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Abstract. Design processes of aircrafts are well established today and described by 

numerous positions in literature. This well understood and safe path leads to aircraft 

designs, which become very similar. It is harder then ever to achieve competitive 

construction. This is why numerical optimization is becoming standard tool during the 

design process. Although, optimization procedures are becoming more mature, in the 

industry practice still fairly simple examples of optimization are present. The more 

complicated is the task to solve the harder it is to implement automated optimization 

procedures. The paper presents practical examples of optimization in aerospace sciences. 

Encountered problems during the optimization are presented,  solutions of the problems are 

shown and resulting consequences are discussed.  

 

Keywords. numerical optimization, aircraft design 

1 Introduction 
 

Practical numerical optimization in aerospace is most often multidisciplinary. Analysis like 

aerodynamics, strength, flight dynamics and other are often done by standalone programs [1][2]. 

Combining few scientific disciplines Figure 1 is always demanding and computationally expensive. 

Designers and optimization code developers always seek for the way to speed up the computations.  

The author of the article also has some experience in applied numerical optimization [3][4]. Generally 

there are few possible ways for improvement: more efficient optimization algorithms (mathematical 

operations), faster analysis of the objective function by the simulation programs, and reduction of 

number of the objective function evaluations to reach the optimum. In the process of improving the 

computational efficiency, quality of the obtained optimum can be accidentally of second importance. 

This can have significant implications on the final design. 

With help of today’s widespread multiprocessor computers numerical optimization can be run 

parallel. Analysis of population of designs, or computation of directional gradient vector are perfectly 

applicable for the parallelization. This capability is very beneficial, but also complicates, and extends 

time to define the optimization task.  

 
 

 



               
 

 

Figure 1: Example of combining many scientific disciplines in optimization. 

When the optimization task is set and automatic analysis work well, there is still risk of obtaining 

unfeasible solutions Figure 2. This is dependent for example on the relationships between parts of the 

optimized geometry and allowed range of change of the design variables. If the optimization task is 

simple it is possible to predict all possible collisions, but if the number of design variables is 

significant, interim errors are almost unavoidable. Adjustments of the settings of the optimization task 

can be time consuming and expensive, what is especially important for industry users [5].  

 

 

Figure 2: Unfeasible aircraft geometry. 
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2 Optimization efficiency 

 
There are three major possible places for improvements in optimization procedures, more efficient 

optimization algorithms, faster analysis software, and improvement of optimization algorithms by 

reduction of number of objective function analysis.  If the software for optimization, and for analysis 

were created by the same group of scientists there can be achieved improvements on every point. Very 

often specialists from optimization won’t be the authors of the software for the analyses. If the 

scientists have access to the optimization code they can improve mathematical operations and redefine 

optimization algorithms to reduce number of objective function analysis calls. Comparing time of 

analyses to the time consumed by the optimization software for most practical cases, time for analysis 

is much longer. In such circumstances the biggest effort should be put on optimization procedures to 

reduce number of analysis. In the race to achieve the best computational times it is easy to forget about 

the importance of the optimum quality. Designers have to also pay attention how close the algorithm 

will get to the desired optimum.  

2.1 Quick convergence vs quality of optimum  

  
It can be observed that aggressive algorithms, which might change optimization variables 

significantly, converge to the optimum quickly. This behavior is not a problem for purely 

mathematical functions, where variables are defined in the domain of infinite real numbers with high 

computer accuracy. Situation changes when complex real world problems are considered. The 

aggressive behavior of the algorithms can cause problems with convergence of the analyses. For 

example, creating structures, that are too far from the feasible conditions, like negative length of 

physical dimensions. After overshooting the algorithm will produce wrong solutions, and might not be 

able to proceed further with the optimization to satisfy the constrains. 

The second problem is the behavior of the solution obtained in the neighborhood of the optimum. 

Numerical model shows predicted value of the objective function in the exactly defined point. The real 

world products have tolerances of manufacturing, which might have slightly shifted design parameters 

values. The issue is related to the reliability based optimization [6]. It might happen that the 

performance of the designed object highly departs from the optimum performance, still being in the 

prescribed tolerances. The relation is shown on a schematic Figure 3. This can be for example the case 

of an optimized airfoil and the design parameter that will control very sensitive place of the boundary 

layer separation. 

 

Figure 3: Change of the product dimensions within specified tolerances significantly worsens solution. 



Analysis software in most cases is not created for the numerical optimization purposes. Although 

the computations are done on the float numbers, or even with double accuracy, the results are written 

to the output files with reduced accuracy, which is better than good for an engineer. Finite accuracy of 

the output often causes problems if finite difference method for derivatives computation is used. Very 

small difference in the models analyzed isn’t reflected in the results, which from the computations 

point of view seem to stay the same Figure 5. As a result the derivative is equal to zero, and algorithm 

is very likely to stop the optimization. 

 

Figure 4: Too low output accuracy. 

Numerical model for analyses also has finite accuracy, which can depend on analysis software’s 

own convergence. Unfortunately this reduced accuracy of the returned results can cause similar 

problems as the finite accuracy of the numerical model. Obtaining the optimum point might require 

only subtle changes of the design parameters, but the analysis results, after the iterative convergence 

process, might have large scattering Figure 5. In that case the sensitivity of the analysis for the 

optimization algorithms is not good enough.   

 

Figure 5: Scattering of the numerical solution is larger than sensitivity needed to obtain optimum. 



Few of the optimization problems can be omitted, or reduced by usage of appropriate optimization 

algorithms. Gradient based methods can be very efficient compared to other optimization methods, but 

have also disadvantages. First well known is tendency to converge to the nearest local optimum. In 

practice, in many cases this is not a significant problem. Optimization tasks have often single best 

solution, and even if not, the designer can first choose good starting point for the algorithm, basing on 

experience, which is sufficiently close to the searched optimum.  

Second global problem is obtaining well defined search direction, which will lead to the optimum 

solution. If the optimization algorithm is highly coupled with the analysis tools, gradient computations 

with adjoint methods [7] can be used. But very often professional software for analysis is commercial, 

without access to the source code. In that case the analysis tools have to be treated as a black boxes, 

with limited information about computational process. In that case optimization solution can be 

sensitive to the problems described earlier: too aggressive changes of the optimization variables, 

scattering results from multiple simulations, output values with insufficient accuracy. Solution might 

be heuristic algorithms like: Monte Carlo, Genetic Algorithms, Particle Swarm Optimization, and 

other. On the other hand heuristic algorithms are related to probability issues. There is no guarantee of 

finding the optimum, and the accuracy of the optimum is usually lower than with usage of the gradient 

algorithms. 

 

2.2 Simple example of encountering optimization problems  

 
This simple example, of finding airfoil’s Selig S2027 maximum angle of attack, will show some 

of the outlined issues. Motivation for searching for the maximum angle of attack was possibility of the 

airfoil’s geometry optimization. In that case maximum angle of attack would also change, and it is one 

of the airfoil’s critical parameters. For the demonstration only the geometry of the airfoil is constant, 

and optimization algorithm is used to find the maximum point of airfoil’s lift characteristics. 

Aerodynamic analysis of the airfoil are done with Xfoil software [8]. Figure 6. shows computed 

characteristic of the lift coefficient vs. angle of attack for the airfoil.  

 

 

Figure 6: Lift coefficient characteristic vs. angle of attack. 
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Simple Newton-Rapson gradient algorithm was used to find the angle of attack for the maximum lift 

coefficient (1). The method finds zero value of the objective function. Knowing that the first 

derivative of the airfoil characteristic of lift coefficient from angle of attack will have zero value for 

the maximum, this could be the objective function (2). Than recursive equation for finding the 

maximum value of lift coefficient from angle of attack is defined as (3). For such stated problem the 

derivatives, compute with finite difference method, needed for equation (3) will be defined as (4) and 

(5). History of convergence of the problem is shown on Figure 7. 
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Figure 7: Optimization parameters history from Iterations. 
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Table. 1 Solutions comparison 

 Alfa CL 

Optimization 14.41 1.2611 

Direct analysis 13.5 1.3202 

 

Although, the curve for which maximum point seems to be quite simple the history of 

optimization Figure 7 reveals some problems of the algorithm to reach the optimum. Output of the 

Xfoil is limited to four digits accuracy, and the optimization derivatives are computed by usage of the 

finite difference method. This limits the accuracy of the derivatives, and the problem pronounces 

strongly near the optimum. When the algorithm  got on the right track from 10 to 20 iteration the 

improvement was clear, but while it got close the optimum the optimization solution began to scatter. 

Looking on Figure 6 difference between points obtained from direct Xfoil analyses and during the 

optimization is noticeable. This is probably due to the different Xfoil convergence during the analyses. 

The problem was shown on Figure 5. Xfoil has strong coupling of the boundary layer solution with 

potential flow solution. It iterates to find improve coupling between the solutions. Moreover, it can use 

results obtained from previous analysis to estimate good starting point for the computations of the next 

angle of attack. During the optimization this history of computation of previous angle of attack isn’t 

available and the convergence is worsened.    

What is more relaxation factor had to be introduced in equation (3), because too aggressive 

behavior of the algorithm crushed the optimization process. All of that caused significant number of 

iterations to converge. Finding of the appropriate relaxation parameter also took some time.    

Finally the difference between maximum lift coefficients from optimization, and from direct 

airfoil analysis, made by 0.5deg, differ less than 5%, which is quite good relation. But looking on the 

number of analyses executed, to find the optimum the case shows clearly superiority of the direct 

analysis in that case. The direct analysis could be done even denser, by for example 0.1deg to get 

better estimation of maximum lift coefficient, and even then the computational cost of optimization 

won’t be reached.  

If estimation of the maximum lift coefficient is only part of a much bigger optimization problem, 

in which conceptual methods of analysis are used, there is no point to obtain the maximum lift 

coefficient of an airfoil with great accuracy. The designer might assume that initial estimation of the 

maximum lift coefficient is good enough, and it might be kept constant without big influence on the 

global solution. This way optimization method of finding maximum lift coefficient, or subsequent 

airfoil analysis is only needed prior to the global optimization computations.  

 

3 Executing external program for analysis 

 
 There are number of ways to execute external simulation analysis, but all programs should 

satisfy few conditions: 

  

 software for analysis has to be able to work in batch mode 

 ability to pass data to the simulation software (through input file in most cases) 

 result of simulations have to be returned (through output file in most cases) 

 optimization software has to wait for simulation software till the analysis finish 

 



To execute external program with parameters different system calls can be used, that slightly differ in 

the behavior. Most programming languages are able to execute system shell procedure, for example in 

C++ this is done, by: system(“system command”). In windows environment, system commands that 

execute program are: 

 

 cmd  - opens new instance of system commands interpreter, as a new process, optimization  

  software won’t wait for the shell to end 

 start  - starts separate command window interpreter and in new process, and executes  

specified program, optimization software won’t wait for the shell to end 

 call  - starts specified program in the same process, control of computations is passed to the  

newly opened program until the analysis software finishes computations and closes, 

than the control is passed back to the parent program, if simulation computations crush 

the optimization might also crush 

 

The other way to execute external software is to use system API procedures, that can be used directly 

in the optimization software.  

 

 CreateProcess() - starts specified program as a new process, among input parameters user can 

define if the optimization software should wait till the process ends 

 

3.1 Multithreading 

 
Optimization process always involves multiple objective function executions. Parallel 

computations of objective function can improve significantly time of computations, but also introduce 

new issues, that have to be solved. 

 

3.1.1 Cross platform libraries 

 
Parallel computations need appropriate libraries that will manage multithreading. That could be 

done by dedicated system functions, but then the optimization is restricted only to particular system. 

There are few libraries that can handle multithreading on different systems, for example: pthread 

library (posix threads library), which is capable to work on the most popular systems like Windows, 

MacOS, and Linux. 

3.1.2 Input and output files management 

 
Another challenge is files management. Assuming that for the analysis external programs are used, 

the programs will need unique files for every thread input, and they also have to produce unique 

output files. Otherwise it is possible that at the same time different threads will read, and write to the 

same files, what will lead to optimization algorithm unpredictable behavior. 

 

3.1.3 Passing information in nested to optimization 

 
There are many multidisciplinary optimization architectures. One claimed to be the most efficient, 

is nested optimization architecture [9]. In this kind of optimization there is global optimization 

algorithm, and inside this algorithm another optimization process is running. For example 

aerodynamic optimization of wing can be driven by global optimization algorithm. But the 

aerodynamic loads will affect optimal solution of structure, and it’s mass. In that case, after obtaining 



aerodynamic loads, strength of the wing can be optimized inside the global aerodynamic optimization 

process, and way mass of the wing can be derived. Global objective function containing aerodynamic 

efficiency and mass, which both influence range, can be build. Information about geometry, loads and 

other parameters, for every thread, have to be passed to the nested strength optimization process. This 

can be done by passing needed information while starting nested optimization process through the 

batch file. 

  

4 Optimization management 

 

Optimization management, which includes specifically: choosing right optimization algorithm for 

the optimization, definition of the optimization task, choice of the multidisciplinary optimization 

architecture, and parallel simulations is difficult if appropriate numerical tools aren’t available. It was 

also motivation of the author of the article to create optimization software OptiM [10], which beyond 

pure optimization would also support user with common issues related to setting up the optimization 

process. Experience related to multidisciplinary optimization was gained while developing and using 

the optimization software Figure 8. 

 

Figure 8: OptiM software layout.   

4.1 Quick change of algorithms and algorithms development 

 

Regrettably, there is no unique optimization algorithm that is appropriate for every optimization 

task. Problems may occur for example with directional gradient computation, or finding the solution 

too far from the optimum for heuristic optimization algorithms. It is beneficial to have possibility to 

quickly change the optimization algorithm. It might not be a common feature in the optimization 

software, because data management during automatic optimization process is also challenging. 



4.2 Optimization task definition  

 
User of the optimization algorithm doesn’t have to be the person that created the optimization 

algorithm. An engineer will be focused mainly on solving and optimizing engineering problem. It is 

inevitable to know the basics of the optimization algorithms operation, but not how to write them from 

a scratch. The optimization software used [10] contains build in optimization algorithms and user only 

defines optimization task in a dynamically linked to the software library. User only has to modify files 

of the dynamic library and compile it. The modification might involve single line of code (e.g. 

mathematical expression), but it can also be very complicated optimization task, which involves 

external program calls for automated parallel analyses.   

4.3 Multidisciplinary optimization strategy 

 
There are multiple multidisciplinary optimization strategies that were described in a number of 

papers [11][12]. Here will be shown results of multidisciplinary optimization on an example of 

boxwing aircraft  configuration Figure 9, which were done in the MOSUPS project [13][14]. 

 

Figure 9: Aircraft in boxwing configuration built in the MOSUPS project. 

Figure 10 shows the diagram of the multidisciplinary optimization with nested strength 

optimization, which was run parallel. Optimization algorithm used was Particle Swarm Optimization 

(PSO). The PSO algorithm tries to modify swarm member’s optimization parameters to improve their 

efficiency, in this case minimum power for flight. Aerodynamic and strength analysis were coupled in 

the optimization process. In every thread single configuration of aircraft was aerodynamically 

analyzed. The aerodynamic loads could be derived for the strength analysis. In the next step, inside 

nested optimization process, thickness of wing’s surfaces was sized to get minimum mass of the 

structure for the particular aircraft configuration in the swarm. Obtained results from aerodynamic 

analyses and mass from strength optimization were used to compute global objective function value. 

 

Figure 10: Optimization architecture, with nested optimization. 



Figure 11 shows the first obtained results. The optimization solution is scattering. The remedy for this 

problem was increasement of the number of iterations in the nested optimization. This improved the 

accuracy of the obtained converged solution of the nested optimization, and as a consequence 

improved global optimization results. Figure 12 shows the improved results. Although, problem of 

convergence was solved, the time of optimization significantly increased.    

 

 

Figure 11: Initial results of the multidisciplinary optimization. 

 

Figure 12: Final results of the multidisciplinary optimization after optimization parameters adjustment. 
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5 Conclusions 

 
Lessons learned in application of multidisciplinary optimization were discussed in the article. 

Multiple issues related to applied numerical optimization were shown, in particular: computations 

efficiency, quality of the obtained optimum, external programs execution, parallel simulations for 

optimization, multidisciplinary optimization parameters setting.  

Two examples show how the potential pitfalls that can reveal. First one is fairly simple, but 

shows most of the issues related to numerical optimization. Second example, applicable to solving real 

engineering problem shows the consequences of choosing one of possible multidisciplinary 

architectures. 

Person responsible for optimization has to be very aware of the optimization techniques. Most of 

the encountered problems are solvable, but the applied solutions often have consequences, for example 

higher computational cost.     
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