

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

AIRCRAFT DESIGN AND SYSTEMS GROUP (AERO)

Specific Fuel Consumption of Jet Engines – Implications in Aircraft Design and Performance Calculations

Dieter Scholz

Hamburg University of Applied Sciences

13th European Workshop on Aircraft Design Education (EWADE 2017)

Palace of the Parliament, Bucharest, 19 October 2017

Abstract

Basic considerations about an overall efficiency of an aircraft lead to the conclusion that a powerspecific fuel consumption (PSFC) has to be constant, whereas a thrust-specific fuel consumption (TSFC) has to be proportional to speed. This however, leads to a contradiction, because the fuel consumption at zero speed cannot be zero. Furthermore, specific fuel consumption is a function of thrust (or drag) which varies with speed. This links SFC not only to engine characteristics, but to the whole aircraft and its flight condition. We understand that (in contrast to tradition) the Breguet range equation for jets could be written with a (constant) power-specific fuel consumption (PSFC). Optimizing for maximum range now leads to a different optimum speed compared to a derivation based on a constant thrust-specific fuel consumption (TSFC). We also understand why flying low and slow (for reduced fuel consumption) does not work as well as expected – even for a newly designed aircraft for which the wing area is not yet fixed.

Keywords: specific fuel consumption, SFC, Breguet, range, fuel, saving, flight, low, slow

Creative Commons copyright license for the public: Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0

Specific Fuel Consumption of Jet Engines – Implications in Aircraft Design and Performance Calculations

Contents

- Introduction
- The SFC Paradox
- Jet Engine SFC Characteristics
- The Torenbeek / Herrmann Model Evaluated
- Optimum Range Speed for a Jet
- Implications to "Flying Low and Slow"
- Summary
- Contact

Introduction

- It is: $c = c_T = \text{TSFC}$, the thrust-specific fuel consumption as used for jet aircraft Typical value: 16 mg/N/s
- It is: $c' = c_P = PSFC$, the power-specific fuel consumption as used for propeller aircraft
- The fuel mass flow for jet aircraft is $\dot{m}_F = c T$
- The fuel mass flow for propeller aircraft is $\dot{m}_F = c' P$
- Power is P = T V = D V

with

T thrust

D drag

V speed

- *H* heating value. Kerosene: 42,5 MJ/kg
- *E* energy

The First TSFC-Paradox

We define a "mystical" overall efficiency for an aircraft, $\boldsymbol{\eta}$

$$H = \frac{E}{m}$$

$$E = P$$

$$\dot{F} = P$$

$$\dot{F} = P = T \cdot v = D \cdot v$$

$$M = 2.3, M = V/a$$
for speed of sound
$$a = 295 \text{ m/s in } h > 11 \text{ km}$$

$$C_T \cdot H \cdot \eta = v$$

$$\eta = 0.35 \text{ at } M = 0.8$$

$$\eta = 0.22 \text{ at } M = 0.5$$

$$\eta = 0 \text{ at } M = 0$$

13th European Workshop on Aircraft Design Education EWADE 2017 19.10.2017, Slide 5 Aircraft Design and Systems Group (AERO)

The Second TSFC-Paradox

We learn from the first Paradox:

The trust-specific fuel consumption

$$c_T = \frac{V}{\eta H}$$

 $c = c_a V$

increases proportionally with speed, V

E.g. during take-off at V = 0 m/s

 $c_T = 0$ and hence also

 $\dot{m}_F = 0$

Doctorante : Élodie Roux.

Date : 2002

Dieter Scholz: SFC of Jet Engines – Implications

13th European Workshop on Aircraft Design Education EWADE 2017 19.10.2017, Slide 7 Aircraft Design and Systems Group (AERO)

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Paradox Eliminated with TSFC from Common Sense

$$c = c_a V + c_b$$

$$V = a M = a_0 \sqrt{\frac{T}{T_0}} M = a_0 \sqrt{\theta} M$$

$$c = c_a a_0 \sqrt{\theta} M + c_b$$

PSFC from First Principles

$$\dot{m}_{F} = c_{p} \cdot P$$

$$P = \dot{m}_{F} \cdot H \cdot 3$$

$$p = c_{p} \cdot p \cdot H \cdot 3 \qquad 3 = \frac{1}{c_{p} \cdot H}$$

The <u>power-specific</u> fuel consumption PSFC

$$c' = c_P = \frac{1}{\eta H}$$

is based on first principles constant.

TSFC from Literature (Mattingly)

Jack Mattingly

Puisque nous nous intéressons essentiellement aux réacteurs ayant un grand taux de dilution λ , nous retiendrons le modèle correspondant au "High-bypass-ratio turbofan" qui exprimé en unités du système international devient :

 $C_{SR} = (1.13 \ 10^{-5} + 1.25 \ 10^{-5} M) \sqrt{\theta}$

C_{SR} :	Consommation Spécifique Réacteur	(kg/s)/N
M:	Mach de vol	
θ :	Rapport des températures en vol et au sol $\theta = \frac{T}{T_0}$	
T:	Température ambiante en vol	K
T_0 :	Température au sol $T_0 = 288.15K = 15 \degree C$	K

Considering technology improvements corrected with factor (Roux): 0.92 yields

$$c = (1,04 \cdot 10^{-5} + 1,15 \cdot 10^{-5}M) \sqrt{\frac{T(h)}{T_0}} \frac{\text{kg}}{\text{Ns}}$$

Note: This is different from "Common Sense Equation":

$$c = c_a a_0 \sqrt{\theta} M + c_b$$

Dieter Scholz: SFC of Jet Engines – Implications

TSFC from Literature (BADA, Juchmann)

EUROCONTROL: User Manual for the Base of Aircraft Data (BADA). EEC Technical/Scientific Report No. 14/04/24-44, Revision 3.12. – URL: https://www.eurocontrol.int/sites/default/files/field tabs/content/documents/sesar/user-manual-bada-3-12.pdf

"For jets the thrust specific fuel consumption, $\eta [kg/(min kN)]$, is specified as a function of the true airspeed, VTAS [kt]:" $\eta = \mathbf{C}_{f1} \times \left(1 + \frac{\mathbf{V}_{TAS}}{\mathbf{C}_{f2}}\right)$

jet:

Evaluation of 100 jet aircraft from BADA to calculate average coefficients:

c f1 = x kg/min/kNc f2 = y kt

Compare with:

Aircraft Design and Systems Group (AERO)

$$c = c_a V + c_b$$

19.10.2017, Slide 11

TSFC Calculation with Torenbeek / Herrmann

Dieter Scholz: SFC of Jet Engines – Implications 13th European Workshop on Aircraft Design Education EWADE 2017 19.10.2017, Slide 12 Aircraft Design and Systems Group (AERO)

TSFC Calculation with Torenbeek / Herrmann

$$\begin{aligned} OAPR &= 2.668 \cdot 10^{-5} \, 1/\,\text{kN} \cdot T_{TO} + 3.517 \cdot BPR + 0.05566 \\ \eta_{comp} &= \frac{-2 \,\text{kN}}{2 \,\text{kN} + T_{TO}} - \frac{0.1171}{0.1171 + BPR} - M \cdot 0.0541 + 0.9407 \\ \eta_{turb} &= \frac{-3.403 \,\text{kN}}{3.403 \,\text{kN} + T_{TO}} + 1.048 - M \cdot 0.1553 \\ \eta_{inlet} &= 1 - (1.3 + 0.25 \,BPR) \cdot \frac{\Delta p}{p} \\ \eta_{fan} &= \frac{-5.978 \,\text{kN}}{5.978 \,\text{kN} + T_{TO}} - M \cdot 0.1479 - \frac{0.1335}{0.1335 + BPR} + 1.055 \\ \eta_{noz} &= \frac{-2.032 \,\text{kN}}{2.032 \,\text{kN} + T_{TO}} + 1.008 - M \cdot 0.009868 \end{aligned}$$

T(h) is the temperature at altitude, $T_0 = 288$ K, T_{TO} is the take-off thrust of one engine and $\Delta p/p \approx 0.02$ is the inlet pressure loss, the ratio of specific heats $\gamma = 1.4$. Efficiencies are only valid for $T_{TO} > 80$ kN.

13th European Workshop on Aircraft Design Education EWADE 2017 19.10.2017, Slide 14 Aircraft Design and Systems Group (AERO)

13th European Workshop on Aircraft Design Education EWADE 2017 19.10.2017, Slide 15 Aircraft Design and Systems Group (AERO)

13th European Workshop on Aircraft Design Education EWADE 2017 19.10.2017, Slide 16 Aircraft Design and Systems Group (AERO)

13th European Workshop on Aircraft Design Education EWADE 2017 19.10.2017, Slide 17 Aircraft Design and Systems Group (AERO)

13th European Workshop on Aircraft Design Education EWADE 2017 19.10.2017, Slide 18 Aircraft Design and Systems Group (AERO)

Consequences for the Optimum Range Speed of a Jet

Höchstflug Endurar	$daner = \frac{dm}{dt} = -Q$	Reichweite dm range dR = -			
Prop	Jet	Prop	Jet		
$\frac{dm}{dt} = -\frac{c' \mathcal{D} V}{\mathcal{P}}$	$\frac{dm}{dt} = -c \cdot D$	$\frac{dm}{dR} = -\frac{c'.D}{p}$	$\frac{dm}{dR} = -c \cdot \frac{D}{V}$		
Mihimum power	Minimum drag	Minimum drag	Siehe unten		
Voipt = Vimp = 1/3 Vind	Vopt = Vund	Vopt = Vund	Vapt = 43 Vind		
	C_{p}	eversion: $=\frac{c_T}{V}$	IE lu mi g lu ma Jet		

Dieter Scholz: SFC of Jet Engines – Implications

13th European Workshop on Aircraft Design Education EWADE 2017

19.10.2017, Slide 19 Aircraft Design and Systems Group (AERO)

Aero	Hochschule für	Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences			
AIRCRAFT DESIGN AND SY	STEMS GROUP (AERO)				
Flyir (and the To	ng Low and Slow bols for its Calculation)	Fuel Saving Reference			
Dieter Scholz	Hamburg University of Applied Sciences	0.68 0.72 0.76 M			
12th European Workshop or Delft, 10. September 2015	n Aircraft Design Education (EWADE) 2015				

Results

m/s	224	220	215	210	205	200	190
kg/m³	0,364	0,378	0,396	0,415	0,435	0,458	0,507
m	10999	10698	10333	9955	9563	9158	8300
K	217	219	221	223	226	229	234
m/s	295	296	298	300	301	303	307
	0,76	0,74	0,72	0,70	0,68	0,66	0,62
	0,8450	0,8988	0,9399	0,9651	0,9802	0,9891	0,9970
	0,0011	0,0009	0,0007	0,0005	0,0004	0,0003	0,0001
	17,9	18,6	19,1	19,4	19,7	19,8	20,0
kg/N/s	1,66E-05	1,65E-05	1,64E-05	1,63E-05	1,61E-05	1,60E-05	1,58E-05
m	2,47E+07	2,53E+07	2,56E+07	2,56E+07	2,55E+07	2,52E+07	2,45E+07
	0,893	0,895	0,896	0,897	0,896	0,895	0,892
	0,1072	0,1048	0,1036	0,1034	0,1040	0,1049	0,1077
	0,00%	-2,26%	-3,39%	-3,51%	-3,01%	-2 ,11%	0,48%
	m/s kg/m³ m K m/s kg/N/s m	m/s 224 kg/m³ 0,364 m 10999 K 217 m/s 295 0,76 0,8450 0,0011 17,9 kg/N/s 1,66E-05 m 2,47E+07 0,893 0,1072 0,00% 0,00%	m/s 224 220 kg/m³ 0,364 0,378 m 10999 10698 K 217 219 m/s 295 296 0,76 0,74 0,8450 0,8988 0,0011 0,0009 17,9 18,6 kg/N/s 1,66E-05 1,65E-05 m 2,47E+07 2,53E+07 0,893 0,895 0,1072 0,1048 0,00% -2,26% 0,00% -2,26%	m/s224220215kg/m³0,3640,3780,396m109991069810333K217219221m/s2952962980,760,740,720,84500,89880,93990,00110,00090,000717,918,619,1kg/N/s1,66E-051,65E-051,64E-05m2,47E+072,53E+072,56E+070,8930,8950,8960,10360,00%-2,26%-3,39%	m/s 224 220 215 210 kg/m³ 0,364 0,378 0,396 0,415 m 10999 10698 10333 9955 K 217 219 221 223 m/s 295 296 298 300 0,76 0,74 0,72 0,70 0,8450 0,8988 0,9399 0,9651 0,0011 0,0009 0,0007 0,0005 17,9 18,6 19,1 19,4 kg/N/s 1,66E-05 1,65E-05 1,64E-05 1,63E-05 m 2,47E+07 2,53E+07 2,56E+07 2,56E+07 0,893 0,895 0,896 0,897 0,1072 0,1048 0,1036 0,1034 0,00% -2,26% -3,39% -3,51%	m/s 224 220 215 210 205 kg/m³ 0,364 0,378 0,396 0,415 0,435 m 10999 10698 10333 9955 9563 K 217 219 221 223 226 m/s 295 296 298 300 301 0,76 0,74 0,72 0,70 0,68 0,8450 0,8988 0,9399 0,9651 0,9802 0,0011 0,0009 0,0007 0,0005 0,0004 17,9 18,6 19,1 19,4 19,7 kg/N/s 1,66E-05 1,64E-05 1,63E-05 1,61E-05 m 2,47E+07 2,53E+07 2,56E+07 2,55E+07 0,893 0,895 0,896 0,897 0,896 0,1072 0,1048 0,1036 0,1034 0,1040 0,00% -2,26% -3,39% -3,51% -3,01%	m/s 224 220 215 210 205 200 kg/m³ 0,364 0,378 0,396 0,415 0,435 0,458 m 10999 10698 10333 9955 9563 9158 K 217 219 221 223 226 229 m/s 295 296 298 300 301 303 0,76 0,74 0,72 0,70 0,68 0,66 0,8450 0,8988 0,9399 0,9651 0,9802 0,9891 0,0011 0,0009 0,0007 0,0005 0,0004 0,0003 17,9 18,6 19,1 19,4 19,7 19,8 kg/N/s 1,66E-05 1,65E-05 1,64E-05 1,63E-05 1,61E-05 1,60E-05 m 2,47E+07 2,53E+07 2,56E+07 2,55E+07 2,52E+07 2,52E+07 0,893 0,895 0,896 0,897 0,896 0,895 0,895

- E = L/D increases continuously with flying slower (down to M = 0.3).
- Thrust-specific fuel consumption *c* = **SFC decreases** with flying slower.
- The Breguet factor B_s is proportion to speed and decreases once E stops increasing with substancial rate.
- Fuel consumption decreases as long as the Breguet factor B_s increases.

Summary / Conclusions

- TSFC is certainly not constant with speed.
- PSFC is constant with speed following first principles (assuming constant overall efficiency), but is also not constant based on the (better) linear TSFC function.
- PSFC can be approximated as constant within a usable band of Mach numbers in cruise according to the Torenbeek / Herrmann model.
- In search of an optimum cruise speed (longest range, or minimum fuel for given range), the "classical derivation", which considers TSFC = const. is wrong.
- Working with a constant PSFC yields that the optimum range speed is the minimum drag speed.
- A detailed calculation showed that TSFC (and hence also PSFC) is only moderately dependant on thrust. Looking for the best cruise speed means that thrust varies. Hence this needs to be included also in the TSFC & PSFC calculation. **Doing so increased the optimum range speed only very little above minimum drag speed**.
- "Flying low an slow" (in contrast to aerodynamic considerations alone) does not work well due to engine fuel burn characteristics.

Specific Fuel Consumption of Jet Engines – Implications in Aircraft Design and Performance Calculations

Contact

info@ProfScholz.de

http://www.ProfScholz.de

