

MDO for Aircraft Design at Bombardier Aerospace

Pat Piperni Advanced Product Development Bombardier Aerospace

Symposium on Collaboration in Aircraft Design Oct. 12-14, 2015, Naples, Italy

How do we Implement MDO in a Complex Product Development Environment?

MDO must Accommodate an Increasing Level of Detail as the Design Space Narrows..

Definition of MDO Levels and Objectives

Conceptual MDO

- Operator: Advanced Design

 Objectives: Design space exploration, optimization of MR&O and Business Case, sizing of airframe and engine, integration of major systems, and optimization of operations; development of design knowledge, down-selection to promising configurations, and definition of performance targets

Preliminary MDO

- Operator: Advanced Aerodynamics

 Objectives: Application of MDO with high-fidelity aerodynamic tools to develop detailed aero lines of the configuration defined in Conceptual MDO; validation of Conceptual MDO, and further development of configuration and design knowledge

Detail MDO

- Operator: Advanced Structures

 Objectives: Application of MDO with high-fidelity structural analysis tools to develop detailed structure based on configuration and aero lines developed above; validation of Conceptual & Preliminary MDO, and further development of configuration and design knowledge

> Multiple departments contribute at each MDO level, in iterative process

Definition of Multi-Level, Multi-Fidelity Analysis Tool Set

MDO Level	Fidelity	Aerodynamics	Structures	Propulsion	Loads	TBD
1	LO	Knowledge-based aerodynamics	Knowledge-based weight prediction	Fixed architecture,		
смдо	L0.5	L1 Surrogate Models			Scaled Loads	
	L1	Quasi-3D methods (3D VLM / Panel method + 2D High-Fidelity CFD)	Smeared-skin models	Variable architecture, generic rubber engine	No. of load cases < 10	Dynamics,
	L1.5	L2 Surrogate Models		Surrogate model(s) from Engine supplier(s)	L2 Surrogate Models	Systems, Acoustics
PMDO	L2	Mid-to-High Fidelity CFD (3D TSD to RANS)	GFEM		10's of load cases	etc.
	L2.5	L3 Surrogate Models		Real engine model (fixed)	L3 Surrogate Models	
	L3	RANS	$GFEM \to DFEM$		100's of load cases	

All analysis tools must be validated by subject-matter experts, within context of targeted fidelity level and design objectives

MDO Capability must Include all Critical Disciplines..

- All critical disciplines are modeled in automated optimization environment, including both technical and financial metrics
- A multi-fidelity, multi-level, variable complexity approach is used, including knowledge-based methods, surrogate models, and high-fidelity physics-based analysis tools, as appropriate for each aircraft design phase

10

Sample Tools & Processes in MDO Framework: Aircraft Parametric Geometry Modeler

- Rapid Parametric Modeling using CATIA Automation
- Large library of scalable, predefined components available (seats, windows, nacelles, pylons, landing gears, etc.)
- Complete a/c can be modeled in <1-2 days
- Over 140 a/c have been modeled

Sample Tools & Processes in MDO Framework: Variable-Architecture Engine Models

Sample Tools & Processes in MDO Framework: Aircraft Mission & Field Performance Analysis

MDO framework can handle multiple critical airports in optimization process

Sample Tools & processes in MDO Framework: Aircraft Systems: e.g. Landing Gears

Landing gear height and position prediction within 1-2%

Sample MDO Process in Conceptual Design Stage: Tracking Both Technical & Economic Metrics

Design Space Exploration using Evolutionary Multi-Objective Optimization (EMO)

MTOW

Wing Sweep

Wing Aspect Ratio

Promising Aircraft Configurations are Down-Selected for High-fidelity Preliminary & Detail MDO, in Iterative Process

Questions ?

