

Challenges for new Regional Turboprop Configuration

Pierluigi Della Vecchia, PhD.

5th SCAD (Symposium on Collaboration in Aircraft Design) (12th -14th October, 2015)

University of Naples Federico II Department of Industrial Engineering Via Claudio, 21, 80125 Naples pierluigi.dellavecchia@unina.it http://wpage.unina.it/pierluigi.dellavecchia/ http://wpage.unina.it/fabrnico/DAF/

UniversiTà degli STudi di Napoli Federico II

Table of Contents

✤ Introduction

✤ Aircraft Components Design and Optimization

- Nose
- Wing-Fuselage junction
- Nose
- Wing Laminar flow
- Winglet Design
- Vertical Empennage Design

✤ Effects on Aircraft Performance

✤ Conclusions

UniversiTà degli STudi di Napoli Federico II

Introduction

Typical regional turboprop aircraft configuration

- High wing
- T-tail
- Twin Engine on wing
- Aluminum alloy
- Easy access on cabin
- Low maintenance and operability costs

(a) ATR-72-600

(b) DASH8 Q-400

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Introduction

Drag polar and typical mission profile

CD0 = 0.0300

e = 0.83

AR = 12

TOTAL MISSION = 200 nm climb = 50 nm descent = 50 nm Vcruise = 270 kt

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Introduction Effects of CDo

Effect of Oswald e

Pierluigi Della Vecchia

UniversiTà degli STUDI di Napoli Federico II

Aircraft Components Optimization

Typical regional turboprop aircraft – 70 seats

Geometrical characteristics

W _{TO}	b	S	$\mathbf{L_{f}}$	D _{MAX,f}
23000 kg	27 m	61 m ²	27 m	2.5 m

Characteristics to estimate drag polar

AR	e	C _{D0}
12	0.83	0.0306

Engine Performance characteristics

SBP	N° of engines	η_{p}	Cruise altitude
2750 hp	2	0.85	20000 ft

Reference aerodynamic analysis conditions

Condition	α	β	Μ	Re
Cruise	0°	0°	0.43	$11.5 \cdot 10^{6}$
Climb	6°	0°	0.3	$8.0 \cdot 10^{6}$

Challenges for new Regional Turboprop Configuration,

Aircraft Components Optimization

Condition	α	β	Μ	Re
Cruise	0°	0°	0.43	$11.5 \cdot 10^{6}$

Pressure coefficient in cruise condition

Rapid variation in Cp on the Nose, wf intersection and Fairing components

Pierluigi Della Vecchia

Challenges for new Regional Turboprop Configuration,

UniversiTà degli STudi di Napoli Federico II

Aircraft Components Optimization

Challenges for new Regional Turboprop Configuration,

UniversiTà degli STUDI di Napoli Federico II

Wing-Fuselage junction Optimization

0.0000 20.000 Velocity: Magnitude (m/s) 60.000 80.000 100.00

Optimized

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Wing-Fuselage junction Optimization

 $\Delta C_D = 6.7 \text{ counts in Cruise}$ $\Delta C_D = 8.2 \text{ counts in Climb}$ $\Delta V_{MAX} = 3.3 \text{ kts}$

UniversiTà degli STudi di Napoli Federico II

Wing-Fuselage junction Optimization

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Nose Optimization

Pierluigi Della Vecchia

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Nose Optimization

WB Config.	CD pressure (counts)	CD skin frition (counts)	CD Total (counts)
Baseline	62.8	117.8	180.7
Optimized	59.3	118.1	177.4

$\Delta C_D = 3.3 counts in Cruise$			
$\Delta C_D = 3.5 counts in C \lim b$			
$\Delta V_{MAX} = 1.6 kts$			
$C_{M_{\alpha}} = +5\%$			

Challenges for new Regional Turboprop Configuration,

UniversiTà degli STudi di Napoli Federico II

Wing Laminar Flow – Engine Integration

Conventional 90-seats

Innovative rear-propelled 90-seats

Turboprop innovative configuration benefits

Specific range Aircraft specific range nm/lbfuel		Data	Conventional	Innovative
0.45		CDo wing	0.0070	0.0051 (through 40% laminar flow)
0.35		CDo aircraft	0.0270	0.0251
Pan diaman d		e (Oswald efficienc factor)	y 0.78	0.85 (winglet installed)
0.2		Engine SFC [lb/(hp hr)] 0.40	0.36 or 0.32 -10% or -20%
0.15 0.1 0.3 0.35 0.4 0.45 0.5 0.5 0.55 0.6 0.65 Mach	Innovative 40% Lam flow + wlet + dSFC(20%)	up to abou only thro	t 8% fuel sa ough lamina	iving can be achieved ar flow on the wing
	Conventional	Innovative 1	novative 2	Innovative 3
Data	Conventional	(Laminar flow) (La	minar flow + SFC re	ed -10% (Laminar flow + SFC red -20%
Specific Range @ M=0.56 (nm/lb_fuel)	0.23	0.25 (+9%) 0.	275(+19%)	0.318(+38%)
Fuel @ 300 nm mission (lb) 1304		1200 lb (-8%) 10	91 lb (-16%)	943 lb(-28%)

Pierluigi Della Vecchia

Challenges for new Regional Turboprop Configuration,

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Vertical Empennage Design – Control Surface

Conventional Turboprop Vertical Empennage

Innovative Turboprop Vertical Empennage

 $\Delta fuel_{saved} = 13kg(200$ nmi mission profile)

Winglet Design and Optimization

Mission Profile	Altitude [ft]	Distance [nm]	Time[min]	Fuel Mass Burned [kg]
Take-off	0	-	-	
Climb	17000	61.8	18.1	264.8
Cruise	17000	154.3	38.7	516
Descent	0	200	50.1	592.2

About 50% of fuel during climb Challenges for new Regional Turboprop Configuration,

Pierluigi Della Vecchia

UniversiTà degli STudi di Napoli Federico II

Wing Tip Design for a Regional Turboprop

Possible New Turboprop wing-tip assessment

Aircraft configuration	Original	Winglet	
C_{D_0}	0.03060	0.0311	
e	0.85	0.971	
Performance			% of variation
FAR S_{TO} (ft)	4065	4039	-0.7%
FAR S_{LAN} (ft)	3176	3150	-0.1%
R/C s.l. AEO (ft/min)	1437	1508	+4.9%
R/C 10 kft AEO (ft/min)	1063	1149	+8.1%
R/C s.l. OEI (ft/min)	345	434	+25.8%
R/C 10 kft OEI (ft/min)	209	312	+49.2%
Net Ceiling AEO (ft)	23561	25489	+8.2%
Net Ceiling OEI (ft)	10968	13177	+20.1%
Maximum V_{TAS} at 20kft (kts)	262	267	+1.9%
Fuel consumption			
for a 200 nm mission (kg)	594	576	-3.1%
Wing root bending moment			+3.5%

UniversiTà degli STudi di Napoli Federico II

Conclusions

A novel turboprop can achieved the following improvements:

- 3% drag reduction (11 counts) nose, wf-junction and fairing
- 4% drag reduction (20 counts) wing laminar flow (rear engine)
- 3% drag reduction (15 counts) not balanced control surfaces
- +10% on Oswald factor with winglet

TOTAL OF 40 DRAG COUNTS REDUCTION

- → MAXIMUM SPEED IMPROVEMENT OF V_TAS > 15 kt
- → FUEL CONSUMPTION REDUCTION OF 60 kg (i.e 11% during typical 200 nm mission)

→ +30% RATE OF CLIMB IN ONE ENGINE INOPERATIVE OEI

UniversiTà degli STUDI di Napoli Federico II

Challenges for new Regional Turboprop Configuration

Pierluigi Della Vecchia, PhD.

Questions ?

University of Naples Federico II Department of Industrial Engineering Via Claudio, 21, 80125 Naples pierluigi.dellavecchia@unina.it http://wpage.unina.it/pierluigi.dellavecchia/ http://wpage.unina.it/fabrnico/DAF/

