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 - correct approach

 - non-linearities
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Horizontal tail design – scissors plot

• Stability condition

• Control condition
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Longitudinal stability and control

Stability Control
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Longitudinal stability and control
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Longitudinal stability and control – correct approach 
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Longitudinal stability and control – correct approach 
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• The equations include the contribution of the horizontal tail on lift
• The lift and moment equation are linked
The neutral point does not depend anymore on CG
 The Cm @ CL=0 does not depend on the CG (it is a pure moment) 
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Effect of new correct approach
on scissors plot
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The influence of tail area ratio on 
neutral point and maximum allowable 
FWD CG position for equilibrium in 
landing 
is not more linear.

Allowable CG range 
It is becoming MORE CRITICAL !

(even -10% xcg travel with Sh/S=0.25

Equilibrium
landing 

Min required 
stability

Take-off rot.



Non-linear effects
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Stability and control ; effect of at

- at reduces at high angles of attack of for 
the H tail, high CLt and CLw
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Stability and control;  effect of aw

aw reduces at high attitude, and
static margin of stability increases !

CLw
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non linearity effect of 
aw (high attitude)

=> Leads to more control problem
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Stability and control;  effect of downwash non-linearities

Downwash influences SSM

Cm

CL

non linearity effect of 
downwash (wake is 
getting closer to H tail)

=> Leads to less control problem
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Effect of downwash non-linearities (high wing vs low-wing)
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The wake is increasing distance from h tail when AofA increases

The wake is reducing distance from h tail when AofA increases



Effect of downwash non-linearities
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CLw

CLw

d(  )/ d(  ) 

CLw



Modification of downwash
derivative due to relative 
distance

Lift curve non-
linearities

In the linear wing lift curve range
(< 10 deg) we can have differences in
downwash derivative of about 5-7 %
(due to different wake distance).

=> Which flight condition is more
critical for stability and which one for
control ?



Effect of downwash non-linearities (high wing vs low-wing)
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Pendular Stability
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About -0.15    <0

Always < 0 for CL >0.25
about 3-5 deg => 0.07 rad

Wing-body contribution



Pendular Stability
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CG at al 10% of MAC below the wing at CL=1 leads to 3% higher SSM

Wing contribution to the longitudinal stability

CG at al 30% of MAC below the wing at CL=1 leads to 9% higher SSM
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Pendular Stability
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High wing aircraft usually has a 25-30%
ZCG below the wing
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As it has been highlighted this can lead
to about +10% of SSM at CL=1 (climb)

In full flap condition (approach in
landing) , with CL=2 => + 20%

2



Pendular Stability
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Pendular Stability; high wing vs low-wing, Design
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• For high-wing, the worst case for stability is CL=0, in this case in preliminary

design the effect on stability can be neglected. Maybe a value of the effect in high-

speed cruise cond (CL=0.30) can be considered. => shift of about 3%  

• For low-wing config., the worst case to be considered for design is stability at 

high CL. => shift left of 5 to 10 %
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Longitudinal Control – Pendular effect
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For a Regional Turboprop, LDG conditions: 
- CD0w = 0.0070
- CLapproach = 2
- piARe = 27
- aw = 6/rad
- α0w = -12 deg.
- iw = 2 deg.

- za/c = 0.25

0.0070 - 0.52 - 0.480

0.23- C      90.0 m =−CC

It is like comparable to increment due to flap



Longitudinal Control – Pendular effect
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Longitudinal Control – Pendular effect Influence on Design 
(Scissors plot)
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Longitudinal Non-linear effects

High wing aircraft

12th EWADE, Delft, September 10-2015

tt

w

ta

we

Lwa

L

m

d

d
v

a

a

c

z

aAR
Cx

dC

dC












−−










−


+= 1

12 2

In case of an high-wing aircraft, all the non-linear effects 
can lead to a big increase in stability at high lift coefficient

=> Similar effect on control 

Cm

CL

Wing Lift 
curve slope

downwash

Pendular stab



Directional stability and control

• Vertical tail contribution

• Fuselage contribution (only stability)
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Directional stability and control

• At high angle of sideslip both vertical and fuselage 
contribution to the directional stability can be non-
linear

• Vertical tail can reach stall condition

• Fuselage instability is reduced

• Dorsal fin effect 

• Rudder effectiveness is strongly dependent on 
rudder deflections
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• CN = CNβ∙β + CNδr∙δr = 0

• CNβ = CNβw + CNβf
+ CNβv + CNβh

Directional Stability

Fuselage contribution Vertical tail contribution
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Directional Stability

• In the linear range (0-10/15 deg.) mutual effects among aircraft
components (fuselage, wing, horizontal tail)

• At high angle of sideslip Vertical tail stability contr reduces
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Commuter aircraft
M=0.15
Re=9.5 e6

H tail effect on 
Vert tail

Vert tail

fuselage

Complete aircraft

Body+Wing+Nac+Vert tail
(No HOR Tail)



Directional control (Rudder)
Critical conditions where non-linearity effects should be considered: 

• VMC condition → rudder effectiveness non-linearity

• High sideslip angle in landing condition → Vertical, fuselage and 

dorsal fin non linearity
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Directional Stability – Vertical tail+dorsal fin
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Directional Stability – Fuselage non linearities
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Directional Stability – Fuselage
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Directional Control
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Vertical Tail design
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• Vmc condition (non-linearities in rudder efficiency)

• Equilibrium with cross-wind landing
high beta => non-lin effects on stability, dorsal fin effects
high rudder deflections => non-lin in rudder efficiency



Vertical Tail design ; Vmc
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Vmc = 1.1 Vsto
leads to a certain
Vertical Tail area
(12 sq m)

Example refers to a generic
Regional Turboprop
(like ATR72)

V/Vsto

M[kN m]



Vertical Tail design
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CN(beta)
CN(dr)

CN(beta) - LIN

non-lin in rudder efficiency

Beta or dr

Sv=12 sq m Sv=17 sq m

Beta or dr



Vertical Tail design
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Beta

Sv=12 sq m Sv=17 sq m

Beta

dr dr

MAX Beta
= 35 deg

MAX Beta
= 15 deg



Conclusions
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• Non linearities appears in longitudinal and directional stability
and control (when indip. variable is alpha, beta or control surface
deflection)
• Influence of wing-position (pendular stability)
• Carefully establish when it is worth to consider these effects
• Design of Horizontal tailplane must include these effects

• Design of Vertical tail (usually made for Vmc req) can be critical : 
Vertical tail stall
 Dorsal fin
 Non-lin behavior of fuselage
 Non linear rudder efficiency
Maximum achievable sideslip angle in LDG have to be checked
and must include non-linear effects !


