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ABSTRACT

A new system is presented that enables the visualization of large multidisciplinary design optimization (MDO)

problems and their solution strategy. This visualization system is the result of a cooperation between RWTH

Aachen University and Delft University of Technology (DUT) within the EU project AGILE. In AGILE, col-

laborative MDO is performed in large, heterogeneous teams of experts by solving MDO problems using a

collection of design and analysis tools. The two main phases of such a collaborative MDO project are the

formulation and the execution phase. This paper focuses on the visualizations required to support the for-

mulation phase of the MDO problem. In this phase three main steps have been identified: the set-up of the

repository of interconnected tools, the definition of the MDO problem at hand, and the determination of the

solution strategy to solve that MDO problem. KADMOS, an open-source MDO support system developed

by DUT, uses graph-based analysis to formulate an MDO problem and its solution strategy, based on the

disciplinary analyses available in a repository. The results of KADMOS are stored in a standardized format

called CMDOWS, which is eventually used to trigger the execution phase by means of a simulation workflow

platform of choice. Although based on XML, the readability of the CMDOWS file is quite poor also for MDO

experts, especially for large MDO systems involving thousands of variables, thus preventing visual inspection

of the formalized MDO problem. Providing visualization capabilities to thoroughly inspect the outcome of the

three aforementioned formulation steps becomes a key factor to enable the specification of large MDO sys-

tems in a heterogeneous team. Therefore, one of the main hurdles for using MDO as a development process

can be removed. Conventional visualization methods (such as N2-charts, functional dependency tables, and

design structure matrices) have major scalability limitations. Therefore VISTOMS, a dynamic visualization

package based on the open-source visualization library D3.js, was developed by RWTH Aachen to enable

the visualization and inspection of the different MDO system specification steps. The developed visualization

capabilities are demonstrated by means of a wing design optimization problem performed at DUT. As shown

in this use case, VISTOMS enables the visualization and inspection of a large MDO system containing more

than ten different aircraft design tools, interlinking thousands of variables.
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NOMENCLATURE

AGILE: Aircraft 3rd Generation MDO for Inno-

vative Collaboration of Heterogeneous

Teams of Experts

MDAO: Multidisciplinary Design Analysis and

Optimization

CPACS: Common Parametric Aircraft Configu-

ration Schema

MDG: MDAO Data Graph

CMDOWS: Common MDO Workflow Schema MPG: MDAO Process Graph

CSS: Cascading Style Sheets RCE: Remote Component Environment

CSV: Comma Separated Values RCG : Repository Connectivity Graph

DOE: Design Of Experiments REMS: Reconfigurability in MDO Problem Syn-

thesis

FDT: Functional Dependency Table SVG: Scalable Vector Graphics

FPG: Fundamental Problem Graph VISTOMS: VISualization TOol for MDO Systems

HTML: Hypertext Markup Language XDSM: Extended Design Structure Matrix

JSON: JavaScript Object Notation XML: Extensible Markup Language

KADMOS: Knowledge and graph-based Agile De-

sign for Multidisciplinary Optimization

System

1. INTRODUCTION

Past research indicates that MDO can offer huge benefits in complex product design. Boeing Phantom

Works scientists [1, 2] estimate that MDO can offer 8-10% gains for innovative aircraft design and even 40-

50% gains for designing radically new and undeveloped concepts. [3] Despite the high potential gains, MDO

is not as widely used as one would expect. Both technical [4] and non-technical barriers are hampering its

full exploitation, as discussed below in this section. [5–7]

To get a better understanding of the scope of the work presented here, it is convenient to refer to Fig. 1, where

the different parts of the MDO development process are illustrated. The MDO development process in this

figure can be roughly cut in half, with the formulation phase on the left side and the execution phase on the

right. In the formulation phase the tool repository is defined (or provided), the MDO problem to be solved is

formulated, and a formal specification of the MDO solution strategy used to solve the problem is defined. This

inexecutable MDO solution strategy is the blueprint of the executable workflow. The actual, executable MDO

workflow is created in a simulation workflow platform of choice (e.g. RCEa, Optimusb) and run to find the

optimal design. In a realistic design situation the optimization is not performed just once, rather the analysis

of the design that is found after a certain run will provide new insights. These insights will be translated to

an adjustment of the MDO problem formulation (e.g. change of objective, addition of constraints, etc.) and

a reconfiguration of the associated MDO solution strategy (e.g. addition, removal, replacement of analysis

tools). This process of problem adjustment and process reconfiguration is iterated until a satisfactory design

is found, or the project deadline has been reached. The focus of the system development described in this

paper is on the visualization of the blocks in the formulation phase: tool repository, MDO problem, and MDO

solution strategy.

One of the most critical technical barriers for MDO comes from the large (and continuously increasing) size

of typical MDO problems. In the words of Pate et al. [8] the formulation of these problems has become

increasingly complex as the number of analysis tools and design variables included in typical studies has

grown. In this context the problem of determining a feasible data flow between tools to produce a specified

set of system-level outputs is combinatorially challenging. Especially when complex and high-fidelity tools

need to be included, the cost and time requirements to integrate the MDO system can easily approach the

cost and time requirements of creating any of the discipline analyses themselves.

These cost and time requirements for the integration of the MDO system have also been identified in several

research projects that have attempted to perform MDO by automating a full chain of design tools. In previous

projects of the DLR it was found that the majority of the project time (60-80%) [9] would be used to create such

an automated chain for aircraft design tools. Similar conclusions were drawn by Flager and Haymaker [10]

who performed research into the design process metrics of both a legacy (current) design method and an

ahttp://rcenvironment.de/
bhttps://www.noesissolutions.com/our-products/optimus
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Figure 1: Overview of the MDO development process and its two phases.

MDO development process for the design of a hypersonic vehicle by Boeing [1,2], see Fig. 2. In this figure it

is clear that the set-up time of the MDO workflow exceeds the 6 weeks set-up time of the legacy method by

133%. This figure also shows that with the MDO design method one needs to spend more resources in the

‘Specification’ phase category. This is to be expected, since during the set-up of a fully automated chain of

design tools, one needs to know down to the smallest detail what information is used and produced by each

tool and which data is fed back and forward within a certain tool execution sequence. If the specification of

the individual design tools and the overall MDO system could be improved, then the set-up time of the MDO

process can be drastically reduced as well, thereby making the MDO approach even more convenient with

respect to the conventional approach.

Figure 2: Comparison of legacy design and MDO development process metrics for the design of a hypersonic

vehicle [10]

It is our conviction that the cost and time requirements for the integration of tools in a large and complex

MDO system could be reduced by enabling the designer to analyze, visualize, and inspect the MDO system

down to the smallest detail during the integration effort. Any system integrator is aware of the value of such

analysis and visualization, but in practice, the manual generation and update of this sort of documentation is

too cumbersome. For example, if visualizations of the tool repository or MDO solution strategy are created,

they are usually a collection of spreadsheets and text documents, which have to be updated manually and are

hard to keep consistent. On top of that, such manually created overviews are not (fully) machine-readable

and thereby cannot be used for any further automated analysis, integration, or manipulation of the MDO

system. Therefore, the analysis, visualization, and inspection of MDO systems should be automated and

based on machine-readable files or documents.

This is one one of the main goals of the EU project AGILEc, where the developments described in this

cAircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Experts, see: www.agile-project.eu
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paper are taking place. The process for the generation of the necessary visualizations to support the MDO

formulation phase is based on the outcome of KADMOSd, the Knowledge- and graph-based Agile Design for

Multidisciplinary Optimization System developed at DUT. KADMOS takes care of the automatic integration of

the various design and analysis tools in the MDO system and supports the formulation of the MDO problem

at hand and its solution strategy. KADMOS’ functionalities are briefly explained in section 2.2, while detailed

information can be found in another publication [11]. As illustrated in Fig. 1, KADMOS stores the output of

the MDO formulation process by means of a standardized XML format, called CMDOWS (Common MDO

Workflow Schema), which is discussed in section 2.1. The creation of the visualizations is done by coupling

the CMDOWS files to a custom-built visualization package developed at RWTH Aachen University. This

system, called VISTOMS (Visualization Tool for MDO Systems) is the main subject of this paper and its

functionalities are described in detail in section 2.3. The produced visualizations are presented in section 3,

based on a real MDO system for wing optimization, created within the AGILE project.

2. METHODOLOGY

As mentioned, the developments presented in this paper are based on two software packages: the MDO

system formulation tool KADMOS and the visualization package VISTOMS. A top-level overview of the col-

laboration between KADMOS and VISTOMS is shown in Fig. 3. The approach is referred to as the ‘dynamic

visualization approach’, where dynamic refers to the ability of interactive visualization objects to change ap-

pearance under mouse ‘hovering’ and clicking (more in section 2.3). The set-up has been done such that

any CMDOWS file, representing one of the first three blocks in Fig. 1, is first imported by KADMOS which

translates it into the JSON (JavaScript Object Notation) representation required by VISTOMS. This collection

of JSON files is then visualized with VISTOMS through an HTML (Hypertext Markup Language) page that

can be opened in any web browser and includes the interactive visualization objects. It should be noted that

the use of KADMOS shown in Fig. 3 only represents a small part of the package. The majority of KADMOS

is actually geared towards producing and editing the CMDOWS files (more in section 2.2), not at the post-

processing for which it is used in the dynamic visualization approach. All elements of the top-level overview

in Fig. 3 are discussed in the upcoming section.

KADMOS graph VISTOMS

CMDOWS

imported

as

exported

as

provides

data for

Figure 3: Top-level overview of the dynamic visualization approach

2.1. CMDOWS

work�ow
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Visualization

package
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tive
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system
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Schema

operations

library

Figure 4: The concept of exchangeability

between different MDO framework applica-

tions through a workflow schema [12]

CMDOWS is an open-sourcee, XML-based workflow schema

that was developed at DUT to enable the exchange of the for-

mulated MDO system between MDO framework applications,

as visualized in Fig. 4. A detailed description of CMDOWS is

provided by Van Gent et al. [12]. The different stages of the

MDO system in the formulation phase can all be stored in the

CMDOWS format. Each stage in Fig. 1 (from left to right) en-

riches the CMDOWS file to go from a repository of design tools

to a full description of the optimization strategy. KADMOS is

able to provide the graph-based representation for each stage

(see next section) and can store these in a CMDOWS file, how-

ever, visualizing the outcome of these stages is not properly

dAvailable at: https://bitbucket.org/imcovangent/kadmos
eAvailable at: http://cmdows-repo.agile-project.eu
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handled by KADMOS. Also the CMDOWS files, although based on XML, do not offer a practical means to

the user for inspecting the generated MDO system formulation. Therefore, the work presented here was

focused on the link between the visualization package VISTOMS and CMDOWS. Within that link, the efficient

graph-based algorithms of KADMOS were used for data processing purposes.

2.2. KADMOS

As mentioned in the previous section, the use of KADMOS is twofold in this work:

• Creation of the CMDOWS files to be used as input for the approach in Fig. 3

• Graph-based data processing of the CMDOWS files to convert the XML representation into the JSON

format required for VISTOMS

Both applications of KADMOS are only discussed briefly here.

2.2.1. KADMOS as MDO system formulator

The ability of KADMOS to support the specification of the MDO system is discussed in detail in earlier work

[11]. A mapping between the three stages of the formulation phase in Fig. 1 and the associated KADMOS

graphs is shown in Fig. 5. Four different graph types are associated with the three formulation phases.

The repository connectivity graph (RCG) is an object that represents the design and analysis tool repository

as a web of data containing function and variable nodes and their connections. This graph is established

easily for large tool databases by exploiting the central data schema approach, such as CPACS [13]. The

example in Fig. 5 (left) concerns a very small repository with only eight function nodes (design competences)

and ten variables. Larger tool repositories, such as the one used in the results section of this paper, are still

stored as a graph structure, but their visualizations, as expected, have severe readability limitations.
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Figure 5: Top-level overview of KADMOS and its relation to the formulation phase of the MDO development

process in Fig. 1 (all visualizations are based on the Sellar problem [14])

The MDO problem is represented in KADMOS with the fundamental problem graph (FPG), see Fig. 5 (mid-

dle). The FPG is a subset of the RCG in terms of nodes and edges. In addition, its nodes are also enriched
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with attributes required to specify the MDO problem at hand, such as design variables, objective and con-

straints.

Finally, the neutral representation of the MDO solution strategy is stored in two separate graph constructs: the

MDAO process graph (MPG) and the MDAO data graph (MDG), where the first contains the process execution

flow of the various MDO system components, and the second specifies the specific data exchanged between

those components. These graphs are created automatically by KADMOS based on the FPG and stored in

the same CMDOWS file, thereby using all the elements of the schema.

2.2.2. KADMOS as data processor

The system formulation capabilities of KADMOS cover all stages of the formulation phase given in Fig. 1

and can store the CMDOWS file for each stage, although these capabilities could be taken over by other

platforms as well. Especially the creation of the tool repository is a relatively easy task that can be performed

with other applications. For example, in AGILE, the business process platform KE-Chainf [15] also contains

a module to create a tool repository and export it as a CMDOWS file. However, even if other platforms create

the CMDOWS file, KADMOS is still required as a data processor in order to provide the right data format for

VISTOMS.

This data processing is required in order to provide VISTOMS with files that are directly interpretable, hence,

no cumbersome analysis of the data is required before visualizing it. In other words, the KADMOS graphs

do contain all the information that is required to visualize it, but some of the information is stored implicitly.

In order to improve responsiveness of the visualization package, this information is transferred explicitly to

the JSON files read by VISTOMS. An example of this would be the input and output variables of a single

tool. This information is stored in the graph, but to determine this information for a single tool, one has to

loop over all the incoming and outgoing connections of the tool. Instead, the input and output variables per

tool are stored explicitly in the JSON files so that VISTOMS does not have to perform the loop when the

information is requested. Similarly, if the variables follow a central data schema, then the hierarchy of the

variables (which is lost in the graph representation) is reestablished based on the variable names and stored

in a nested dictionary in the JSON files.

The KADMOS data processing step provides VISTOMS with easily accessible information about the MDO

system to be visualized. The processing, which takes in the order of seconds (depending on the size of the

system), prevents a lot of waiting time when using the dynamic visualizations. Downside of the JSON files

with directly useable information is that some information is stored multiple times in slightly different ways,

thereby increasing the size of the collection of JSON files w.r.t. the original CMDOWS file. However, this

decrease in storage efficiency is well worth the associated performance increase when using the dynamic

visualizations.

2.3. VISTOMS

The combination of KADMOS itself and the visualizations developed in the course of this research provide

the MDO integrator with a powerful set of tools to support creation, inspection, debugging, and modifica-

tion of large and complex MDO problem formulations. The presented visualizations are obtained using the

open-source library D3.js [16]. In the following sections D3.js, as well as significant state-of-the-art visualiza-

tion techniques currently used in MDO will be introduced. Subsequently, the newly developed visualization

techniques embedded in VISTOMS will be presented. Their ultimate goal is to enhance the understanding

of complex MDO systems, which is necessary for effective MDO problem formulation, documentation, and

knowledge sharing.

2.3.1. D3.js library

D3.js is an open-source JavaScript library, developed and released by Bostock under the BSD license, for

creating and modifying documents based on data [16]. D3.js supports the user in visualizing any data by

combining the standards HTML, SVG (Scalable Vector Graphics) and CSS (Cascading Style Sheets). It is

therefore an easy to use and powerful tool for visualization that can be opened with any standard web browser.

The coding can be directly performed within an HTML file, which can then be opened in the web browser

showing the embedded visualizations. The library comes with a predefined set of standard visualization

techniques that can be easily accessed, modified, and extended. Any visualizations, also those that are not

predefined in D3.js, can be obtained and modified using standard SVG commands. The data behind the

fSee: https://www.ke-chain.com
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visualizations can be stored in JSON (JavaScript Object Notation) or CSV (Comma-Separated Values) files

and are accessible via JavaScript code.

2.3.2. State-of-the-art visualization techniques in MDO

In the field of MDO the visualization of MDO systems is widely recognized as a valuable tool to enhance

knowledge about the problem formulation at hand. Therefore, over the years various visualization techniques

have been developed. The N2 chart, introduced by Lano in 1977 [17], is for instance a well-known method for

visualizing system couplings. The Design Structure Matrix (DSM), which is similar to the N2 chart, was devel-

oped by Steward in 1981 [18] and shows inter-dependencies between competences in a square adjacency

matrix (see Fig. 6).

Figure 6: Design Structure Matrix (DSM) [18]

In Fig. 6, each of the non-blank off-diagonal elements (x ’s and numbers) represents a data dependency

between the competences, which are arranged on the diagonal. Both DSM and N2 chart thereby enable the

representation of the data exchanged among the various competences by showing the data dependency in

a system (see bottom right graph in Fig. 5). However, these visualizations are not effective in formalizing

the execution order of the tools and the triggering of the various loops including any required iterations by

convergers or optimizers. However, with increasing number and complexity of analysis tools, the choice of

competence execution order becomes more important and more complex as well. Wagner and Palambros

developed the so-called functional dependency table (FDT) in order to account for constraints and objectives

in an MDO problem formulation [19]. The drawback of the FDT is that information about inter-dependencies

between competences and functions is partially lost and therefore a competence execution order cannot be

indicated. A combination between DSM and FDT called Reconfigurability in MDO Problem Synthesis (REMS)

was introduced by Alexandrov and Lewis enabling indication of couplings between competences as well as

constraints and objectives [20]. Nevertheless, the execution order of the competences is not available within

the representation of REMS.

This capability is enabled by the extended DSM (XDSM) introduced by Lambe and Martins in 2012 (see Fig. 7)

[21]. The XDSM provides a visualization that captures the full description of an MDO problem, combining

Figure 7: XDSM for an Individual Discipline Feasible (IDF) architecture [21]

the advantages of DSM and FDT. In general, an XDSM can be read as a square adjacency matrix, where

the competences are arranged on the diagonal and the columns and lines indicate competence inputs and
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outputs respectively. The competences are connected via data pipelines (gray lines) indicating data transfer.

Feed-forward connections are shown on the right, feedback connections on the left side of the diagonal.

The so-called edges (rhomboids on the off-diagonal) indicate a connection between two competences (also

referred to as couplings), i.e. the information that is processed from one competence to the other. The so-

called process lines (thin black lines) in combination with the numbers in the diagonal blocks indicate the

order of the workflow execution (MDAO process graph, c.f. Fig. 5).

Although the XDSM offers the means for a detailed and comprehensive description of an MDO system, its

readability quickly degrades when the number of competences and their coupling increases, at least in its

static document-based version.

The HTML-based rendering approach of the presented visualization package enables the use of effective

standard representations, such as the XDSM, while offering the dynamic scaling and displaying options nec-

essary to guarantee readability and inspectability also for MDO systems of extremely large size. Examples

are discussed in the next section.

2.3.3. Visualization techniques for CMDOWS files

For the CMDOWS files three main visualization types have been selected and further developed:

• XDSM

• Egde Bundling View

• Sankey Diagram

The visualization package is accessible via web browser. Fig. 8 shows the starting page of VISTOMS.

Figure 8: Main page of VISTOMS. The different graphs of the MDO system (RCG, FPG, etc.) can be

selected via drop-down menu using any of the three visualization techniques (XDSM, Edge Bundles, and

Sankey Diagram)

.

Note that VISTOMS provides solely a visual representation of an MDO system, in which no actual compe-

tences can be executed. Rather, the automated creation of executable workflows from the MDO architecture

is a task, which is performed in simulation workflow platforms by parsing a CMDOWS file [22].

In the following sections the three above mentioned visualizations will be described in detail with respect to

their capability to enhance the insight into MDO systems. The interested reader can directly access and

experience a number of example visualizations via the open-access CMDOWS browser interfaceg. On the

browser interface, a number of pre-generated CMDOWS files are available for demo purposes. Note that the

VISTOMS visualizations can also be created for any MDO system using the open-source KADMOS package.

gAvailable at: http://cmdows.agile-project.eu
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XDSM

The enhanced XDSM visualization developed in this research is based on the open-source XDSMjs package,

which was released by Lafage in 2016 [23, 24]. The main structure is the same as the conventional XDSM

(see Fig. 7), while the major difference between the two is that, by using the D3.js library, the XDSM can be

accessed dynamically and interactively via a web browser. However, for large and complex MDO systems,

not all the embedded information can be clearly visualized at once with the XDSMjs package. Therefore,

within the scope of the presented research the XDSMjs package was further enhanced to give the user the

possibility to access the full information embedded into an MDO system in a human intelligible way. While

the basic layout was kept simple, more detailed information can be inspected interactively on demand. The

main features of the XDSM view in VISTOMS are given in Fig. 9 showing an MDO system architecture for

the Sellar problemh, which was already presented in section 2.2 (see also Fig. 5 for the KADMOS graph

representations of this MDO problem).

0, 9: Coordinator

1: A

2, 8-3: DOE
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1 conn.
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right click
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2

3

Figure 9: VISTOMS XDSM for the Sellar problem with a converged Gauss-Seidel Design of Experiments

(DOE)

Note that the overlay frames in Fig. 9 are not visible in the actual visualization package and have only been

included for this paper to explain the visualization capabilities. For this purpose, the focus of Fig. 9 is set on the

connection between the competences DOE and D1. For detailed inspection of the XDSM the user has several

options. Hovering over an edge with the mouse displays the names of the underlying data that are processed

here. Right-clicking on an edge gives the user two options. First, it is possible to examine basic information

about the edge such as the total number of connections and their dimension. Second, the user can further

examine the underlying data of the selected edge. The data are shown as a hierarchical tree [16] containing

a subset of the underlying data model (e.g. CPACS schema as an XML-based parametrization of an aircraft)

where the categories and subcategories are represented by the branches and leafs (see Fig. 9, overlay

frame 1). The tree view is expandable and collapsible via mouse click according to the user’s requirements.

The layout can be organized according to different categorizations. These include the basic hierarchical data

schema (e.g. CPACS), but also, for instance, a categorization according to the node types in the MDO system

(see Fig. 10).

The latter can for instance be helpful, when multiple competences modify the same variable. This so-called

collision can potentially cause problems such as inconsistencies in the MDO system and therefore needs to

be at least recognized by an MDO integrator. Note that the tree layout shown in Fig. 10 is not fully expanded

to the last leaf nodes, the node sharedCoupling is collapsed while it is indicated in the brackets that there are

six leaf nodes contained here. This feature gives the user an idea on how many variables are contained in

the layout, even when the tree is not fully expanded, and therefore keeps the layout clear, which is especially

required for large data sets.

hVISTOMS for Sellar problem available at: https://www.agile-project.eu/files/VISTOMS_SellarProblem
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Figure 10: Tree layout according to node levels, Sellar problem DOE

Each of the nodes in the tree layout can be further examined via right-click. In the example given in Fig. 9 the

selected node of interest is variable z2. Several options for examination exist, such as indication of general

information about a node (name, type, dimension or its current value), as can be seen in Fig. 9, overlay frame

2. Another option is to display the occurrence/usage of a node in the MDO system. This means it can be

highlighted where in the MDO system a node is processed from one competence to another by highlighting

the respective edges (see Fig. 9, overlay frame 3). This option provides valuable information when setting up

a problem solution, because the MDO integrator can easily examine how the competences are connected to

each other and which of the processed variables are of most interest due to their occurrence in the system.

Thus, an overview on whether the competences are connected correctly, or at least as expected, is given.

Furthermore, it is possible to download the tree layout as an XML file (including current values of leaf nodes)

in order to, for example, manually adjust the data set or to simply extract the data from the visualization.

These dynamic, interactive inspection possibilities are the major advantage of the presented visualization

package and make it a convenient debugging tool for MDO systems of arbitrary size and complexity.

The above described techniques, developed in the course of this research, are quite similar for all three of the

visualizations (XDSM, Edge Bundling View, and Sankey Diagram). Thereby, recurring visualization elements

are established, which facilitates the usability of the functions.

Edge Bundling View

The so-called Edge Bundling view is a circular layout of interconnected elements and was adapted from an

example by Bostock [16]. The basic idea of this visualization is given in Fig. 11 with the example of the Sellar

problem RCG.

Each of the blue lines indicates a general dependency between two elements. The focus can be set on any

element by hovering over it with the cursor (c.f. element D1 in Fig. 11). The red lines indicate input flow to the

element, the green lines indicate output flow from the element. Further detailed inspections can be carried

out via right-click on the connecting lines or on the elements, similarly to what has been described for the

XDSM in the previous section.

In contrast to the XDSM view, the Edge Bundling view only provides data information, i.e. the interconnections

of the competences and the data processed between them, whereas the workflow process information cannot

be displayed. On the other hand, it visualizes the connections among the competences more intuitively.

Sankey Diagram

The Sankey Diagram was first introduced by Henry Riall Sankey in 1896 for the visualization of energy flows

in steam engines [25, 26]. A variation of the conventional layout is the bi-directional Sankey Diagram, which

was used in a D3.js-based package by Atkinson in 2015 [27]. While the conventional layout only considers

one flow direction, the bi-directional layout is able to account for feed-forward and feedback information flow

between the elements at the same time. The Sankey Diagram used in the presented research is based on the

developments by Atkinson. An example of the visualization for the Sellar problem RCG is shown in Fig. 12.

Again for any competence in the system, input information flow is displayed in red, output information flow

is displayed in green. The width of the connecting arrows refers to the amount of information transferred

between two elements. A connection with one hundred variables transferred from one element to another will

appear wider than one with only ten variables. As with the two other visualizations, it is possible to further

analyze the graph with help of the previously described dynamic inspection capabilities.
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Figure 11: VISTOMS Edge Bundling view for the Sellar problem RCG
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Figure 12: VISTOMS Sankey diagram for the Sellar problem RCG
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3. RESULTS

Within the scope of the AGILE project, the visualization package presented in section 2.3 has already been

intensively used and tested by multiple AGILE project partners for various MDO problems. The developed

capabilities have proven to effectively assist the MDO integrator in the problem formulation process [28]. In

this section, the results of the visualization enhancements will be presented with regard to a tool repository

containing a collection of DUT aircraft design toolsi. This use case concerns the aerostructural optimization

of an aircraft wing. The starting point of this case is a tool repository containing over 28,000 variables and

over 37,000 data connections based on 29 function nodes. More details on this case study can be found

in [22].

XDSM

Fig. 13 shows an extraction of the XDSM for the DUT wing design MDO system. Using the dynamic visualiza-

tions described in section 2.3 the MDO system can be examined in detail. The focus of Fig. 13 is set on the

two input edges of the competence EMWET, a tool that estimates the wing mass. A right click on the input

edge coming from the competence HANGAR[AGILE_DC1_L0_MDA], which provides an initial parametrized

data set of the aircraft, leads to a hierarchical tree layout containing 167 pipeline variables as a subset of

the CPACS data schema (Fig. 13, overlay frame 1). The expanded tree layout indicates that, for instance,

the geometry of the main wing (wing[mainWing_wingID] is passed from HANGAR[AGILE_DC1_L0_MDA] to

EMWET, which seems plausible, as the wing mass is strongly affected by its geometry. A right click on the

wing geometry node enables a detailed examination of the node characteristics as displayed in overlay frame

2. Displaying the usage of the node, it can also be seen that the wing geometry is transferred at five other

edges in this particular extraction of the XDSM (red highlighted edges).

Coordinator

CNSTRNT[fuelTankVolume]

CNSTRNT[wingLoading]

EMWET

GACA[mainWingFuelTankVol]

GACA[mainWingRefArea]

HANGAR[AGILE_DC1_L0_MDA]

1 conn7

1 conn7

5 inp7

134 conn7

8 inp74 inp7

2 conn7

1 conn7

2 inp7

1 outp7

2 outp7

1105 outp7

2 outp7

1 outp7

167 conn7

12 inp7

118 conn7

2 inp7

2

right click

rig
h
t
click

1

3

Figure 13: VISTOMS XDSM for the DUT wing design RCG

The other input edge (12 inp.) in the top of EMWET is provided by the so-called Coordinator, which rep-

resents the outer world and operates as the main control function of the MDO system (see Fig. 13, overlay

frame 3). This means that every variable passed from the Coordinator to a competence is not provided by any

other competence in the MDO system. For aircraft-specific information, such as the geometry or mass data,

this should normally be avoided, because in that case, the user would have to specify the values manually. In

the presented MDO system, however, it can bee seen that only tool specific information, i.e. the tool settings

iVISTOMS for DUT wing design available at: https://www.agile-project.eu/files/VISTOMS_TUDWingDesign
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of EMWET are processed here. For an MDO integrator, this leads to the conclusion, that EMWET receives

all the required input data by the competences available in the tool repository. If this was not the case, the

integrator would have to provide the missing information himself, or include an additional competence that

can provide it.

As mentioned in section 2.2, in the course of the MDO development process the MDO system at hand

becomes more and more specified moving from a tool repository to an MDO problem and finally towards one

or more MDO solution strategies (see Fig. 1 and Fig. 5). Within the scope of AGILE, the XDSM view has

proven to be a valuable visualization technique to grasp the full description of an MDO system. Especially in

the later phases of the MDO development process it effectively combines the information of MDAO data and

process graph (cf. Fig. 5) in one single view.

MDGq

T7 qTl Coordinator

qlpHANGAR[AGILE_DCq_WP._wing_startingpoint]

V7 hv8l DOE

8l SCAMvmerged[Jmodes]

Bl GACAvmerged[Vmodes]

J7 cv.l Converger

.lpQ8D[FLC]vEMWETvseq

.lpQ8D[VDE]vSMFAvseq

.l MTOW

ul OBJ

ul CNSTRNTvmerged[Vmodes]

VT inpQ

q.q connQ

V connQ

qJ connQ

q connQ

qB inpQ

qTc connQ

q connQ

qJ connQ

8 outpQ

8 inpQ

q connQ

q connQ

B inpQ

q connQ

V connQ

Vq inpQ

qT8 connQ

c connQ

h inpQ

qqh connQ

qJ connQ

8 inpQ

V connQ

V connQ

c inpQ

q connQ

V connQ

V inpQ

V connQ

u inpQ

q connQ

q connQ

right click

Figure 14: XDSM of a DOE with Jacobi converger for the DUT wing design

Fig. 14 shows the XDSM view of an MDO solution strategy for the DUT wing design. The presented MDO

architecture is a DOE with an internal Jacobi converger for the wing design use case. Compared with the

XDSM for the RCG from Fig. 13 it can be seen that the amount of competences and data connections is nar-

rowed down significantly for the specific use case. The coloring of the competences indicates their role in the

MDO architecture (c.f. Fig. 5). The additional competences DOE and Converger have been integrated au-

tomatically by KADMOS. They are characteristic functions of this particular MDO architecture. Furthermore,

in addition to the gray data pipelines connecting the competences (MDAO data graph), the process lines

are now visible, which indicate the order of the workflow execution (MDAO process graph). These have also

been included within the step of defining the MDO solution strategy by KADMOS. To give an example, the pro-

cess lines going from the Converger to the competences Q3D[FLC]-EMWET-seq, Q3D[VDE]-SMFA-seq, and

MTOW indicate that these three competences are executed in parallel, which is a specific characteristic of

the Jacobi converger used in this MDO problem solution. As in any standard XDSM, this process information

is also provided by means of the sequence number assigned to each diagonal block. In this case the three

aforementioned competences have all the same sequence number 6. The competence Q3D[FLC]-EMWET-

seq is a combination of the sequentially running competences Q3D and EMWET, which have been merged

into one competence block. Q3D performs an inviscid aerodynamic analysis to evaluate the aerodynamic

loads on the wing, which are then used for the wing mass estimation by EMWET.

A right-click on a competence gives the user the option to show the previously described hierarchical tree

layout (see Fig. 13) of either all input or all output data for the respective competence. Additionally, the user

can be provided with competence information, including e.g. its description, its role in the problem definition

or its role in the MDO architecture.

Within the process of re-configuring and adding new MDO problem solutions to an MDO case with KADMOS,

the number of different MDO architectures for the same design problem can become quite large. One of the

advantages of the presented visualization package is the fact that all of the graphs produced are eventually

combined into one single package and can be selected via a drop-down list in the main menu of VISTOMS.
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Edge Bundling View

In Fig. 15 the Edge Bundling view for the DUT wing design problem with a DOE Jacobi architecture is shown.

As can be seen from the figure, the number and type of connections between the competences can be

grasped very quickly in this view.

right click

right click

Figure 15: Edge Bundling view for the DOE Jacobi for the DUT wing design

Therefore, within the scope of VISTOMS the Edge Bundling view is very convenient to provide a general

overview on interconnections between competences in an MDO system. It is noticeable that for the tree

view of an edge between two competences, one can see the connections in both directions at the same

time (if applicable). Input nodes are marked as red circles, output nodes are marked as green circles, while

the direction of the connection is given in the headline of the tree view (see overlay frame in the bottom of

Fig. 15).

Sankey Diagram

An example of the Sankey diagram for the DUT wing design with DOE Jacobi architecture is shown in Fig. 16.

As with the Edge Bundling view, the information of the MDO process graph is not provided in this visualization.

Instead, the Sankey Diagram is a very convenient way to illustrate the magnitude of competence intercon-

nections. To give an example, it becomes clear from Fig. 16 that the competence Q3D[FLC]-EMWET-seq is

strongly coupled to the HANGAR tool, whereas the connection to the Converger is rather loose. This is plau-

sible, because the HANGAR tool provides the full geometry description of the aircraft, while the convergence

criteria of the Converger competence are only a small number of mass positions. Of course, in order to grasp

the actual properties of the connections, these have to be examined in detail, which can be accomplished by

the various inspection options of VISTOMS.
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Figure 16: Sankey Diagram the for DOE Jacobi for the DUT wing design

4. CONCLUSIONS

A new approach for the manipulation and visualization of MDO systems has been presented, which combines

three major developments from the AGILE project:

• the standardized MDO workflow storage format CMDOWS

• the MDO problem formulation system KADMOS for automated machine-readable graph data

• the D3.js-based visualization package VISTOMS

The visualization capabilities have been demonstrated on an MDO system based on a realistic aerostructural

wing design case to explain its set-up and show the ability to support an increased understanding of large

MDO systems down to the smallest detail. The package reduces both a technical and non-technical barrier

of performing MDO. The technical barrier concerns the fully automated formalization and integration of large

MDO problems with KADMOS. The non-technical barrier is tackled by the automatic, dynamic visualizations

described in this paper that provide the opportunity to inspect, share, and document large MDO systems

within heterogeneous design teams. Furthermore, the developments presented in this paper were embedded

into the larger software architecture developed within the AGILE project called the AGILE framework, which

is discussed in [15].

All developments presented in this paper are open-source and form a fundamental output of the AGILE

project. Future work for the open-source platforms will focus on extending their capabilities to handle a larger

variety of MDO systems, as they will be put to the test in future AGILE design campaigns and other MDO

projects.
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