New configurations at DLR

5th Symposium on Collaboration in Aircraft Design 12th-14th October 2015

Dr. Thomas Zill

Outline

- Overview of A/C configurations at DLR
- Collaborative A/C design
 - Central data model CPACS
 - Distributed analysis approach
 - Flexibility of design multifidelity workflows
- Collaboration on Boxwing aircraft

Aircraft configurations at DLR

D100, D150, D250, XRF1 VAMP, DIGITAL-X, iGREEN, AGILE, CS2

D150-FSW LAMAIR igreen

D150-SBW-OR FrEACs, PEGASUS, iLOADS, AGILE, CS2

D150-BW, D250-BW HIRG, iLOADS, AGILE

BWB AP2030, FrEACs, AGILE, CS2

HybridElectric FAIR-IP, AGILE, CS2

FanWing SOAR

Mil-AC IDEaliSM

A/C analysis/design is a <u>collaborative effort</u> in internal and international projects What is the backbone for collaboration on a technical level?

Collaborative Aircraft Design

Merging <u>Competences</u>

- standard approach for most pre-design & analysis systems
- single user performing analysis
- ideally knows each component of system by heart
- you can't be a specialist in every discipline

Collaborative Aircraft Design

Merging <u>Competences</u>

Collaborative Aircraft Design

Common data model CPACS

CPACS

= e	cpacs
	e header
	e vehicles
	😑 💽 aircraft
	🖃 🖻 model
	③ uID
	e name
	e description
	🕀 🖻 reference
	🗄 🖻 fuselages
	🕀 🖻 wings
	🗄 🖻 engines
	🕀 💽 landingGear
	🗄 🖻 global
	🗄 🖻 analyses
	🗄 🖻 engines
	🗄 🖻 profiles
	E structuralElements
	🛨 🙋 materials
	🗄 🖻 composites
Ŧ	e missions
Đ	e airports
	e fleets
	e toolspecific

- <u>Common Parametric Aircraft Configuration Schema</u>
 - xml-based, human-readable
- Data model holds information on:
 - product: geometry, performance...
 - process: triggers, analysis options...
- under continous development at DLR since 2005
- enables:
- a) multidisciplinary analysis
 b) multifidelity analysis
 c) multiscale analysis

A common data model facilitates multidisciplinary analysis CPACS

Does such collaborative approach really work in a company with many distributed sites?

A common data model facilitates multidisciplinary analysis CPACS

Does such collaborative approach really work in a company with many distributed sites?

A common data model facilitates multidisciplinary analysis CPACS

Does such collaborative approach really work in a company with many distributed sites?

Distributed collaborative analysis at DLR

- Aircraft design process established at DLR
- Analysis components located at distributed DLR-sites

Collaboration enables detailed insights

19 DLR Departments Collaborate in Internal FrEACs Project

Tools are just a means to coming to a conclusive result

Loads Process in Pre-Design

Module Details: Initialization of the Design →Conceptual Synthesis from TLAR to initial design →Components sized by empirical\statistic (e.g. LTH masses)

Module Details: Geometry handling and model generation →Geometry as CPACS definition forwarded to Lo-Fi physics based analysis →Disciplinary models extracted by generators based on TiGL geometrical kernel

Loads Process in Pre-Design

Module Details: Flexibility loop

→Aircraft performance corrected by aero-structural flexibility effect

→ FSI coupling schemes based on MLS\RBF for forces-displacements transfer

Loads Process in Pre-Design

 Module Details: Lo-Fi aerodynamics analysis
 Initial

 →Lo-Fi aero model for performance calculation at mission points (VLM+ based)

 → Multiple Loads Cases for sizing: maneuvers and gust loads

Module Details: Lo-Fi structural analysis →Lo-Fi structural model for sizing of primary structures (FEA bases) →Sizing based on strength\buckling criteria, static analysis

Loads Process in Pre-Design

Module Details: Mission analysis →Mission profile and mission fuel mass

→ Based on aircraft performance calculated with Lo-Fi chain

Loads Process in Pre-Design

Module Details: Flexibility loop

→Aircraft performance corrected by aero-structural flexibility effect

→ FSI coupling schemes based on MLS\RBF for forces-displacements transfer

Boxwing configuration

Extension of the design space

- Low induced drag/reduced wingspan
- Consideration of all relevant effects in workflow
 - Stability and control criteria drive the design
 - Loads & mass estimation require aeroelastic analysis


```
Efficiency factors, L. Prandtl (1926)
```


Full aeroelastic model

Control surface layout

Boxwing configuration

Extension of the design space

- Aerodynamic results validated through WT tests
- Collaborative effort in the Helmholtz Int. Research Group "Optimization of BoxWing Aircraft" with Nangyang Technological University, Singapur

