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Abstract

Aerodynamic design, which aims at developing the outer shape of the air-

craft while meeting several contrasting requirements, demands an accurate

and reliable aerodynamic database. Computing forces and moments with the

highest level of �delity is a prerequisite, but practically limited by wall clock

time and available computing resources. An e�cient and robust approach

is therefore sought after. This study investigates two design of experiments

algorithms in combination with surrogate modelling. In traditional design

of experiments, the samples are selected a priori before running the numer-

ical explorative campaign. It is well�known that this may result in either

poor prediction capabilities or high computational costs. The second strat-

egy employs an adaptive design of experiments algorithm. As opposed to

the former, this is a self�learning technique that iteratively: i) identi�es the

regions of the design space that are characterised by stronger non�linearities;
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and ii) select the new samples in order to maximise the information content

associated with the simulations to be performed during the next iteration. In

this work, the Reynolds�averaged Navier�Stokes equations are solved around

a complete aircraft con�guration. A representative �ight envelope is created

taking the angle of attack and Mach number as design parameters. The

adaptive strategy is found to perform better than the traditional counter-

part. This is quanti�ed in terms of the sum of the squared error between the

surrogate model predictions and CFD results. For the pitch moment coe�-

cient, which shows strong non�linearities, the error metric using the adaptive

strategy is reduced by about one order of magnitude compared to the tradi-

tional approach. Furthermore, the proposed adaptive methodology, which is

employed on a high performance computing facility, requires no extra costs

or complications than a traditional methodology.

Keywords: design of experiments, adaptive sampling, surrogate model,

computational �uid dynamics, transonic cruiser, turbulence model

1. Introduction

Accurate predictions of aerodynamic loads are generally needed as early

as possible during the aircraft design process. For a number of �ight condi-

tions prescribed by certi�cation authorities, aerodynamic loads form a set of

critical loads that are used to size aircraft structural components. It is critical

to limit the uncertainty associated with critical aerodynamic loads because:

i) if the critical loads are underestimated, as revealed following �ight test,

then expensive re�design is often required incurring the costs and penalties

arising from programme delay; and ii) if the critical loads are overestimated,
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the aircraft will be heavier than needed with degraded performances.

Traditionally, the aircraft design process relies heavily on semi�empirical

relations and linear assumptions. The reason for this is that, at the early

stage of the design process, designers explore a large parameter space result-

ing in a large number of numerical evaluations. Speed requirements dominate

over accuracy. As the design parameters are tightened and addressed in in-

creasing detail, the need for improved realism of predictions calls for higher

�delity aerodynamic models. Despite the availability of high performance

computing (HPC) facilities, the routine use of computational �uid dynam-

ics (CFD) is limited to academic demonstrations. The reasons that linear

methods have cornered the industrial aircraft design process are two�fold.

First, linear methods are corrected to account for un�modelled �ow physics.

Corrections have been calibrated using a number of previous aircraft con-

�gurations, and high con�dence exists. The second reason is that linear

methods are fast enough for parametric searches, and their analysis setup is

straightforward practically building on a simpli�ed description of the lifting

surfaces.

The work presented in this paper addresses the problem to e�ciently use

CFD as source of the aerodynamic predictions. For a representative parame-

ter space, the problem consists of maximising the information extracted from

a limited number of CFD analysis. Several techniques are nowadays avail-

able in order to design the virtual experimental campaigns in an e�cient and

e�ective way. These include: i) orthogonal design techniques (e.g. fractional,

full�factorial), in which the design points are chosen deterministically before

running the virtual experiments; and ii) random methods (e.g. Monte Carlo
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sampling, Latin Hypercube), where the location of the design points is cho-

sen randomly. The main limitation associated with traditional orthogonal

and random design of experiments (DOE) techniques lies in the fact that the

samples to be evaluated are chosen all at the same time, based only on infor-

mation that is available before running the numerical explorative campaign.

Since the knowledge available before running the DOE is often very limited,

this approach makes impossible to know in advance the optimal number of

samples and the location of the design points that are required in order to

achieve a given accuracy in the response surface model built upon the results

of the virtual experiments. A possible problem arising in this context is the

so�called under�sampling e�ect, where the number of design points and their

locations do not provide su�cient information to build a response surface

function with the desired level of accuracy. This behaviour is typically ob-

served when design points are not distributed with su�cient density in those

regions of the parameter space where the output model is characterised by

a pronounced non�linearity. The opposite e�ect, named over�sampling, is

encountered when the level of accuracy associated with the response surface

model could have been achieved by running a smaller number of experiments.

This happens, for example, when the distribution of the design points is too

dense and leads to unnecessary and avoidable computational burdens.

A feasible way to mitigate the appearance of these problems consists of

adopting a more advanced algorithm, such as the adaptive DOE (ADOE).

This a self�learning algorithm which makes use of an iterative procedure

and is capable to: i) identify from previous runs the regions of the design

space where the output model is characterised by stronger non�linearities;
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and ii) select a new batch of design points by maximising the (expected)

information content associated with this new set of simulations. Previous

applications of ADOE techniques to CFD problems can be found in Ref. (1;

2; 3). In this work, we propose to employ an ADOE methodology to identify

the locations of CFD analyses that provide the best approximation of the

objective function. The test case is for a complete aircraft con�guration

which is run on the HPC of the University of Southampton 1.

The paper continues in Section 2 over�viewing the aircraft con�guration

used as test case. Section 3 provides a description of the CFD solver, the

turbulence model, and the computational grid. Then, Section 4 describes the

DOE algorithms employed in this work. Results are discussed in Section 5,

where the proposed methodology is compared with current state�of�the�art

methods. Finally, conclusions are drawn in Section 6.

2. Test Case

The test case is for the transonic cruiser (TCR) model that was conceived

during the SimSAC (Simulating Aircraft Stability and Control Characteris-

tics for Use in Conceptual Design) project (4). The TCR is a conceptual

design of a civil transport aircraft operating at a target Mach number of

0.97, featuring low relaxed static stability boundaries, and low manoeuvre

and trim drag. The initial concept proposed by SAAB was for a conven-

tional tailed con�guration, which revealed the need for a large horizontal tail

1IRIDIS at the University of Southampton is in the World's Top500 ranking and is the

largest HPC facility in the U. K. after the national supercomputer. In total, it consists of

12320 processor�cores providing 250 TFlops peak.
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de�ection a�ecting signi�cantly trim drag. The evolution from the initial

geometry to the �nal con�guration, which includes an all�moving canard for

longitudinal control, may be found in Ref. (5).

A wind tunnel model of the TCR aircraft was built in a 1:40 scale com-

pared to the full scale aircraft. A schematic of the TCR design and the sign

convention adopted in this work are shown in Figure 1. The apex positions

of the canard and main wing are, respectively, at 12 and 26% of the fuselage

length. The close proximity of the canard with the main wing originates

strong interference e�ects of the �ow past the canard impinging on the main

wing.

(a) TCR model top view (b) Body frame of reference

Figure 1: TCR wind tunnel model

Numerical analyses presented in this work were obtained for the TCR

wind tunnel model geometry. Reference values are summarised in Table 1.

The geometry features a symmetric aerofoil for the canard, and a cambered

one for the main wing. The moment reference point is measured from the

aircraft nose, positive downstream.
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Table 1: Reference values of the TCR wind tunnel model

Parameter Value

Model scale 1:40

Reference area 0.3056 m2

Wing span 1.12 m

Mean aerodynamic chord 0.2943 m

Moment reference point 0.87475 m

Fuselage length 1.597 m

2.1. Experimental Investigations

Experimental investigations of the steady and unsteady aerodynamic

characteristics at low speed were performed in the T�103 wind tunnel facil-

ity at the Central Aerohydrodynamic Institute (TsAGI), see Figure 2. The

wind tunnel has an open jet working section of the continuous type with

an elliptical cross section, 4.0 m × 2.33 m. Several con�gurations of the

wind tunnel model were tested to evaluate the in�uence of single compo-

nents (vertical tail and canard wing) on the overall performance. The exper-

imental measurements included the investigation of the static aerodynamic

characteristics, rotary and unsteady aerodynamic derivatives, and unsteady

non�linear aerodynamic characteristics during large amplitude oscillations.

The normal and lateral force and moment coe�cients from static and large

amplitude oscillations were measured. The mean values and in�phase and

out�of�phase components of the force and moment coe�cients were mea-

sured in forced motions. The full dataset of wind tunnel measurements is

described in Ref. (6).
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(a) Canard�o� con�guration (b) Canard�on con�guration

Figure 2: Wind tunnel model of the TCR tested in TsAGI; (a) large amplitude pitch

oscillations dynamic rig, and (b) 90 deg bank angle for static aerodynamic characteristics

It is worth noting that no transition tripping was installed in the wind

tunnel model, and that the leading edge of all lifting surfaces is round. As

discussed below, the combination of these two aspects makes the prediction

of the TCR aerodynamic characteristics challenging from a numerical stand-

point. It is well�known that the vortical �ow behaviour around delta wings

with a round leading edge is signi�cantly di�erent from that around wings

with a sharp leading edge (7). The separation line is �xed for a sharp lead-

ing edge, but depends highly on Reynolds number, surface roughness, leading

edge bluntness and sweep angle for a round leading edge. Wind tunnel tests

were run at a freestream speed of 40 m/s, which corresponds at sea level to

a Mach number of 0.117 and a Reynolds number of 0.778 million, based on

the mean aerodynamic chord of the wind tunnel model.
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2.2. Numerical Investigations

Numerical investigations reported in Refs. (2; 8; 9) focussed at compar-

ing steady and unsteady predictions of the aerodynamic loads with available

experimental measurements. Reference (8) employed a modi�ed version of

the k�ω turbulence model and a multi�block structured grid with 8.5 million

grid points. Predictions for steady results were �rst validated. The attention

was then addressed for unsteady aerodynamics. Numerical results of aero-

dynamic derivatives for small oscillation amplitudes were presented, followed

by results for large amplitude motions. Dependencies of dynamic charac-

teristics on mean angle of attack and reduced frequency were investigated.

Computations were for the wind tunnel model with vertical tail and un�

de�ected canard wing. To the authors' knowledge, this is the only original

work that performed unsteady time domain calculations based on Reynolds�

averaged Navier�Stokes (RANS) modelling to extract dynamic derivatives.

In Ref. (9), experimental and numerical research activities for the determi-

nation of dynamic derivatives were reviewed for two aircraft con�gurations,

including the TCR model. In addition to the unsteady RANS (URANS)

results of Ref. (8), the reference included results from linear aerodynamic

models based on a panel method. Reference (2) discussed current state�of�

the�art methods to generate aerodynamic tables for �ight simulation. For

the TCR model, the ability to combine aerodynamic databases of di�erent

�delity levels into a single database was demonstrated. In total, 270 CFD

simulations were run, and combined with linear aerodynamics that provided

quantitative trends of the aerodynamic loads across the �ight envelope at

very low computational cost.
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3. Computational Fluid Dynamics Solver

The �ow solver used in this work is Ansys Fluent (version 14.5). The

reason to use a commercial solver, opposed to previous work done by the

�rst author with research codes, is to demonstrate the seamless integration

of the ADOE methodology with a well�established software tool. We hope

this demonstration will facilitate the adoption of the ADOE methodology in

the analysis of other complex and non�linear engineering phenomena.

The low Reynolds number of the operating wind tunnel conditions (M =

0.117 and Re = 0.778 ·106) and the blunt leading edge geometry of the TCR

wind tunnel model make the prediction of the resulting turbulent �ow di�-

cult, especially for what concerns the �ow separation near the wing leading

edge. No transition tripping was used in the wind tunnel model. Without

other information, all simulations herein reported were run assuming fully

turbulent �ow. The one�equation Spalart�Allmaras turbulence model was

used in this study. The model provides the turbulent viscosity to be added

to the viscous terms of the Navier�Stokes equations and mimics the e�ects of

the inertial turbulent transport on the mean �ow. The details of the turbu-

lence model can be found in Ref. (10). All computations were run in double

precision.

An unstructured grid for the half�model con�guration was generated with

10 million points. Jobs were run on IRIDIS on 32 processes and about 10

hours of wall clock time. The �ow �eld has a semi�spherical shape with the

far��eld located on average at 170 times the mean aerodynamic chord from

the aircraft geometry. This ensures avoiding that the �ow �eld disturbances

propagate beyond the far��eld boundary. Boundary conditions were set to
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symmetry plane on the vertical plane of symmetry, and to no�slip adiabatic

wall on the aircraft surface. At the inlet, the pressure gradient was set to

zero while the �ow velocity set to the free�stream conditions. The grid,

show in Figure 3, was chosen after a grid convergence study was carried out,

demonstrating independence of the results obtained with the currrent grid

size.

In all cases, computed results are for zero side�slip angle and the in�uence

of the rear sting was ignored. The moment reference point is set at 54.78%

of the fuselage length from the foremost point.

(a) Canard wing tip

X
Y

Z

(b) Kink on main wing

Figure 3: Surface grid of the TCR wind tunnel model

4. Design of Experiments

For the size of the computational grid used in this work, a well�converged

simulation is computed at high computing times. The generation of the

aerodynamic database across the �ight envelope adopts an ADOE technique.
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A detailed description of the ADOE algorithm is given in Section 4.1, and

a review of the Latin�Hypercube (LH) method in Section 4.2. The latter

is used as benchmark in order to assess the improvements achieved by the

ADOE technique compared with a more traditional, industry�standard DOE

method.

4.1. Adaptive Design of Experiments

The ADOE is an iterative DOE technique in which the data produced

during previous iterations are analysed in order to distribute the design points

of the next iteration in areas of the parameters space considered of interest

only. The ADOE is a self�learning algorithm that is driven by two opposite

factors: space�learning and feature�learning.

Space�learning is the act of exploring the domain to �nd areas of the de-

sign space that have not yet been explored. The main goal of space learning

is to �ll the design space uniformly, avoiding the need of any information

about the response of the model. Maximin sampling (11) is the technique

implemented to support the space�learning aspect of our ADOE algorithm.

Conversely, the goal of feature�learning is to add new samples in areas of

the domain that have already been identi�ed as interesting for some reason.

Feature�learning is then used to improve the accuracy of the surrogates in

given areas that can be di�cult to model e�ciently (discontinuities, steep

slopes, etc.). In our implementation of the ADOE, the feature�learning

aspect is supported by two di�erent techniques: i) Model Error Sampling

(MES), according to which multiple surrogate models are built over the do-

main and the areas of major interest are identi�ed as those where the vari-

ance between these surrogate models is higher; and ii) Non�Linearity Search
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(NLS), where the areas of major interest are identi�ed by evaluating the mis-

�t between the simulated output and the output estimated by means of a

local linear approximation based on nearby samples.

A balanced strategy combining space� and feature�learning is adopted in

the current ADOE methodology. The ADOE strategy, illustrated in Figure 4,

consists of the following steps:

1. Initialization. An initial set of samples is drawn according to a tradi-

tional (non�adaptive) DOE technique.

2. Build surrogate models. A set of surrogate models is built according to

the available simulation results and the regions of major interest are

identi�ed according to the MES and NLS algorithms.

3. Adaptive sampling. A new set of design points is chosen according to:

i) the information obtained at Step 2; and ii) the trade�o� strategy

between space� and feature�learning that was chosen before running

the algorithm.

4. Check termination criteria. If the termination criteria are not satis�ed,

a new batch of experiments is run and the algorithm restarts from Step

2. Suitable termination criteria may consist of: i) maximum number

of model evaluation; or ii) accuracy of the surrogate models, measured

in terms of mis�t between the simulated outputs and the output calcu-

lated from the surrogate models. In the current implementation, this

metric is calculated on the basis of an extra set of samples that are

used exclusively for this purpose, called "validation set".
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Figure 4: Schematic of the ADOE algorithm employed in this work
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4.2. Latin�Hypercube Design

The LH design (LHD) is one of the most commonly used random DOE (12).

A LHD is constructed by dividing the range of each design parameter in n

equally probable intervals, n being the number of design points. The design

points are then randomly chosen in such a way that for each interval there is

only one design point. This selection of design points ensures that: i) each

interval is present in the design; and ii) the number of levels is maximized.

One of the main advantages of LHDs is that it avoids the "collapse prob-

lem", because if one or more of the input factors appear to be irrelevant,

every point in the design still gives information about the in�uence of the

other factors on the response. In this way, each time�consuming computer

experiment adds useful information.

The intervals onto which each input dimension is subdivided may be as-

signed randomly or according to a custom rule. An e�cient and e�ective way

to construct a LHD is to assign the intervals in such a way that the resulting

design is space��lling, i.e. the design points are spread out and do not cluster

in one portion of the experimental region. In our implementation of LHD,

we: i) measure the degree of spread of the design points by computing the

minimal distance between two of its design points; and ii) choose the LHD

which provides the maximum value of this metric. This strategy is generally

referred to as maximin LHD (11).

5. Results

This section is organised as follows. Firstly, aerodynamic predictions are

validated against available experimental data at wind tunnel conditions in

15



Section 5.1. Then, the proposed ADOE methodology is demonstrated in the

context of a realistic �ight envelope, as discussed in Section 5.2.

5.1. Validation at Wind Tunnel Flow Conditions

The validation is carried out at the operating wind tunnel conditions,

M = 0.117 and Re = 0.778 · 106. The free�stream angle of attack is varied

between -10.0 and 40.0 deg. Experimental data are available at a step in

angle of attack of 2.0 deg, whereas simulations were performed for a smaller

increment of 1.0 deg.

A preliminary study was conducted to ensure the results presented are

fully converged. Two �ow conditions were chosen, at 0.0 and 10.0 deg angle

of attack. The independence on the number of inner iterations was assessed

comparing the average value of aerodynamic coe�cients in the last 1000 iter-

ations at three relevant check points: after 5000, 7500, and 10000 iterations.

The convergence of the residuals with the number of iterations is shown in

Figure 5. The vertical lines in the �gures indicate the intermediate check

points at 5000 and 7500 iterations. The normal force and pitch moment

coe�cients, CN and Cm, respectively, computed at 5000, 7500, and 10000

iterations are reported in Table 2. It was found that the percent error, com-

puted using the values at 10000 iterations, is well below one percent in all

cases. Based on this �nding, all simulation results reported herewith were

obtained for 5000 iterations.

The static aerodynamic characteristics are shown in Figure 6. Available

wind tunnel measurements, referred to as "Exp Data" in �gure, suggest that

the normal force coe�cient has a linear (or quasi�linear) behaviour with the

angle of attack up to about 20 deg. Above this angle, the curve slope of the
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(a) α = 0.0 deg (b) α = 10.0 deg

Figure 5: Convergence of the solution residuals at two angles of attack at wind tunnel

conditions (M = 0.117 and Re = 0.778 · 106)

Table 2: Convergence of the aerodynamic loads with the number of iterations at wind

tunnel conditions (M = 0.117 and Re = 0.778 · 106)

α = 0.0 deg α = 10.0 deg

Iterations CN Cm CN Cm

5000 1.120·10−1 -9.110·10−2 6.435·10−1 -2.077·10−1

7500 1.120·10−1 -9.110·10−2 6.428·10−1 -2.070·10−1

10000 1.120·10−1 -9.110·10−2 6.427·10−1 -2.069·10−1
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force coe�cient decreases, until the maximum value of normal force coe�-

cient is found at about 38 deg. The pitch moment coe�cient has a strong

non�linear dependency on the angle of attack. Two break points are identi-

�ed, at about 6 and 20 deg. For small angles of attack, the pitch moment

coe�cient has a negative slope, i.e. nose�down tendency for increasing angle

of attack. A �rst break point is found at about 6 deg, where the slope sign

changes to positive. Reference (9) attributed this to a continuously increasing

lift on the canard wing, which is located upstream of the moment reference

point and causes a nose�up tendency. The lightly unstable characteristics,

con�ned between 6 and 20 deg, are then followed by a second break point,

which suggests a massive �ow separation.

(a) Normal force coe�cient (b) Pitch moment coe�cient

Figure 6: Static aerodynamic characteristics of the TCR wind tunnel model at wind tunnel

conditions (M = 0.117 and Re = 0.778 · 106)

The comparison of the CFD results against wind tunnel measurements is

excellent up to about 20 deg, as in Figure 6. Aerodynamic characteristics are
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well captured, including the normal force coe�cient curve slope and the non�

linear dependency of the pitch moment coe�cient with the angle of attack.

The reference point for the pitch moment coe�cient is in close proximity

with the location of the vortex breakdown on the main wing, which moves

upstream for increasing angle of attack. Predictions of Cm are therefore very

sensitive to the simulated �ow features. The agreement indicates that the

�ow physics are simulated correctly with the turbulence model adopted up

to about 20 deg. The surface signature and structure of the vortices forming

over the canard and main wing are shown in Figure 7 for various angles of

attack. Above α = 20.0 deg, the �ow presents massively separated regions

that are not modelled properly with a RANS model, requiring higher �delity

in the �ow modelling.

5.2. Aerodynamic Characteristics Across the Flight Envelope

To investigate the capability of the DOE techniques, a two�dimensional

parameter space was generated, including representative variations of the

angle of attack, α, and the Mach number, M . The Mach number range was

set to M ∈ [0.117, 0.970], whereas the lower and upper boundaries of the

angle of attack are function of the Mach number: α ∈ [−5.0, 40.0] deg at

M = 0.117, and α ∈ [0.0, 5.0] deg at M = 0.97. The two�dimensional

parameter space is illustrated by the dashed line in Figure 8(a).

Since the DOE techniques are designed to work on rectangular domains,

it is required to: i) sample the design points on a canonical square de�ned

within the interval [−1, 1] in both dimensions; and ii) map these points

onto the physical domain by means of a bi�linear transformation. This is

illustrated in Figure 8 for the parameter space of this study.
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(a) α = 0.0 deg (b) α = 10.0 deg

(c) α = 15.0 deg (d) α = 20.0 deg

Figure 7: Flow visualisation using surface pressure distribution (in Pa) and volume

streamtraces; for visualisation, the computational model was mirrored (M = 0.117 and

Re = 0.778 · 106)
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(a) Physical domain (b) Canonical domain

Figure 8: Bi�linear transformation mapping physical domain in (a) with canonical domain

in (b); the parameters in (a) are angle of attack, α, and Mach number, M
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As detailed in Section 4, the results obtained by running two DOE tech-

niques, each being composed by 40 design points, are compared. The DOE

methods are run using the algorithms implemented in the process integration

and simulation framework "Noesis Optimus" (13). The software is also used

to automate the submission of the CFD simulations to the IRIDIS HPC.

The ADOE strategy is initialized by calculating the output of a set of

10 experiments that are drawn using a LH technique. Then, the iterative

procedure depicted in Figure 4 is started, and a new batch of 10 experiments

is launched at each iteration until the total number of 40 experiments is

reached.

The outputs obtained by running the two DOE algorithms are employed

to build corresponding analytical surrogate models of CN and Cm. In this

study, the analysis is focused on one type of response surface model, i.e. radial

basis function (RBF) � cubic. Figure 9 shows the behaviour of the surrogate

models obtained from LH and ADOE experiments. It is found that the re-

sponse surfaces obtained for CN are virtually the same for both approaches.

On the opposite, the surrogates of Cm have substantial di�erences and pro-

vide distinct predictions of the target quantity, especially in correspondence

of the lower�right corner of the investigated domain (low speed, high angles

of attack). These di�erences can be explained by the fact that the design

points employed by the ADOE algorithm: i) are more uniformly distributed

within the domain of interest, and ii) provide a better "coverage" of the area

of the domains that are typically di�cult to model (corners and boundaries).

The enhanced capability of the ADOE algorithm with respect to LH

to distribute the design points in an intelligent way is also re�ected in an
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(a) Normal force coe�cient/LH (b) Pitch moment coe�cient/LH

(c) Normal force coe�cient/ADOE (d) Pitch moment coe�cient/ADOE

Figure 9: Surrogate model resulting from the interpolation of the outputs associated with:

in (a), the 40 LH experiments using a RBF � cubic interpolating model; and in (b), the

40 ADOE experiments
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improved quality of the predictions obtained from the associated surrogate

models. To quantify this, an additional batch of 66 experiments were run

for validating the quality of the surrogate models shown in Figure 9. Twenty

validation points are distributed within the domain by means of a LH algo-

rithm while the remaining 46 points correspond to the experiments used to

validate the CFD model (recall Section 5.1 and, in particular, Figure 6). The

data corresponding to the wind tunnel operating conditions are particularly

useful to test the ability of the surrogate models to predict the true output

in the correspondence of the domain boundary. The scatter plots depicted

in Figure 10 compare the outputs calculated by the surrogate models and

by CFD calculation in the correspondence of the 66 validation points. The

predictive capability of each response surface model is measured in terms of

the sum of the squared error (SSE). In the �gures, the dashed diagonal line

indicates a perfect match between the surrogate model prediction and the

CFD data. In the case of a perfect match, the SSE is zero. The scatter

plots demonstrate that the surrogate models built upon the ADOE experi-

ments are able to provide a better prediction of the system response. This

di�erence is particularly evident by comparing the pitch moment coe�cient

in Figures 10(b) and 10(d). In Figure 10(d), data are well aligned along

the dashed diagonal line, indicating a smaller error to the CFD results than

achieved by the surrogate model built using the LH experiments. This is

quanti�ed in terms of SSE: the SSE value obtained from ADOE algorithm

(SSE = 0.03) is nearly one order of magnitude lower than the same quantity

calculated from the LH algorithm (SSE = 0.10).
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(a) Normal force coe�cient/LH (b) Pitch moment coe�cient/LH

(c) Normal force coe�cient/ADOE (d) Pitch moment coe�cient/ADOE

Figure 10: Scatter plots obtained by comparing the outputs calculated from CFD calcu-

lations and those evaluated on the basis of the response surface models of the two output

variables (CN and Cm) for each DOE algorithm at the 66 validation points
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6. Conclusions

The work carried out in this study investigates an e�cient and e�ective

methodology to generate a full aerodynamic database for a complete aircraft

model. The Reynolds�averaged Navier�Stokes equations are solved on a grid

containing approximately 10 million points. Preliminary tests con�rmed

that results were independent of the grid spatial discretisation. To build

con�dence on the accuracy of the numerical results using the one�equation

Spalart�Allmaras turbulence model, results were compared to available wind

tunnel data measured at a Mach number of 0.117 and Reynolds number of

0.778 million. An excellent agreement was found for both normal force and

pitch moment coe�cients up to 20 degree angle of attack. The numerical

challenges include: i) the prediction of the separation lines at the wind tun-

nel speed around lifting surfaces with a round leading edge, which is still

an open issue in computational �uid dynamics; ii) interacting vortices and

their coalescence; and iii) the high computational costs associated with a

single analysis, which make the generation of a full aerodynamic database

unrealistic on a manageable time scale.

Having veri�ed that numerical results using a spatially converged grid

are in good agreement with experimental data, a two�dimensional �ight en-

velope was created. The design parameters are for the angle of attack and

Mach number. The angle of attack varies with Mach number, and the range

reduces for increasing Mach number. A surrogate model, based on radial

basis function interpolation, was used to approximate the aerodynamic loads

across the �ight envelope from a total of 40 numerical results. To distribute

the 40 experiments, two design of experiments strategies were investigated.
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The �rst one is a traditional latin hypercube approach whereby samples are

randomly distributed throughout the parameter space. The second strategy

is based on an adaptive design of experiments technique. This iterative tech-

nique analyses data produced in previous iterations in order to distribute the

design points of the next iteration in areas of the parameters space considered

of interest only.

To assess the accuracy of the two surrogate models, measured in terms of

mis�t between the numerical results using the Spalart�Allmaras turbulence

model and the output of the surrogate model, an extra set of samples were

used. The extra set of samples include 20 points distributed within the do-

main by means of a latin hypercube algorithm while the remaining 46 points

are for the lowest Mach number, coinciding with the wind tunnel measure-

ments. The data corresponding to the wind tunnel operating conditions are

particularly useful to test the ability of the surrogate models to predict the

true output in the correspondence of the domain boundary.

The predictive capability of each response surface model is measured in

terms of the sum of the squared error. In the case of a perfect match between

the surrogate model prediction and the Reynolds�averaged Navier�Stokes

data, the sum of the squared error is zero. It was found that the surrogate

model built upon the adaptive strategy is able to provide a better prediction

of the system response. This, in particular, is valid for the pitch moment

coe�cient that shows strong non�linear features. Quantitatively, the sum

of the squared error value obtained from adaptive algorithm (SSE = 0.03)

is nearly one order of magnitude lower than the same quantity calculated

from the latin hypercube algorithm (SSE = 0.10). Conversely, the surro-
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gate model built using the latin hypercube algorithms requires more samples

(and more expensive calculations) to achieve the same error level than the

surrogate model using the adaptive algorithm.

This study demonstrates that a surrogate model built upon an adaptive

design of experiments strategy achieves a higher prediction capability than

that built upon a traditional strategy. Two instrumental considerations are

that: i) the adaptive strategy does not incur in extra costs compared to the

traditional counterpart, and ii) the integration within an existing environ-

ment is seamless. The authors hope this demonstration will facilitate the

adoption of the adaptive design of experiments methodology in the analysis

of other complex and non�linear engineering phenomena.
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