCMGs.  A representative sample chart is illustrated in Fig. 9. In this case, the angular 

momentum of the TPCMGs is h = 1.0 (Nms), and the maximum angular rate vector is max 1.0   

(rad/s).  Furthermore, x is also, for instance, chosen as 0.8 (rad/s). The desired maximum torque 

vector selected is then as max [0.3,0.075]Tτ (Nm). Consequently, the sample subspace of the 

feasible gimbal space, enclosed with a bold line in Fig. 9, can be carefully established by attitude 

control system designers to eliminate the critical singularity problem and to meet the maneuverability 
requirements, simultaneously. 

Note that the enclosed subspace can never meet the singular lines. The allowable angular momentum 

variation along x-axis direction ranges from about -1.6 (Nms) to about 1.6 (Nms), while along the z-
axis direction it ranges from about 0.4 (Nms) to about 1.14 (Nms) plotted in the sample chart. 

Additionally, one of the CMG gimbals 1  is allowed to move from about 44 to about 127
 while 2

ranges from about 127 to about 44
. 

Finally, the spacecraft rotational maneuverability provided by a roof array of CMGs could be 

evaluated by inspecting the two orthogonal sets of TPCMGs. Without loss of generality, the sharing 

axis of the two TPCMGs discussed in this section is assumed to be the z direction. For convenience, 
the required agility performance required in both of x and y-axis directions, is assumed to be 

Figure 7: Overlayed portrait 

of the angular momentum 

and gimbal trajectories 

Figure 8: Gimbal spaces (blank area) 
unfeasible to generate a reference torque 

correctly under the gimbal rate limits 
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identical. Thus, inspecting only one TPCMG system in the x-z plane could reveal the performance of 
the full three-axis rotational maneuverability. 

 
4 CONCLUSIONS 

By investigating the singular surfaces for various arrays of four single-gimbal CMGs, it was concluded 

that the roof array configuration was the best to evaluate the maneuverability performance of a 
spacecraft due to the simplicity of the singular surfaces. Two-parallel single-gimbal control moment 

gyro (CMG) systems were also investigated in detail. By using the suggested feasible angular 
momentum (FAM) chart in gimbal space, it is possible to determine a maximum angular momentum 

envelope in which the gimbals can freely movable without concern about the singularity problem. 
Consequently, the desired maximum torque and the allowable maximum angular momentum enable 

easy analysis of the maneuverability. Of course, the CMGs could provide higher level of performance 

than the conservative level determined using the FAM chart. Therefore, the technique proposed here 
could be utilized at a starting point for sizing a CMG or for tuning the attitude control system of a 

spacecraft employing a roof array of four single-gimbal CMGs. 
 

 
Figure 9: Angular momentum of TPCMG with an optional feasible gimbal subspace to 

prevent entering into the singular space 
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