

CEAS 2017 paper no. 233 Page | 1
Flight Software Development and Validation Workflow Management System Copyright © 2017 by author(s)

Aerospace Europe
6th CEAS Conference

 Flight Software Development and Validation Workflow Management
System

Dan Gultureanu
Space Systems/Loral (SSL), Software Systems Engineering

Manager, Flight Software
 3825 Fabian Way, Palo Alto, California 94303, USA

Dan.Gultureanu@sslmda.com

Kevin Kerns
Space Systems/Loral (SSL), Software Systems Engineering

Senior Software Engineer

Tom Henthorn
Space Systems/Loral (SSL), Software Systems Engineering

Manager, System Validation

John Quach
Space Systems/Loral (SSL), Software Systems Engineering

Senior System Validation Engineer

Mitch Kleen
Space Systems/Loral (SSL), Software Systems Engineering

Senior Software Engineer

ABSTRACT

The aerospace industry is undergoing unprecedented transformation. New players, new ventures, and
new technologies drive the established business towards a transition from traditional models and

strategies to automated production and innovative methods. Software architecture for space systems

needs to become more agile while preserving a high standard of quality. To that end, the rigorous
verification and validation process that yields high quality software products should embrace

automation and take full advantage of COTS hardware and software products. In line with the industry
transformation, SSL’s Flight Software Development and Validation Department uses a modular, layered

architecture that has evolved over decades of orbital experience. This paper describes the SSL Flight

Software Development and Validation Workflow Management System and the advantages of such a
system/framework for development and verification of very complex spacecraft. This system/framework

allows faster cyclical test-fix-test process and also provides a platform that can be extended for a
multitude of applications.

KEYWORDS: Software Development, Software validation, Testing architecture, Layered architecture,
COTS hardware and software

NOMENCLATURE

API - Application program interface
COTS – commercial-off-the-shelf

CVS - Concurrent Versions System
FSW – flight software

Git - git-scm.com

I/O – input and output

SBC – Single Board Computer
SDLC – software development lifecycle

SVN - Apache Subversion
T&C – telemetry and commands

UI – user interface

V&V – verification and validation

CEAS 2017 paper no. 233 Page | 2
Dan Gultureanu, Kevin Kerns, Tom Henthorn, John Quach, Mitch Kleen Copyright © 2017 by author(s)

Aerospace Europe
6th CEAS Conference

1 INTRODUCTION

1.1 Waterfall, V-Model and Agile

The aerospace industry traditionally uses a waterfall or V-model (Fig. 1) in software development
lifecycles. The V-model [1] derives its name from the terms Verification & Validation. It is based on a

sequence of phases where each phase is completed in its entirety before the next phase is initiated.

Each development phase is associated with a well-defined test phase. It provides a top-down validation
approach and supports requirements-driven design.

Verification

Verification

Validation

New Project New Product

Figure 1: Simplified V-Model

The need for faster development lifecycle, introduction of new technologies, expanded business
portfolio, and frequent changes of requirements during software development demand adoption of

commercial methods and techniques already utilized in other industries. Agile [2] (Fig. 2) and Spiral are

examples of such methods that are considered for integration in the software development lifecycle
along with the traditional models.

Write Code Review Code

Unit and Functional Test

Write Code Review Code

Unit and Functional Test

Acceptance Test Repeat

Write Code Review Code

Unit and Functional Test

Write Code Review Code

Unit and Functional Test

YES

NO

Deliver Product

SPRINT 1 SPRINT N

Product Backlog

Iteration Backlog Iteration Backlog

Figure 2: Simplified Agile Model

CEAS 2017 paper no. 233 Page | 3
Flight Software Development and Validation Workflow Management System Copyright © 2017 by author(s)

Aerospace Europe
6th CEAS Conference

When safety and reliability are critical, however, requirements driven development is often relied on
given its long track record of success and its alignment with established regulations. Agile V-model [3]

[4] [5] (Fig. 3) software development lifecycle is a viable alternative that takes advantage of an
incremental, iterative, and collaborative process while maintaining the rigorous verification and

validation process based on requirements driven development.

Verification

Verification

Validation

Product
Backlog

Iteration
Backlog

New Project New Product

Iteration
testing

Iteration
testing

Figure 3: Simplified Agile V-Model

There is a place to deploy all types of software development lifecycles, including sequential ones. Many
agile best practices have roots in V-model ideas [3] [5]. Embracing good ideas and being flexible, in

any lifecycle, will allow the development teams to tailor, adapt, blend, and extend traditional and newer
methods and techniques. This process is especially beneficial in industries with strong regulatory

requirements like aerospace.

Agile V-model maintains the following ideas and practices:
 Independent testers

 Up-front design (retaining flexibility)

 Defect tracking

 Lifecycle tailoring (adaptability)

 Tasks outside iterations (automation, spacecraft level testing, etc.)

Agile V-model adapts or no longer uses the following ideas and practices:

 Sequential process

 Only one delivery at the end of the software development

 Cycle transition approved only by the validation organization

The agile V-model can be viewed as an enhancement of the test driven development concept by adding
the acceptance/business case to complete the software development lifecycle. SSL’s flight software

development and validation follows an agile V-model adapted to requirements driven development and

aligned with aerospace regulations.

1.2 Test Automation and Test Automation Frameworks

Test automation is the use of software to execute tests and then determine whether the actual
outcomes are consistent with predicted outcomes. The shift from sequential to agile development allows

the usage of test automation throughout the product life cycle. A test automation framework is a
constructive blend of various guidelines, coding standards, concepts, processes, practices, modularity,

reporting mechanism, user interfaces to support automation testing.

The test automation framework responsibilities are:
 Defining the format in which to develop and maintain the test definition and pass/fail criteria,

including the capability to eliminate duplication of test cases

CEAS 2017 paper no. 233 Page | 4
Dan Gultureanu, Kevin Kerns, Tom Henthorn, John Quach, Mitch Kleen Copyright © 2017 by author(s)

Aerospace Europe
6th CEAS Conference

 Creating an interface to other systems responsible for requirements and pass/fail criteria

definition (i.e. requirements driven development)
 Creating a mechanism to interface with the application under test

 Executing the tests

 Reporting results

Test script

Module

Common Library

Module

Module

Module

Keywords/Test Data

Figure 4: Simplified Hybrid Testing Framework

Throughout different industries several test automation frameworks [6] are used:

 Module based testing framework

 Library architecture testing framework

 Data driven testing framework

 Keyword driven testing framework

 Hybrid testing framework

 Behavior driven development framework

Hybrid testing framework (Fig. 4) is a combination of more than one of the above mentioned

frameworks. SSL’s flight software development and validation uses a hybrid testing framework that
maximizes the benefits of the various associated frameworks.

SSL flight software test automation framework attributes:
 Application independent

 Scalable and modular (easy to expand and maintain)

 Re-usable

 Improves testing efficiency

2 SSL FLIGHT SOFTWARE DEVELOPMENT AND VALIDATION WORKFLOW

MANAGEMENT SYSTEM

2.1 Software Development Lifecycle

SSL designs and builds spacecraft to support a myriad of custom missions. The Flight Software

Development and Validation Department uses a modular, layered architecture that has evolved over
decades of orbital experience. SSL follows an incremental life-cycle process. The software validation

employs successively higher fidelity testbeds to match the development maturity stages, ultimately
culminating in spacecraft-level testing.

The large number of spacecraft that SSL designs and builds necessitates the adoption of a formal and

rigorous process for requirement verification. This includes integration of new or modified code modules
into a layered architecture, and validation through spiral testing such that the completed modules

function as designed and perform in concert with the overall mission objectives.
As with the layered architecture that is the core of SSL’s decades-rich orbital heritage spacecraft

systems, the software test infrastructure is similarly structured to support verification of flight software

design and implementation. The verification and validation environment consists of a variety of
simulators, engineering models and higher-throughput test stations built on top of commercial-off-the-

shelf (COTS) hardware.
SSL developed these higher-throughput test stations with configurations that are representative of the

flight units:

CEAS 2017 paper no. 233 Page | 5
Flight Software Development and Validation Workflow Management System Copyright © 2017 by author(s)

Aerospace Europe
6th CEAS Conference

 Commercial platform utilizes the same CPU architecture as the spacecraft flight processor

 Flight software applications compile the exact same code across platform configurations

 Differences are limited to minor board support package functionality including low-level I/O

interfaces.
COTS test stations (Fig. 5) consist of a COTS Single Board Computer (SBC) that executes the flight

software code and interfaces over a backplane to a second SBC. The second SBC executes software
simulation modules which are representative of spacecraft hardware interfaces and spacecraft motion

and dynamics. The hardware interface emulation includes data buses, sensors and actuators, command
decoders, telemetry encoders, power control equipment, solar array driver equipment, and any other

hardware present in the specific architecture of the spacecraft under test. The test station is

configured/driven by a ground test software system that manages setup of the initial conditions of the
test scenario and provides real-time stimulation.

COTS SBC

Flight SW

COTS SBC

Spacecraft HW
Models

Spacecraft Motion/
Dynamics Models

Ground Workstation

Ground Test
Software

TCP/IP

Backplane

Figure 5: COTS Test Station Top Level Diagram

The advantages of the higher-throughput test stations are:
 Allows developers and testers to validate software and scripts to iron out any bugs before

performing final validation

 Cost effectiveness, resulting in significant increase of the number of test stations that can be

purchased
 Allows rapid test data collection due to 20x faster than real time capability to create more

scalability in the test infrastructure.

2.2 SSL Flight Software Hybrid Testing Framework

Any type of testing framework can be implemented in the agile environment. However, short iteration
cycles and rapidly changing requirements results in additional challenges to maintain the test

automation suite. In the agile environments, testing plays a crucial role through the different phases of
iterations. It involves continuous integration, unit testing, and constant regression testing. Agile is

difficult to accomplish using testing frameworks if the test automation suite does not keep up with the
pace of the development. SSL designed a set of tools that allows fast updates and easy maintenance

of the test scripts and test data for each iteration.

Achieving maximum code and functionality coverage in the rapid requirements iteration cycle creates
significant challenges using testing frameworks. SSL hybrid testing framework is developed as a

modular, layered architecture that maximizes code reuse of heritage products, controls all changes to
heritage baseline software, manages the development of new products, and ensures the integrity of

the resulting product.

The components of the SSL hybrid testing framework (Fig. 6) are:
 Centralized system for version control, tracking inputs and test anomalies

 User interface to allow for the management and creation of individual test cases, including

parametric pass/fail criteria

CEAS 2017 paper no. 233 Page | 6
Dan Gultureanu, Kevin Kerns, Tom Henthorn, John Quach, Mitch Kleen Copyright © 2017 by author(s)

Aerospace Europe
6th CEAS Conference

 A suite of tools for test data post processing, analysis and test report generation

 A system for test case execution and results data capture

 Common test results review user interface (UI) including common plotting tool that allows

overlay comparison of the test results and truth model
 Programmatic interfaces to data repositories

Figure 6: Simplified SSL Hybrid Testing Framework

The centralized system for version control (Fig. 7) provides a layer that can track versions of system
components utilized in test cases across multiple version control entities (CVS, SVN, Git, etc.). This

system is responsible for detecting when new versions of modules such as flight software, test scripts,
or simulation software have been created and can automatically run regressions or mark as out of date

test cases that are dependent on the changed modules. This system can also track failed test cases

and generate detailed timelines of which versions encountered specific defects and in which versions
those defects were resolved.

Component Version
Monitor

Version Control Repos
(CVS, SVN, Git, etc)

Test Component
Dependency Models

Test Campaign Data
Models

Test Execution and
Results Review

detect component
version updates

test case out of date/
requires regression

test case execution
pass/fail results

Test case
dependency

checks

Figure 7: Centralized System for Version Control

The test case management system (Fig. 8) provides a UI for creation of new test cases and
management of test components required to execute the test (such as the name of the test script file).

This system also allows the user to submit pass/fail criteria information and define how the results
should be presented to the user (overlay plots, system event timelines, etc.).

CEAS 2017 paper no. 233 Page | 7
Flight Software Development and Validation Workflow Management System Copyright © 2017 by author(s)

Aerospace Europe
6th CEAS Conference

Test Management UI
Test Component

Dependency Models
Test Validation and

Presentation Models

Definitions of
components required
to execute test case

Definitions of
parametric criteria

for pass/fail and rules
for viewing test

results

Figure 8: Test Case Management System

The test executive (Fig. 9) provides capability for individual test case or groups of tests to be submitted

for batch execution in the test environment. This includes managing and allocating available lab
hardware, properly setting up the test harness and configuration for each specific test case under

execution, capturing results data including dynamic data series and timestamped system events, and
storing the captured data to the test results database.

Test Case Executive
Test Execution and

Review UI

Test Results Database

allocate test target/
free test target

run test/capture
results data

Test Lab Resource
Manager

Test Target (High
Throughput or Flight

Representative)

Test Campaign Data
Models

dispatch test case

store test results data

review test
results data

update pass/
fail records

Figure 9: Test Executive

Test data post processing tools allow for the accumulation of automated test results for subsequent
analysis. As more test data is collected across many different systems, human-in-the-loop test data

review may be decreased by employing pattern recognition algorithms that can perform auto-validation

of test results. Post processing may also include tools that generate information that allows for more
efficient presentation of the test results to a human reviewer. A tool that automatically time-aligns data

samples from a test case with samples from a predict data set is an example. Post processing tools are
also used to generate automated test reports to support deliverables to external organizations as well

as customers. All test results are kept in repositories that have programmatic query Application program

interfaces (APIs) to support easy access for custom analysis. This facilitates future data-mining activities
that may need to be performed for an unforeseen reason. An example may be a spacecraft anomaly

investigation that requires sophisticated analysis of system performance data captured during system
development and test phases.

The test results review UI (Fig. 10) provides a user-friendly means for test engineers internal to the
software organization as well as external organizations such as Systems Engineering to review test case

results and provide pass/fail assessment. The common plotting tool generates time-aligned overlay

plots of specific data points in the test case with predicted profiles. This interface is optimized for
human-in-the-loop analysis of system performance as compared to a model-generated truth dataset.

Predicted (truth) profiles can be generated from higher level design models (such as dynamic
simulations in Matlab), from a previous test instance in the case of regression test, from a similar test

performed on a different spacecraft, or a combination of these sources.

CEAS 2017 paper no. 233 Page | 8
Dan Gultureanu, Kevin Kerns, Tom Henthorn, John Quach, Mitch Kleen Copyright © 2017 by author(s)

Aerospace Europe
6th CEAS Conference

Test Results Review UI

Test Results Database

Obtain test case
results data series/

Truth data series for
regressions or from

heritage Spacecraft(s)

Obtain truth data
series

Dynamic Test Predicts
Database

Test Campaign Data
Models

Browse test
campaigns, view test

execution activity,
Update pass/fail

results for test cases

Test Results Validation
and Presentation Models

Retrieve information
for truth data

source(s), details to
configure results

presentation

Test Results Presentation

Plotting Tool

results data and
presentation rules

Figure 10: Test Results Review UI

3 CONCLUSION

SSL flight software engages in a cyclical test-fix-test process that subjects the code to increasing levels
of functional simulation of spacecraft operating system and application interaction. The process

successively adds levels of stress to the software performance evaluation by starting with the

application logic but then adds in and verifies the telemetry and command (T&C) interfaces and data
bus communication protocols. Addition of more hardware models into the test loop raises the complexity

of the test environment to increasingly flight-like conditions and documents the maturation of the code
modules as implementation progresses. Final exit from the development test-fix-test loop occurs after

successful performance in stress tests with the actual hardware wherever and whenever possible.

Where actual hardware is not possible or practical, the most flight-like engineering model hardware
and simulator test fixtures are available.

SSL Flight Software Development and Validation Workflow Management System provides the following
key attributes:

 Maximizes data organization, ease of navigation and transparency

 Creates traceability by formalizing and tracking quality of inputs

 Improves interfaces to organizations that consume flight software validation reports

 Creates centralized system for version control and tracking inputs required for flight software

development and validation
 Automates validation reporting

This rigorous verification and validation process used by the SSL Flight Software Development and

Validation Department yields software products that have undergone both a full validation with a high-

fidelity testbed and spacecraft-level test resulting in increased quality.

REFERENCES

1. T. Weilkiens, J. G. Lamm, S. Roth, M. Walker; 2016; Model-Based System Architecture; First
Edition. John Wiley & Sons, Inc.

2. K. Schwaber, M. Beedle; 2002; Agile Software Development with Scrum, Prentice Hall

CEAS 2017 paper no. 233 Page | 9
Flight Software Development and Validation Workflow Management System Copyright © 2017 by author(s)

Aerospace Europe
6th CEAS Conference

3. M. Monteleone; 2017; “A Proposal for an Agile Development Testing V-Model”;
http://www.modernanalyst.com/Resources/Articles/tabid/115/ID/1967/A-Proposal-for-an-Agile-

Development-Testing-V-Model.aspx
4. E. Johnson; 2014; “How to implement the Agile-Waterfall Hybrid | V-model vs Waterfall”;

www.intland.com/blog/agile/how-to-implement-the-agile-waterfall-hybrid

5. R. Black, 2017; “Agile V Model: Oxymoron or Best Practice?”; www.linkedin.com/pulse/agile-v-
model-oxymoron-best-practice-rex-black

6. Software Testing Help; 2017; “Most Popular Test Automation Frameworks with Pros and Cons of
Each – Selenium Tutorial”; http://www.softwaretestinghelp.com/test-automation-frameworks-

selenium-tutorial-20/

http://www.linkedin.com/pulse/agile-v-model-oxymoron-best-practice-rex-black
http://www.linkedin.com/pulse/agile-v-model-oxymoron-best-practice-rex-black

