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Abstract. Aircraft design process is typically aimed to provide the optimal solution for some 

mission scenario(s). Especially during initial design phases, engineers assume level, straight 

flight as dominant, and the aircraft performance calculations are based on this assumption. 

Mission scenarios for UAVs are different, and sometimes consist of significant time spent in 

climb (e.g. atmosphere research) or turn (observation of fixed point) phases. In this paper, 

the optimisation incorporating different flight conditions is carried out for the empennage of 

PW-141.1 “Samonit” aircraft. Two different boom-mounted empennage design 

arrangements are investigated: V-tail (2 surfaces at some angle) and conventional (horizontal 

and two vertical surfaces). The objective is to assess the effect of mission scenario on the 

optimal empennage arrangement, showing which is superior in particular conditions. The 

objective function in optimisation process is maximisation of the aircraft's performance, 

defined as maximum lift to drag ratio, which for the empennage design is minimisation of 

drag. Optimal shape is chosen not only basing on the performance, but also robustness of the 

design. 

Keywords. empennage drag reduction, aerofoil optimisation, robust optimisation, surrogate 

modelling, Kriging 

Symbols. 

𝛼 Angle of attack 𝑅𝑒 Reynolds number 

𝑐𝑙 Lift coefficient 𝜌 Free stream density 

𝑐𝑑 Drag coefficient 𝑉∞ Free stream velocity 

𝐹𝑖,𝑜𝑏𝑗 i-th objective function 𝑤𝑖 
i-th weighting of objective 

function 

𝑓𝑐𝑑
 

Scaled drag coefficient objective 

function 
𝑦𝑖 i-th parameter 

𝑓𝑠,𝑜𝑏𝑗 Weighted multi objective function   

 

1 Introduction 

Aircraft performance can be judged in various ways, which typically depend on their mission. For big 

airliners, what counts, is amount of fuel burnt per passenger, gliders are assessed by endurance and/or 

range. In case of Unmanned Air Vehicles (UAVs) the most popular mission scenarios are surveillance 

related [5], which require long endurance and range. Both are inversely proportional to drag 

coefficient [10], hence, drag minimisation is one of the key aspects during aircraft design process. 



 The optimisation process goal is an objective function, or if there are many goals- a set of 

objective functions to be minimised or maximised. In practice all problems have multiple goals [4], 

however, as it is not possible to consider all at the same time, only more important are investigated. 

Single objective, empennage drag minimisation problem, results in multiple objectives, when a 

designer takes into consideration different flight phases. Example Medium-Altitude-Long-Endurance 

(MALE) UAV drag contribution from empennage, varies between 10% (in straight flight) to 30% 

(during descent) of total drag [8]. It is clear, that different flight conditions, result in different designs, 

which minimise drag. To find the one, which results in total drag minimisation, throughout the whole 

flight, is the real design issue. 

 Design is said to be robust, when a small perturbation of its parameter value does not cause big 

change in the performance of this design [13]. This holds for any parameters that can change, not only 

environment related (e.g. free stream conditions) but also those that define the design geometry. 

During whole flight, the empennage operates at different conditions, hence robustness of the design 

has to be assessed.  

 The parametric definition of empennage would result in at least 20-30 parameters [12], which 

makes the optimisation very expensive. It is thus reasonable to split the whole optimisation into few 

problems of lower dimensionality. Such approach limits the chance of finding the real optimum, 

however, allows better exploration and exploitation of search space [4]. Such a split, in wing 

optimisation, often separates aerofoil and planform [12]. 

 Aerofoil optimisation is a problem typically tackled by global search methods [7,11,14,15], most 

commonly genetic algorithms (GA) and Particle Swarm Optimisation (PSO). Local search is not 

appropriate in this problem area, due to the nature of search space, with number of local minima. 

Various fidelity solvers can be used to calculate objective function. Starting with low-fidelity X-FOIL 

[12,15], ending with high-fidelity Reynolds-Averaged-Navier-Stokes (RANS) solver, coupled with 

turbulence models [7,11,14].  

 Surrogate modelling driven optimisation is getting increasingly popular, as well as its use to assess 

design sensitivities [4]. [14] present an approach to robust aerofoil optimisation, which uses surrogate 

model to establish relationship between Mach number, design variables and aerodynamics. Despite 

their advantages, response surface methods are, however, still not very popular approach, with only a 

few attempts to optimise aerofoil. These attempts, however, do not take into account varying 

conditions. 

1.1 PW-141 “Samonit” 

Samonit was a project aimed to develop a long-endurance UAV for surveillance purposes [3,4]. The 

base configuration has the boom-mounted v-shaped empennage (Figure 1). The design of the 

empennage was constrained by the parachute recovery system, requiring space between two booms. 

This design was created for border surveillance, which results in mission scenario not involving many 

manoeuvres. However, if the same aircraft was used for different mission type, involving more turning 

or ascending/descending, v-tail would be less appropriate, and classical empennage with separate 

vertical and horizontal surfaces would probably be a better choice. 



 
Figure 1 Base configuration of PW141 „Samonit“. 

 In the current paper, the robust design process of aerofoil, used for the empennage of the aircraft in 

the MALE class, is presented. Two cases are examined: symmetric aerofoil (used for vertical stabiliser 

or for v-tail), and asymmetric aerofoil (used for tailplane). The first case is aimed at finding the design 

which minimises drag, taking into account different angles of attack. The second case aims at finding 

Pareto front for drag minimisation, and lift-to-drag ratio maximisation. The process is driven by 

surrogate modelling of moderately expensive, high-fidelity RANS calculations, coupled with 

turbulence model. The usefulness of such approach to aerofoil optimisation is examined, by 

comparing results, with some widely used NACA aerofoils. 

2 Optimisation of symmetric aerofoil 

Symmetric wing, as a vertical stabiliser, is always a part of conventional empennage, it can be also 

used for v-tail. Because symmetric wing is based on symmetric aerofoil, this was the first step in 

empennage design optimisation. The process of optimisation guided by surrogate modelling performed 

in the current follows a framework on Figure 2. During the first stage following aspects are defined: 

1. Fixed parameters. These are the parameters that will not be changed during optimisation. 

The actual engineering problem does not have fixed parameters, however, without some 

simplifications the problem would become too complex. In case of aerofoil optimisation, the 

chord is assumed constant (1m) and free stream condition was defined. 

2. Objective function(s). Symmetric aerofoil optimisation in the current paper only finds a 

design which minimises drag. 

3. Constraints. In case of aerofoil optimisation the number of constraints can be defined, 

including structure and flight mechanics related. In this work an aerofoil which minimises 

drag will be searched and compared to NACA0010. For this reason aerofoils with sufficient 

(10% chord) thickness will be considered. Constraints, however, can be approached in various 

ways, e.g. penalty functions [16], and inevitably lead to multidisciplinary problem (structure-

aerodynamics-flight mechanics coupling). A fixed constraint can eliminate a design which in 

overall would be the best (even though it breaches the constraint). For this reason no designs 

were eliminated due to constraint violation, however, those that breach it are appropriately 

marked. 



 
Figure 2 Aerofoil optimisation framework. 

2.1 Parametrisation 

Aerofoil parametrisation can be done in many ways, most commonly used are PARSEC [17] and 

NURBS [11], which define top and bottom curves with at least 10 parameters.  In this paper an 

intuitive 4-parameter parametrisation, basing on NX spline, was adopted. NX creates geometry of the 

spline by construction of non-uniform rational B-spline curve (NURBS) taking as inputs coordinates 

of poles. The weight of each pole in this optimisation was the same, so the spline definition is reduced 

to ordinary B-spline curve. NURBS approach was investigated, and the choice of four points resulted 

from a trade-off between simple shape curves, defined by low number of points, and unrealistic, 

“bumpy” curves resulting from adding more poles. Aerofoil does not require extremely complicated 

curvature definition, and the most important features can be controlled with parameterisation used. 

 Four parameters describing the shape, are coordinates of four guide points (spline poles), in the 

direction perpendicular to chord (y-axis). Positions along the chord (x-axis) were fixed. Continuity at 

the leading edge was assured by the first pole location, above the leading edge. This pole defines 

leading edge curvature. Poles 2 and 3 were located at 20% and 40% of chord and their y-coordinate 



define curvatures of the surface, imply the position and magnitude of maximum thickness. Pole 4 

defines trailing edge angle and the rear curvature. 

 
Figure 3 Symmetric aerofoil parametrisation using 4 parameters. 

 

 𝑦1 (𝑚𝑚) 𝑦2 (𝑚𝑚) 𝑦3 (𝑚𝑚) 𝑦4 (𝑚𝑚) 

Lower limit (𝐿𝐿) 20 50 50 10 

Upper limit (𝑈𝐿) 50 100 100 50 

Table 1 Upper and lower limits of design variables. 

 

Described parametrisation allows to construct some known (e.g. NACA00xx) profiles (with some 

tolerance) and many more, as the poles locations are continuous (in defined range) and independent. 

 

 Both design of experiments and optimisation is performed in scaled variables, i.e. between 0 and 1. 

The conversion between actual and scaled values is made using Equation (1). 

 
𝑆𝑐𝑎𝑙𝑒𝑑 =

𝐴𝑐𝑡𝑢𝑎𝑙 − 𝐿𝐿

𝑈𝐿 − 𝐿𝐿
 (1) 

 Boundary conditions are specified to roughly meet the ‘Samonit’ MALE case. For the analysis, 

free stream velocity was 30 𝑚/𝑠 and the chord was 1𝑚. This gave 𝑅𝑒 = 2 × 106. This choice does 

not limit the generality of the approach- any shock-free problem can be approached (shock can result 

in non-smooth cd variation to input parameters). 

2.2 Design of experiments 

Creating a good quality surrogate model, with limited number of experiments, requires adequate 

choice of the set of experiments. As suggested by Forrester et al. [3], the approach of Morris and 

Mitchell maximin Latin hypercube sampling technique, which ensures good space-filling, was used in 

this work. The MATLAB code used to generate initial sample comes from the optimisation toolbox 

[2]. The size of initial sample is dictated by experience and suggests to sample 10n points [3], where n 

is number of parameters- 40 points were sampled in 4 design variables. 

2.3 Black-box 

Black-box is a function, which takes 4 input parameters and returns drag coefficient (𝑐𝑑). The 

optimisation process in this paper assumed black-box returned values without an error, which is a bold 



assumption, however, the whole process of design optimisation is only used to guide toward optimum 

design. Following steps were within black-box: 

1. Parameters conversion to aerofoil geometry. 

This was achieved using NX spline. The spline was defined as NURBS, basing on poles 

coordinates (input parameters).  

 

2. Automatic mesh generation procedure for all geometries. 

Structured C-mesh was created accordingly to instructions described in [7] to ensure good quality 

mesh for all geometries. This technique provides fine mesh in the areas around aerofoil and in the 

wake. The mesh was refined to obtain grid independence. 

 

 
Figure 4 Automated mesh for sample aerofoil: whole mesh (left) and mesh around aerofoil (right). 

 

3.  Calculation of resulting forces in Fluent. 

This step was the most expensive in the whole optimisation, as each case required around 2000 

iterations for convergence. Flow was defined as air at sea level with 𝜌 = 1.225
𝑘𝑔

𝑚3 , 𝑉∞ = 30
𝑚

𝑠
. 𝐾-

𝜀 turbulence model was coupled with RANS equations, to account for all profile drag constituents. 

The result provided information about forces and their nature (pressure, viscosity). 

 

 The results are accompanied by visualisation of pressure distribution at various angles of attack 

(Figure 5). 



 
Figure 5 Pressure distributions for NACA0010 (top) and sample (bottom) aerofoils, at zero (left) and 5° (right) 

angles of attack. 

2.4 Weighting 

The objective function, taking into account various angles of attack, is of the form: 

 
𝐹𝑜𝑏𝑗 = min [∑ 𝑤𝑖

𝑛

𝑖=𝛼

× 𝑐𝑑(𝑦1, 𝑦2, 𝑦3, 𝑦4)𝑖], (2) 

where i denotes angle of attack and n is number of angles of attack taken into consideration. Finding 

the optimum requires appropriate choice of weights 𝑤𝑖 to account for conditions implied by mission 

scenario. The choice of weights in this report was not aimed at finding exact values, but rather 

showing the general impact of this choice on design. In the optimisation process, there is a trade-off 

between number of angles of attack, at which experiments are performed, which directly influences 

number of direct black-box function evaluations, and the accuracy of the surrogate model. In this 

report only 2 angles of attack were taken: 𝛼 = 0 and 𝛼 = 5°. The choice of more intermediate angles 

of attack is possible, however, drag raise is nearly linear in this regime, and can be accounted for, 

using the chosen ones. 40 black-box function evaluations were made for each α, as defined by 

sampling plan. 

2.5 Surrogate modelling 

After the set of results is obtained the surrogate model was constructed.  Construction of surrogate 

model allows to analyse results with limited data, and prediction of the drag coefficient for any input 

parameters, basing on statistical prediction. Surrogate model was constructed using MATLAB toolbox 

which was developed in [2], available to download, following the procedure: 

1. Start with defined sampling plan and set of observations for each point. 

2. Calculate parameters needed for construction of surrogate model using Kriging [2]. 



3. Search the surrogate model for predicted optimum using genetic algorithm. 

All the assumptions needed for good quality surrogate model [1,2] were satisfied, i.e. continuous 

design variables, smooth nature of the problem (i.e. no gradual change to observation as any design 

variable slightly changes). 

2.6 Robustness 

The robustness of aerofoil design in this work is understood as drag change dependence on the angle 

of attack, i.e. a robust design is not heavily influenced by changing free stream direction. To find the 

solution which gives the total drag minimisation over the whole mission, following procedure is 

followed: 

 
Figure 6 Scheme for search of robust aerofoil design. 

 

 The key point in finding the best design for particular problem is appropriate balance between 

expected flight conditions- weighting definition. This was not in the scope of the current paper, 

however, an example was investigated. 

2.7 Results 

2.7.1 Surrogate model visualisation 

The results are presented on Figure 7. Results are visualised for 𝑤𝛼=0 = 0.9, 𝑤𝛼=5 = 0.1. The effect 

on drag coefficient, of the choice of parameters 𝑦3 and 𝑦4 can be observed, depending on values of 𝑦1 

and 𝑦2. Parameters 𝑦1 and 𝑦2 are on the big axes, 𝑦3 and 𝑦4 are on horizontal and vertical axes of 

small subplots (not marked on Figure). The values of parameters 𝑦1 and 𝑦2 for subplots are 

(0, 0.25, 0.5, 0.75, 1). For example, the central subplot represents 𝑐𝑑 dependence on 𝑦3 and 𝑦4 at 

(𝑦1, 𝑦2) = (0.5,0.5). 



 
Figure 7 Surrogate visualisation of cd predictions depending on parameters values. Parameters y1 and y2 are on 

big horizontal and vertical axes, y3 and y4 on horizontal and vertical axes of subplots. Subplots are created at 

y1,y2 in range (0, 0.25, 0.5, 0.75, 1). 

 

 The advantage of presenting the surrogate in this form is the ability to quickly assess the influence 

of individual parameters on the performance of the design. For example with 𝑦2, 𝑦3 and 𝑦4 fixed, i.e. 

only changing 𝑦1, 𝑐𝑑 can vary by even 0.0024. 𝑦2 is less effective with maximum change in 𝑐𝑑 of 

0.0014. Similarly, the effect of 𝑦3 can be compared at different values of other parameters. For 

example y3 change has slightly more effect in subplot at top left than in subplot on bottom right, which 

means, that at (𝑦1, 𝑦2) = (0,1) 𝑦3 is more sensitive than at (𝑦1, 𝑦2) = (1,0). 

 Another advantage of building a surrogate and visualising it is the application of constraints, which 

were not included in the beginning. For the constraint of minimum thickness being at least 10% of 

chord, the constraint can be drawn on each subplot. The constraints were not included in this work, as 

practical engineering problem requires application of penalty function, rather than exclusion of 

designs, especially just below the constraint. 

 Finally, this from of design space analysis allows immediate determination of design robustness in 

terms of geometry. In this example there is no region of rapid change in 𝑐𝑑, which means any design is 

robust in terms of parameters choice, i.e. small change in geometry due to manufacturing precision, 



service deterioration etc.  The aspect of design robustness in terms of unknown mission flight 

conditions, i.e. as a function of 𝑤𝑖 can be also assessed with the use of surrogate modelling.  

2.7.2 Optimised aerofoils 

The resulting aerofoils are presented on Figure 8, along with NACA0010. The geometry observations 

are: maximum thickness in the middle, sharp leading edge and trailing edge at higher angle than in 

NACA0010. These tendencies for drag reduction were confirmed in literature [6]. At zero angle of 

attack the aerofoil tends to minimum thickness, while at 5° it is thicker than NACA0010. Important 

result is that the aerofoil optimised for 𝛼 = 5° has lower𝑐𝑑  than NACA0010 also at 𝛼 = 0 (Figure 

10). 

 
Figure 8 Results of optimisation showing optimized aerofoil geometries for two angles of attack and compared 

to NACA0010. 

 

 Figure 9 presents comparison of pressure coefficients for optimised aerofoils and NACA0010. 

Figure 5 presents pressure distribution for NACA0010 (left) and aerofoil optimised for 𝛼 = 5° (right), 

for 𝛼 = 0 (top) and 𝛼 = 5° (bottom). 

 
Figure 9 Pressure coefficient at the surface of optimised aerofoils and NACA0010. 

 

 Figure 10 presents the comparison of 𝑐𝑑 at 𝛼 = 0 and 𝛼 = 5°. The designs were marked 

depending on satisfying of 10% chord thickness constraint. Interesting fact is that the initial sample 



provided many designs, dominating NACA0010 in both free stream conditions. This shows that the 

parametrisation was created such that most of designs within optimisation space were decent, and that 

optimisation space was not particularly wide.  

 
Figure 10 Graph showing drag coefficient at 0 and 5 angle of attack for all cases calculated. Best designs 

minimise both cd i.e. lie in bottom left part of the graph. 

 

3 Optimisation of asymmetric aerofoil 

Asymmetric aerofoil optimisation is more complicated, due to more parameters needed for geometry 

definition, and multi-objective nature of problem. In case of asymmetric aerofoil, not only 𝑐𝑑 has to be 

minimised, but also 
𝑐𝑙

𝑐𝑑
 maximised. Objective functions are: 

 
𝐹1,𝑜𝑏𝑗 = min[𝑐𝑑(𝑦1, … , 𝑦𝑛)], (3) 

 
𝐹2,𝑜𝑏𝑗 = max [

𝑐𝑙

𝑐𝑑

(𝑦1, … , 𝑦𝑛)], (4) 

where 𝑛 is number of parameters. The solution to this problem is thus not a single design, but a set of 

non-dominated solutions, also called Pareto front. 

 Following changes were made to optimisation scheme, comparing to symmetric aerofoil case: 

1. Parametrisation. Just like in symmetric aerofoil case, 4 guide points were used to create each 

of two NURBS curves: upper and lower surface (Figure 11). Additionally, a parameter 

defining angle between chord line and free stream was needed. This gave 9 parameters 

defining the problem.  



 
Figure 11 Asymmetric aerofoil parametrisation using 8 parameters for shape and 9

th
 for angle of attack. 

 

2. Design of experiments. Symmetric aerofoil surrogate model from previous section was very 

accurate, predicting 𝑐𝑑 very precisely. It was built with 10𝑛 sample points. It was thus 

reasonable to reduce the size of initial sample to 60 points (for 9 parameters).  It was expected 

that with such a reduction, the quality of the surrogate model would not match that of previous 

case, however, the surrogate was only needed to guide optimisation, not give exact predictions 

at any point. 

 The rest of steps were exactly the same as in the case of symmetric aerofoil, with the only 

difference of fitting the surrogate through varying angle of attack, instead of running multiple 

simulations for each geometry. 

3.1 Results 

The surrogate model built using initial 60 points, gives multiple solutions for maximisation of lift-to-

drag ratio up to 53. The model was exploited in these areas, by feeding the surrogate with 10 points of 

predicted optima, resulting in a range of similar 
𝑐𝑙

𝑐𝑑
 values and varying 𝑐𝑑 (Figure 12). The model’s 

expected minimum 𝑐𝑑 design was verified, however, it was not as good as expected- giving around 

10% higher 𝑐𝑑 than those found in symmetric aerofoil case. The next step was finding Pareto front. 

3.2 Search for Pareto front 

Following procedure was developed to search for the set of non-dominated designs: 

1. Scale 𝑐𝑑 to the same order of magnitude as 
𝑐𝑙

𝑐𝑑
, and the same optimisation goal, i.e. 

maximisation, by applying the formula: 

 𝑓𝑐𝑑
= |(

𝑐𝑙

𝑐𝑑
)𝑚𝑎𝑥 − 𝑐𝑑 ×

(
𝑐𝑙
𝑐𝑑

)𝑚𝑎𝑥

𝑐𝑑𝑚𝑎𝑥

|, (5) 

 

where (
𝑐𝑙

𝑐𝑑
)𝑚𝑎𝑥 and 𝑐𝑑𝑚𝑎𝑥

 were the surrogate model predictions. In this case their values were taken as 

50 and 0.2 respectively. 𝑓𝑐𝑑
 is a measure of drag coefficient, scaled to 

𝑐𝑙

𝑐𝑑
, such that values it took, were 

between 0 (for maximum 𝑐𝑑) and 50 (for minimum 𝑐𝑑). 



2. Having both objective functions in the same form (range of 0 to 50 and , a weighting, which 

combines both measures, can be built, which returns the surrogate model prediction of the 

most optimal single objective 𝑓𝑠,𝑜𝑏𝑗 of the form: 

 𝑓𝑠,𝑜𝑏𝑗 = 𝑤1 ×
𝑐𝑙

𝑐𝑑
+ (1 − 𝑤1) × 𝑓𝑐𝑑

, (6) 

 

    where 𝑤1 is weighting of lift-to-drag ratio, 0 ≤ 𝑤1 ≤ 1. 

3. 𝑓𝑠,𝑜𝑏𝑗 were calculated for 𝑤1 = (0, 0.1, … , 1), i.e. 10 cases. The resulting designs were 

verified by black-box, and compared to initial sample, and designs found in previous section 

(exploitation of the surrogate). All results are presented on Figure 12.  

 
Figure 12 Graph showing results of surrogate model driven optimisation with chosen results.. 

 

It can be observed, that even though the approach for finding Pareto front was intuitive, a few new, 

non-dominated designs were found. The accuracy of this approach is limited by the surrogate model 

quality. As expected, lower 𝑤1, means lower 𝑐𝑑,  
𝑐𝑙

𝑐𝑑
 and 𝛼. It should be also noted, that Pareto front 

was well determined for 
𝑐𝑙

𝑐𝑑
> 35, and for lower values it is missing expected results. For 𝑤1 = 0 it 

was expected to obtain symmetric, thin aerofoil, at 𝛼 = 0, as was found in previous section 

(symmetric aerofoil optimisation). The resulting 𝑐𝑑 for 
𝑐𝑙

𝑐𝑑
= 0 was below 0.01. In this case- 0.014. If 

low 𝑐𝑑 and  
𝑐𝑙

𝑐𝑑
 is the area of interest of designer, more exploration and exploitation of the surrogate 

should be done, like it was shown for high 
𝑐𝑙

𝑐𝑑
. 

 

 

 

 



4 Applications to empennage robust design 

The design process of empennage can take different forms, the presented approach assumes an aerofoil 

is picked independently of planform, exact position etc.. The needed knowledge is the layout (Figure 

13), and direction of lift needed for stability in straight flight (upwards or downwards). If the layout is 

to be chosen, basing on possible aerofoil characteristics, they should be quickly assessed, and this 

paper addresses this approach as well. 

 
Figure 13 Most popular empennage layouts [11]. 

Further development of the empennage is directed at 3D wing synthesis, more realistic flow definition, 

accounting for interference etc.  

 Current “Samonit” empennage is a boom-mounted v-tail with simple rectangular planform. 

Depending on the mission scenario, the weightings of angle of attack for symmetric aerofoil can be 

chosen to find the most optimal shape. If mission scenario is not fixed, a trade-off between maximum 

drag reduction and robustness can be made. On the other hand, knowing the aerofoil (both symmetric 

and asymmetric) characteristics, a comparison between v-tail and conventional tail can be made, for 

particular mission. 

5 Conclusion  

In the current paper a very quick optimisation procedure, for finding a robust aerofoil, was presented. 

With the number of direct CFD analyses of less than 100, it was shown that an aerofoil, being 

considerably better than example NACA aerofoil, can be found. Thanks to a very low number of CFD 

analyses, high fidelity RANS could be used. The methodology presented in this paper gives aerofoil 

for particular surface of empennage layout chosen, or can be used as a help, in finding the optimal 

empennage layout, considering the varying flight conditions. 

5.1 Limitations of performed optimisation 

Parametrisation. There are two problems concerning parametrisation used in this work. Firstly, few 

parameters were picked to define the geometries. There are clearly many geometries impossible to 

create with such parametrisations. The second problem was narrow limit on upper and lower 

boundaries. The resulting optimal geometries were defined with parameters values lying on the 

boundary, i.e. 0 or 1. It can be expected that more optimal design would be found by 

reducing/increasing further the parameter.  

 



Analysis and black-box. The choice of analysis- 2D does not account for very important drag 

component- induced drag. The next limitation of the analysis method is, that it assumed no upstream 

interference from aircraft main wing and fuselage. Of all computational methods, however, the used 

one is of the highest fidelity, so only wind tunnel testing can reduce the error in observations. 

 

Surrogate model accuracy (asymmetric case). The quality of surrogate model created for 

asymmetric case proved that more points are needed for good prediction of design space. Although 

some regions were accurate, the surrogate prediction of maximum lift-to-drag ratio was overestimated 

by 3-5%. On the other hand the surrogate prediction gave a few good designs forming Pareto front, 

and guided the optimisation to obtain good results. 
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