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ABSTRACT

This paper presents the energy management of a hybrid electric propulsion system for unmanned
aerial vehicles, using convex optimization. The primary energy optimization problem is formulated and
then converted to a convex problem. The introduction of variable–battery internal energy is firstly
proposed to convexify the state equality function. This convexification method can yield to a more
straightforward and clear form of convex problem than previous studies. The relaxation of equality
constraints is also employed without loss of equality. The numerical examples and forward
simulations are carried out to validate the convexified problem. The result of flight scenario infers that
the convex relaxation does not prejudice the optimality of the solution. By comparing with the
benchmark optimization–dynamic programming, the convex optimization performs gentler optimal
control and minimal optimal cost results, with much less optimization time. The most significant is
that the convexification reduces the optimization computation to a level compatible with the practical
application.

KEYWORDS: UAV, Hybrid Electric Propulsion System, Fuel Optimization, Convex Optimization,
Convexification, Lossless Relaxation

NOMENCLATURE

x - state variable of system
u - control variable of system
J - cost function
ṁf - fuel rate of engine
I - current of battery
Qmax - the maximum capacity of battery
Voc - open circuit voltage of battery
Rint - internal resistance of battery
G - gear ratio of gear box

P - power
T - torque
ω - rotational speed
E - battery internal energy
Subscripts
ICE - engine
EM - electric motor
loss - power loss

1 INTRODUCTION

Nowadays, a growing number of Unmanned Aerial Vehicles (UAVs) are powered by electric motors
(EMs), because of lower emissions and noise, better overall efficiency, and lower maintenance
requirements. However, the specific energy of electric energy storage sources, e.g. batteries, is much
lower than that of fossil fuel [1]. As a result, the internal combustion engine (ICE) is preferred for
relatively large or long-endurance UAVs, due to its high power and energy density [2]. The hybrid
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electric propulsion system (HEPS) combines an electric powertrain with a conventional combustion
engine to provide propulsion, in other words, being able to have the energy efficiency of an electric
propulsion system with the extended range of an ICE. The aforementioned benefits make HEPS an
attractive option to explore for powering UAVs.
The Air Force Institute of Technology (AFIT) has conducted several studies on aircraft hybrid electric
technologies. Harmon et al. began the project with the theoretical design of neural network control
for a parallel HEPS [3]. Continuing on from this work, Ausserer [4] implemented the physical
integration and validation of a prototype. Queensland University of Technology (QUT) also conducted
some studies [5]. Glassock et al. successfully downsized the engine and improved the overall
propulsive efficiency compared to the non-hybrid powered aircraft.
HEPS can provide better fuel economy and lower emissions without compromising performance. In
addition, it can provide on-board electrical regeneration for powering different systems, but this
flexibility and diversity comes at a cost of increase complexity in hybrid energy management.
The energy optimization is one of the most popular topics regarding hybrid energy management.
Research work by scholars investigated various types of optimizations in order to achieve the best
control trajectory for a given mission. The Dynamic Programming (DP) is one of the most studied
theories because it can guarantee the global optimality of the solution [6]. However, large
computational cost exists in DP due to nonconvex characteristics of the energy optimization problem.
Consequently, the optimization result from DP is usually used as a benchmark for other strategies.
Convex optimization problem is widely favoured because it can be solved, very reliably and efficiently
[7]. Using interior-point methods, the problem can be guaranteed convergence to the global optimum
with a deterministic upper bound on the number of iterations, without requirement of pre-supplied
initial guess. In other words, the global optimality, lower complexity and no request of use-specified
initial value make the convex programming very promising for real application.
The convex optimization for energy management of hybrid ground vehicles was firstly proposed by
researchers of Chalmers University of Technology [8], [9]. The studies are concentrated on
convexifying the nonconvex primary problem. The model of energy buffer (capacitor or battery) was
convexified by introducing the variable–pack energy [10]. Furthermore, a lossless relaxation and its
detailed proof were also provided in [10], [11]. The works indicate that the global minimum of
original problem can be obtained by solving the relaxed problem without the loss of equality. This
paper proposes a new convexification method. It can retain the feature of lossless relaxation from
previous studies, but also lead to a more straightforward and clear form of convex problem.
The results presented in this paper are part of the ongoing work performed as part of the AIRSTART
project. AIRSTART is a £3.2 million collaborative Research and Development project developing key
technologies to support long-endurance UAVs. Cranfield is working on the hybrid propulsion system,
converting a Rotron UAV engine into a hybrid combustion-electric system. The platform for testing
the hybrid propulsion system is a remotely piloted multi-purpose UAV—the Aegis. First, the primary
energy management is formulated, in which the minimization of the total fuel use is selected as the
objective function. Later, three various techniques are implemented to convexify the nonconvex
original problem. The cost is fitted with the piecewise linear function, while the battery voltage and
electric motor losses are approximated with quadratic and exponential equation, respectively. A new
variable, called the battery internal power, is firstly introduced here to convexify transition equation of
system state. The same techniques applied on [10] is then employed to relax the equality to
inequality constraint. The last numerical examples and forward simulations are carried out to verify
the optimal results of convex optimization.

2 ORIGINAL PROBLEM FORMULATION

Initially, the formulation of original problem has been presented. In this study, the objective of the
energy optimization is to minimize the fuel consumption of engine during the complete flight mission.
The cost function is expressed by:

� = ∫ �̇�(�) ��, (1a)

where �̇� denotes the fuel consumption rate of engine, which is dependent on time �.

The control variable of formulated system is the engine output power ����, i.e. �(�) = ����; whereas
the state variable is the battery’s State-of-Charge (SoC), denoted by �(�). According to the definition
of SoC, the system state transition equation can be written as:
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�̇(�) = −
�

����
, (1b)

where � is the current flowing through the battery and ���� is the battery maximum capacity.
The battery model is commonly described by an ideal open-circuit voltage source in a series with an
internal resistance [12] in hybrid vehicle analysis. It uses the open circuit voltage ��� and internal
resistance ���� to obtain the battery output power �����:

����� = � ∗ ���(�) − ������, (1c)

in which the resistance ���� is assumed to be constant.
In addition to cost function and system dynamics, the optimization is also subject to limitations of
each component and the powertrain capability. Put differently, the power demand ����, in addition to

the motor/generator losses ���,����, appears as the sum of the engine and battery power

contributions (see equation (1d)). Also, other constraints (power, state and current constraints) can
be transformed and addressed by the equations (1e-1g).

���� + ����� = ���� + ���,����, (1d)

����,���(����) ≤ ���� ≤ ����,���(����), (1e)

���� ≤ � ≤ ����, (1f)

���� ≤ � ≤ ����. (1g)

3 CONVEXIFICATION

The original Problem (1) is not convex. The inequality constraints (1e-1g) are affine, but equality
equations and cost function do not satisfy requirement of convex programming [7]. In the following
text, three techniques–approximation, change of variables and relaxation are carried out to convert
the Problem (1) into a convex Problem (10).

3.1 Approximation

The approximation is normally employed to reveal the inherent correlation between different variables
with an algebraic expression, instead of the original numerical data from experiments. During the
approximation, the convexity of original problem can also be investigated thoroughly.

In this case, the fuel rate (the integrand of objective function) is not a convex function of control
variable, but it is piecewise linear (affine) dependent on engine torque at a given speed (see Figure

1). In other words, the fuel rate at each speed can be addressed by �̇� = �(����)
����

����
+ �(����). The

first turning point of different pieces indicates the best efficiency point for a given speed, if the fuel
rate curve is piecewise convex [13]. This condition is not fulfilled at 6500 rpm and 7000 rpm, so their
best efficiency points move to the second turning point due to the effect of nonconvex segment. To
avoid large distortion and shift of the best efficiency region, the best efficiency points are needed to

Figure 1. Piecewise linear approximation of the fuel rate at different speeds.
The best efficiency points are represented by triangle marks and fitted data are
denoted by the solid curve.
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be kept at its original value. The results of piecewise linear approximation is also revealed in Figure 1
with the solid curve.
In general, the curve of voltage as a function of SoC can be divided into three segments by two
turning points: the end of the exponential zone and the end of the nominal zone (as shown in Figure
2). It is clear that the function ��� is nonlinear and also not convex. Fortunately, the SoC is typically
limited between (0.2, 0.8), i.e. the nominal zone, to extend the lifetime of battery. As a result, the ���
can be fitted with a quadratic function: ��� = ���

� + ��� + ��. The convex approximation result is also
drawn in Figure 2 and the coefficients (�� , �� , ��) are (24.95, 9.319, 291).

The power loss of motor/generator is dependent on the output speed and torque. Figure 3 displays
the relationship between power loss and speed under difference torques. The distance correlation
between power loss and torque is 0.0541. This means that the power loss is weakly dependent on
torque. As a result, the power loss is approximated as a formula only involving speed, using convex
function ���,���� = �� ∗ exp (�����). The fitting results are also plotted in the Figure 3, with the red

solid line marked by circles. The fitted coefficient is �� = 0.0563, �� = 9.4248 ∗ 10��, when the unit
of speed is revolutions per minute. It is notable that the original data is the expectation of power loss
data at different torques.

3.2 Change of Variables

Afterwards, the change of variables is implemented to prepare for the formulation of new convex
problem. Firstly, a battery internal power �� which does not include battery loss is introduced, then
equality constraints (1c-1d) are converted to:

�� = � ∗ ���(�), (2)

���� + �� = ���� + ���,���� + ��,����. (3)

The power loss of battery ��,���� defined here is mainly the dissipative power of resistance, which is

dependent on the internal battery power and battery SoC (see Figure 4). Similar to ���,����, the power

loss is mainly correlated with battery power, rather than SoC. Meanwhile, it can be fitted with a
convex quadratic function: ��,���� = ����

�. The fitted coefficient is �� = 3.24 ∗ 10��. Likewise, the

original data is the expectation of power loss data at difference charge-states.
Now, the inequality (1g) is substituted by:

���� ≤
��

���(�)
≤ ����, (4)

which is affine in the battery internal power ��, but not guarantees convexity in the battery voltage
���(�).

Figure 3. Approximation of the
motor/generator power losses.

The fitted data are denoted by the solid curve
marked with circles and its coefficient of
determination is 0.9919.
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Consider approximating ���(�) with two affine functions: ���(�) and ���(�). The ���(�) is the Taylor
expansion of ���(�) around � = 0.5, while the curve defined by ���(�) goes through two points at
� = 0.2 and � = 0.8. Since ���(�) is a convex function, the following constraints is satisfied:

�������(�) ≤ �������(�) ≤ �� ≤ �������(�) ≤ �������(�). (5)

Therefore, by solving problem with constraints (5), one never obtains solutions which violate
constraints of the physical problem. The bounds on errors (���,	���) introduced by the second
approximation is computed and displayed in Figure 5. The figure clearly shows that the inequalities 
(4) are not compromised for all practical purposes when replaced by (5).

From equation (1b) and (2), the state equality function can be deduced:

�̇(�) = −
��

���(�)����
, (6)

which still does not meet the requirement of convex programming. Therefore, a new variable called
battery internal energy � is introduced to replace the original state variable (SoC). The new state
transition equality is formulated:

�̇(�) ∶= �������(�)�̇(�) = −��, (7)

while � still denotes the battery SoC. Simple integration manipulation leads to:

�(�) = ���� ∫���(�)�� = ���� �
�

�
���

� +
�

�
���

� + ��� + ���, (8)

where �� is set to zero without loss of generality. Meanwhile, the inequality (1f) is transformed into:

Figure 5. Error bounds of the second approximation.
The percents of errors of upper and lower bounds are both
smaller than 1%.
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Figure 4. Approximation of the battery power losses.
The fitted data are denoted by the solid curve marked with circles and
its coefficient of determination is 0.9998.
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���� ≤ � ≤ ����, (9)

since the �(�) is monotonically increased with � in the domain of definition. The ����, ���� are
calculated by �(����) and �(����), respectively.

3.3 Constraints Relaxation

With the substitution of variables, the equalities are converted to convex functions. Subsequently, the
relaxation of equalities yields to a series of inequality constraints. As a result, the convex formulation
of the original problem is constructed as follows:

� = ∫ ��(����)
����

����
+ �(����)� ��

��
�

, (10a)

�̇(�) = −��, (10b)

���� + �� ≥ ���� + ���,���� + ��,����, (10d)

����,���(����) ≤ ���� ≤ ����,���(����), (10e)

���� ≤ � ≤ ����, (10f)

�������(�) ≤ �� ≤ �������(�). (10g)

Note that the equality (3) is replaced by (10d). As a consequence, the non-affine equality is
successfully converted to a convex inequality. What is worth mentioning is that this relaxation does
not prejudice the optimality of the solution. The claim has been logically reason in the [10]. Assume
that the convex solver finds the optimal solution holding ���� + �� > ���� + ���,���� + ��,����. This

means that some energy supplied by the fuel and battery was wasted, thus a better solution can be
found with (10d) holding with equality.

4 NUMERICAL EXAMPLE

The most commonly used hybrid powertrain configurations are series, parallel and series-parallel
architecture. Compared with the series and series-parallel configuration, the parallel configuration is
lighter and more reliable, whilst keeping the flexibility of hybrid. What’s more, the parallel
configuration is best suited for long-endurance UAVs, according to [14].
This paper applies the proposed convexification on the energy optimization of a parallel configured
HEPS [15]. Hence, ���,���� comes from the power loss of the single motor/generator. The power

requirement is sum of power requested to drive the propeller and power demanded by the auxiliary
devices of aircraft.
Two different hypothetical flight test scenarios are considered: the first test case is a complete
mission that includes take-off, climbing, cruising and landing phases, where the battery charge-
depleting and charge-sustaining strategy are both implemented on convex programming; second, the
charge-sustaining based convex optimization is employed on a cruising flight mission and its
performance is compared with the DP. Furthermore, the optimal control of second scenario is
conducted and verified on a forward simulation model developed in the previous study [15].

4.1 Test Case 1

The test case used in this section simulates a complete 12 minutes flight mission that includes take-
off, climbing, cruising and landing phases. The aircraft take-off run is in the first 1 minute and then
continues to climb to the cruise height in the time interval 1-4.5 minute. Then, the aircraft will start
its cruise phase at around 4.5 minute and finally the landing phase, after which the mission ends.
The power requirement of this flight mission is shown in Figure 6 with blue dotted line. The optimal
control (ICE power) is also plotted with battery internal power. It is clear that the energy from two
different sources combines together to power the aircraft during the climbing (between 1-4.5
minute). On the other hand, the battery is charged by the extra power from engine in take-off and
landing phase.
Note that the power requirement is equal to the power consumption, which includes actual useful
power and power losses. That means constraint (10d) holds with equality at the optimal trajectory.
In other words, the relaxation presented in section 3.3 does not affect the results of optimization.
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The initial value of SoC is set to 60%. The maximum and minimum value of SoC is 80% and 20%,
respectively, considering the nominal operation range of battery. The SoC is allowed to be depleted to
30%, then the energy management is demanded to sustain the SoC around this value, to extend the
lifetime of battery.
The Figure 6 also displays the virtual state variable �. The SoC and � both increase in the first 1
minute, due to battery charging during the take-off. Later, they drop by a large margin because the
aircraft demands huge power for climbing. After reducing to 30%, the SoC is sustained around this
value. The results demonstrate that the convex programming can achieve both depleting and
sustaining strategies.

4.1 Test Case 2

The second instance exams the optimality of results from convex programming, by comparing with
ones from global optimization–DP. Different from the test case 1, the forward simulation technique is
applied on the optimization results to investigate their capabilities in practical application. The flight in
this case considers cruising and excludes the take-off and landing phase. The power requirement of
the flight mission is shown in Figure 7.

The Figure 8 compares the simulation results of battery SoC, engine power and fuel consumption
between convex optimization and DP. The initial value of SoC is set to 50% and its value is supposed
to be sustained in the 13-minute whole flight. The curves of SoC verify that two optimizations both
can realize the charge-sustaining, but the DP obtains a more precise regulation of SoC. Moreover, the
forward simulations demonstrate that optimal controls of two methods are both practical in real
application. Yet the optimal control (engine power) derived from DP experiences more intense
fluctuation than another one.

Figure 7. Power requirement of test case 2.
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The most significant is that the convex programming can achieve better optimal cost (fuel use) than
DP, as shown in Figure 8 and Table 1. To be fair, the final SoC of convex programming is lower than
one of DP, which means the convex programming consumes more electric energy. In other words,
the extra electric energy stored in the battery consumes the fuel spending in the DP. A real fuel
consumption of two optimizations will be acquired by adjusting two final SoC values to the same one.
Thus, the correction is introduced on the final of SoC.

Table 1: Comparison of consumptions between convex optimization and DP

Convex
Programming

DP

Final SoC (%) 47.37 48.80

Fuel Consumption (kg) 1.8235 1.8328

Corrected Final SoC (%) 50 50

Corrected Fuel Consumption (kg) 1.8304 1.8359

Energy Consumption (MJ) 84.85 85.13

Optimization Time (sec) 0.6708 7.9268

The corrected numbers are also displayed in the Table 1 and it shows that the convex optimization
really has lower fuel usage compared with DP. Besides fuel using, another criterion—energy
consumption also indicates that the convex optimization demands less energy to complete the flight
mission.
Another significant advantage of convex optimization is the improved optimization time. It indicates
that the convexification simplifies the original problem and reduces the computation to a level
compatible with the practical application.

5 CONCLUSION

This paper presents the energy management of a hybrid electric propulsion system for unmanned
aerial vehicles, using convex optimization. The primary energy management was formulated. The fuel
minimization was selected as the cost and the battery SoC was chosen as the state variable.
Later, three techniques–approximation, variables and relaxation were implemented to convexify the
nonconvex original problem. The nonconvex integrand of cost was fitted with the piecewise linear
function. Under operation range, the battery voltage was able to be approximated with quadratic
equation. The examination also shows that the power loss of motor is mainly dependent on motor
speed with an exponential function. The convexification of state transition equality was successfully
accomplished by proposed method, i.e. introducing battery internal voltage and energy.
Subsequently, the lossless relaxation of equalities yielded to new inequality constraints.
The parallel hybrid configuration was nominated in the numerical test scenarios. The first test case
verifies that the convex relaxation does not sacrifice the optimality of the solution. Also, the convex

Figure 8. Comparison of convex optimization and DP in test case 2.
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programming can reach optimal results under both charge depleting and sustaining strategies. By
comparing with the DP in the test case 2, the convex optimization performs gentler optimal control
and better optimal cost results. It even demands less total energy to accomplish the flight mission.
The most significant advantage of convex optimization is that it can converge to the optimal solution
with the time much less than DP.
On account of benefits of the convex programming as mentioned above, a more rigorous proof of
equivalence between original problem and its convexified formation will be conducted in future
studies.
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