

Engineering Solutions and Innovations

Recent Advances in Variable Fidelity MDO Framework for Collaborative and Integrated Aircraft Configuration Development - CEASIOM

Mengmeng Zhang¹ & Arthur Rizzi² ¹Airinnova AB, ²Royal Institute of Technology (KTH) Stockholm, 2015

Overview and Summary

- Introduction to aircraft conceptual-preliminary design
- <u>Software for aircraft conceptual-preliminary design</u>
- <u>Wing design methodology</u>
- Results and discussion of selected design studies
- Conclusions

Re-engineering the aircraft design process

Goal \rightarrow From functional-oriented approach to an integration of all disciplines

KTH vetenskap och konst

Ways to Improve Prediction Fidelity in early Design

•

٠

•

Revised Layout Example: TCR T-tail -> TCR Canard

Objectives, Scope & Structure

Engineering Solutions and Innovations

Objective: Improve CEASIOM software to better alleviate information gaps:

- Recent advances in CEASIOM
 - Extend CEASIOM by adopting CPACS data base and format \rightarrow higher *order* geometry
 - Define/import/create "Initial Layout" for CEASIOM → higher *fidelity* analysis
 - Implement Data Fusion to build Database from various models
 - Create *Aerodynamic shape optimization* toolbox
- Scope
 - Demonstrate airframe geometry modeling and its import function on different aircraft concepts
 - But structural modeling & complete support for RANS modeling out of scope
 - Subtask within MDO, via task decomposition, focusses on aerodynamic shape optimization
- Structure of this talk
 - 2 explains early CEASIOM & "New" CEASIOM
 - 3 describes shape optimization techniques & tools
 - 4 presents results obtained with new CEASIOM contributions
 - 5 concludes with lessons learnt
 - 6 <u>Future work</u>

2. Software for aircraft conceptualpreliminary design

- *Early* CEASIOM
- <u>Recent advances</u>: <u>New CEASIOM</u>
 - Adoption of CPACS support for collaborative and integration
 - Baseline configurations from several sources
 - Higher fidelity geometry and meshable models from CPACS
 - Meshable models the key to physical-based analysis
 - Database building by data fusion
- Optimization process

Need for Open Data-Centric Framework

Framework Challenges are: (Salas)

- Extensibility & interfaces
- Support collaborative design
- Data compliance
- Module exchangeability
- Based on *standards*

Collaborative Design Enabled by Open Data-Centric Approach

Common Parametric Aircraft Configuration Schema

Parametric Model XML Data Format

Data-centric framework for MDO

- Across DLR Laboratories
- Open Source

Common Namespace Analysis Modules Integration Framework

Adoption of CPACS \rightarrow Support for Collaboration & Integration

CEAS-TCAD, 12-14 October 2015 Naples, Italy

Limitations in *Old* CEASIOM Design Framework

airinnova

Engineering Solutions and Innovations

Structural & Aeroelastic

modelling

Contributions to NEW CEASIOM

- 1. Baseline configuration entered manually
- 2. Dataset (xml) defined ad hoc:
 - 1. Impairs collaboration & integration
 - 2. Geometry limited to
 - 1. 2-kink wing
 - 2. Cone-tube fuselage
- 3. No support for building aero databases
- Difficult to model control surfaces & effects
- 5. No propeller model
 - 1. cannot simulate nacelle/wing/slipstream
- 6. No Optimization !

Flight Control System Design Tool-kit and Integrated Stability & Control analyzer

Aircraft builder

ments and the second second second second second		100	-	
Transfer of the local division of the local			81,821 -	200
- 40	O Reconception Propriet (IN	aria-contration		-
- and the second		(A THEFT	1	77.
-		2 1 1 1 1		
	12	T LIND AL	3 -	
		-	12	-12

Early CEASIOM

CEASIOM main GUI

3D mesh generator

Low to high fidelity (Datcom to Euler) aerodynamic methods

CEAS-TCAD, 12-14 October 2015 Naples, Italy Computerised Environment for Aircraft Synthesis & Integrated Optimisation Methods

Recent advances: New CEASIOM

airinnova

Engineering Solutions and Innovations

Meshable Models - the Key to Physics-based Analysis

CEASIOM / CPACS

Engineering Solutions and Innovations

New CEASIOM by adopting CPACS

Higher fidelity geometry and meshable models from CPACS

segment 3

segment 2

airinnova

- "N-airfoil" wing: N-2 kinks
- TE control surfaces
- Each section
 - Airfoil (point cloud)
 - Camber, thickness

segment 1

- Incidence
- Dihedral

x-z-plane of elements

-z-plane of sections

CEAS-TCAD, 12-14 October 2015

Naples, Italy

possible!

vations

12

KTH VETENSKAP OCH KONST

Rapid mesh tool *sumo*: CAD-> grids

Engineering Solutions and Innovations

- Use SUMO "snap" function
- → IGES to CPACS
 - ~ "shrink wrap"
- Open . smx SUMO geometry
- Load CAD geometry as overlay visualized in sumo
 .igs, .stl, .catia (?)
- Fit sections of lifting surfaces
 needs user intervention
- Save as . smx
- Export as CPACS

CEAS-TCAD, 12-14 October 2015 Naples, Italy

E e toolspecific

3. Wing design methodology

- Aerodynamic wing design: historical trends
- Wing design procedure in industry
- Wing design approach: a procedure
- "mix" of 3 optimizer combinations
 - <u>CEASIOM-OPT Matlab scripts</u>
 - <u>SU2 black-box</u>
 - SCID inverse design

Aerodynamic wing design/optimization: Historic

airinnova

Wing Design Approach: a *procedure*

Naples, Italy

Engineering Solutions and Innovations

Twist

Camber

Paper E

twist

Cm = 0

Cm !=

vary planform!

Planform

0.014 initial wing

0.013

0.012

0.01

0.009

0.008

0.007

0.5

→ Thickness

Sequence of steps

planar wing

Optimized

thickness distr.

Camber + twist

User interaction

camber

Wing design optimization – 3 optimizer combinations

airinnova

Naples, Italy

4. Results and discussion of selected design studies

- Comparing 2 direction optimization methods: <u>ONERA M6 wing</u>
- Sequential optimization procedure: <u>MOB blended wing body</u>
- Inverse transonic wing design: *joined wing configuration*
- Propeller slipstream model Euler: <u>Twin-prop 16 seater</u>
- Control surfaces modelling in CEASIOM: <u>Piaggio Avanti</u>
- Flight motion analysis, data fusion: <u>Transonic Trans-Cruiser</u>

5. Conclusions

- CEASIOM software improved
 - Wing design toolbox: 2 direct opt methods, 1 inverse design
 - Loosely coupled direct optimization
 - Tightly coupled direct optimization
 - Inverse design
 - Generalization of CEASIOM
 - airframe geometry modeling
 - Import function
 - CPACS dataset
 - Demonstrated effectiveness on number of applications
 - Conventional as well as unconventional concepts
 - BWB Inviscid drag is reduced around 45% at desired lift with fixed planform
 - Transonic and low speed
 - Used to assess flying qualities
- Lessons learned
 - CEASIOM applied to the various design loops
 - Wing design is a *procedure* therefore "cocktail mix" of opt methods is good strategy
 - Engineer drive the process
 - Less tedious, better user interface, recommendation settings, ...
 - Optimization with re-meshing technique robust
 - Limitations of data fusion
 - Utilize DACE Toolbox, construct the meta-modelling procedures
 - Optimization with re-meshing technique robust

6. Future work

- CEASIOM works better with CPACS
 - Enhance CEASIOM capabilities in MDO
 - Better W&B module for flight simulation
 - Better configuration modelling by adopting CPACS: CPACScreator
 - Each individual module works with CPACS
 - CPACScreator \rightarrow CPACS
 - Sumo \rightarrow CPACS
 - Tornado → CPACS (on progress)
 - ...
 - Each individual module integrated into RCE

