Transonic Aerodynamics in Conceptual Aircraft Design

Roelof Vos

Content

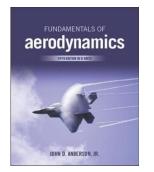
- Motivation
- Origins
- Highlights
- Acknowledgements

Motivation

2004

Motivation

Field of application

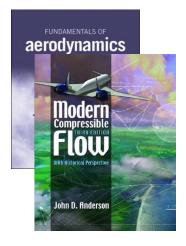

Flow domain

Subsonic

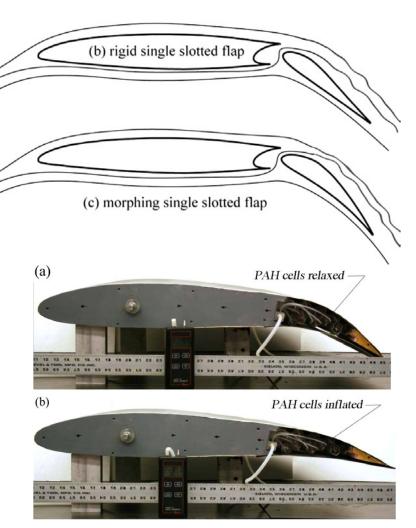
Transonic

Supersonic

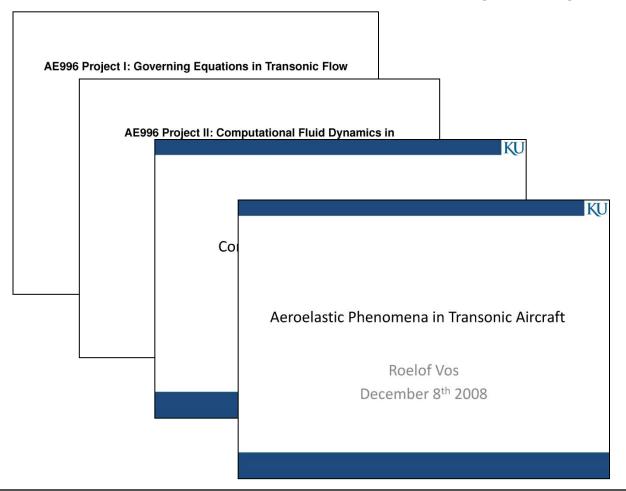
Suitable Text Book

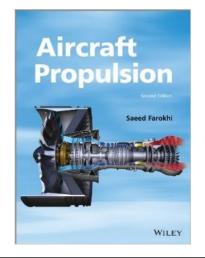


Mach



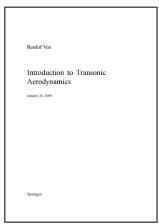
2008



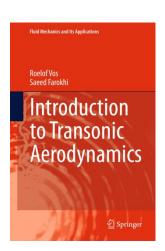


2008: Special Problems in Aerospace Engineering

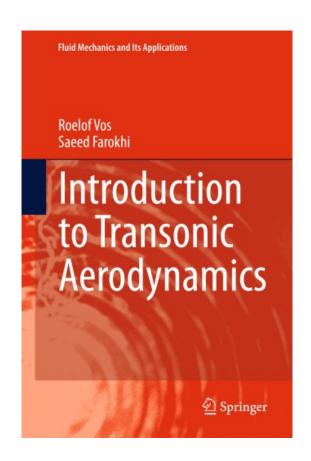
Saeed Farokhi



Contract signed: March 2009


2009

- 1 author
- 4 parts, 18 chapters
- 135 pages
- 37 figures
- 0 examples
- 0 practice problems


2015

- 2 authors
- 8 chapters
- 559 pages
- 440 figures
- 60 examples
- 220 practice problems
- Look-up tables
- Solutions
- Index

- 1. Introduction and Historic Perspective
- 2. Review of Fundamental Equations
- 3. Transonic Similarity Rules
- 4. Shock and Expansion Theory
- 5. Method of Characteristics
- 6. Aerodynamics of Nonlifting Bodies
- 7. Airfoil Aerodynamics
- 8. Aerodynamics of Swept Wings

8

1 Introduction and Historic Perspective

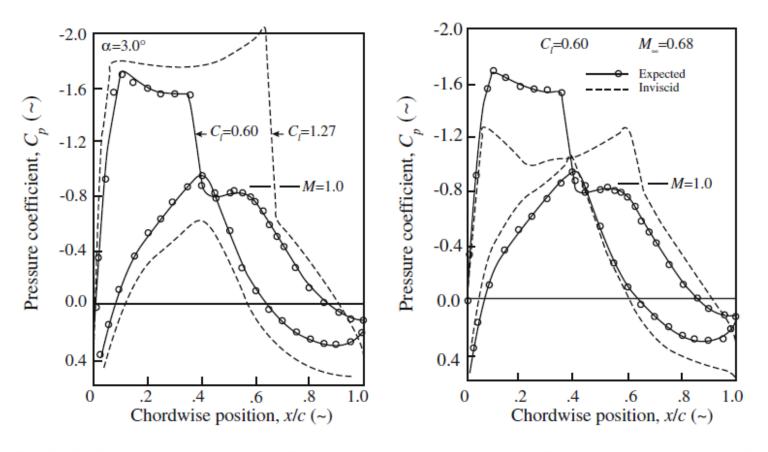


Fig. 1.6 ETW wind tunnel with aircraft model (*Photo* ETW; printed with permission)

72

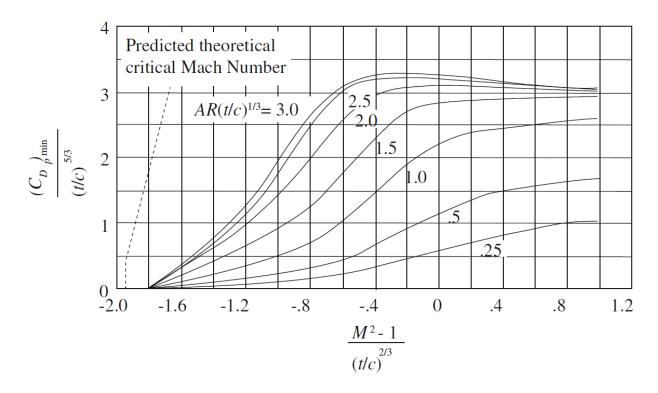

2 Review of Fundamental Equations

Fig. 2.12 Comparison between predicted and measured pressure distribution at constant angle of attack (*left*) and constant lift coefficient (*right*) (after Ref. [5])

3.5 3-D Planar and Axisymmetric Slender Bodies

Fig. 3.21 Curves of the generalized drag coefficient for symmetrical wings for $\gamma = 1.4$ (after Ref. [6])

125

184

4 Shock-Expansion Theory

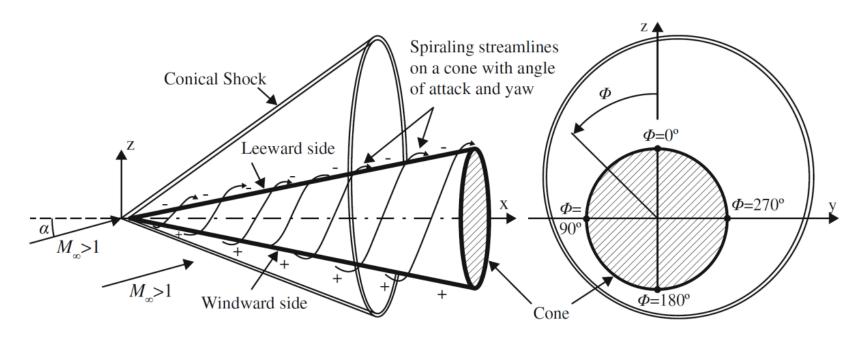
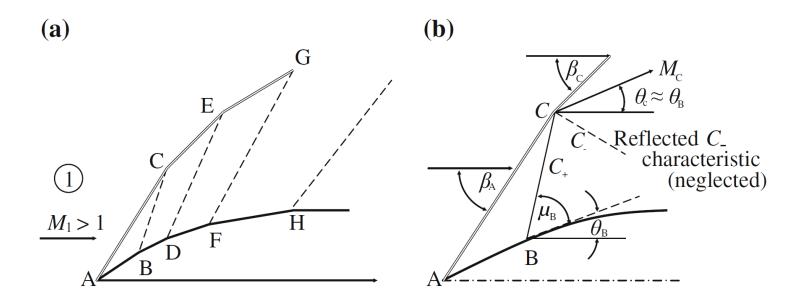
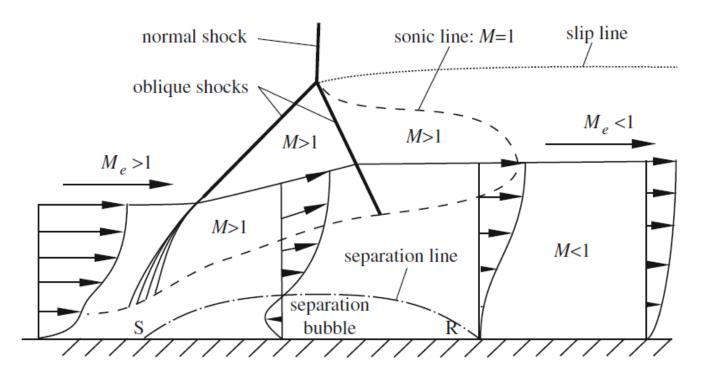



Fig. 4.29 Spiraling streamlines on a cone in supersonic flow at angle of attack and yaw



5 Method of Characteristics

Fig. 5.35 The waves on a slender body in supersonic flow **a** Interaction of Mach waves and an oblique shock (simplified view), **b** expanded view of the flow and shock angles

Fig. 6.41 Detail of strong shock-wave boundary-layer interaction for a turbulent boundary layer (after: [16])

404 7 Airfoil Aerodynamics

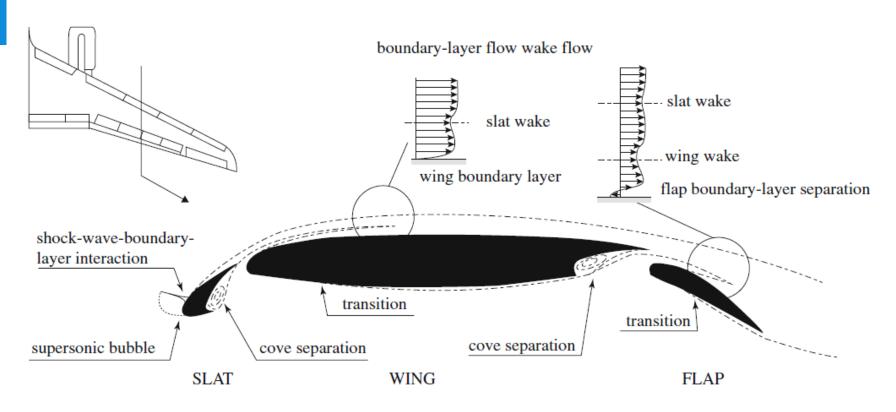
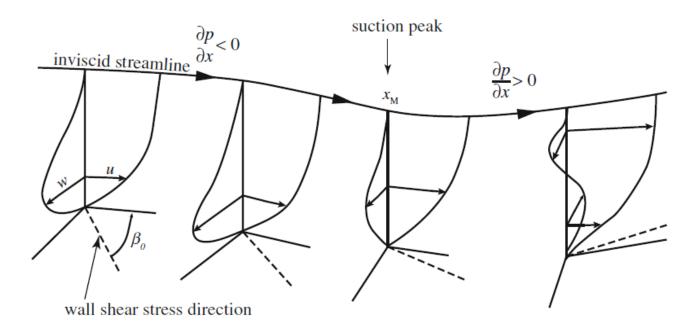



Fig. 7.29 A320 airfoil in landing configuration (modified from Ref. [13])

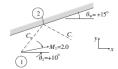
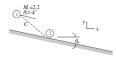


Fig. 8.29 Laminar boundary layer development on a swept wing. $x_{\rm M}$ is the location of the inviscid streamline inflection point. β_0 is the angle between the wall shear stress vector and the inviscid streamline (after Ref. [9])



problems

5 Method of Characteristics

5.2 In a steady, 2-D, irrotational, isentropic supersonic nozzle flow, we have the flow Mach number and direction at point 1, as shown. The nozzle wall is straight and makes an angle, $\theta_w = -9.5^{\circ}$ with respect to x-axis. Calculate the flow Mach number on the nozzle wall that corresponds to the C_{-} characteristic that passes through point 1 (i.e., point 2, M_2). Also calculate the slope of the C_{-} characteristic, dy/dx, between points 1 and 2.

- 5.3 Based on the initial data line in a diverging section of a 2-D supersonic nozzle, as shown, $M_1 = M_3 = 1.6$, $\theta_1 = -\theta_3 = -15^\circ$, $M_2 = 1.8$, $\theta_2 = 0^\circ$. Use Method of Characteristics (MOC) for 2-D irrotational flow to calculate:
- (a) M_5 and θ_5
- (b) M_7 and θ_7

- 5.4 A 2-D C+ characteristic intersects an oblique shock, as shown. Assuming the flow angle at point 2 is 12°, calculate:
- (a) Oblique shock angle, β_2
- (b) Downstream Mach number, M₂
- (c) Constants K_{+1} and K_{+2}
- (d) Was the assumption about θ_2 correct?

solutions

534

Partial Answers to Selected Problems

4.27

(a) $\bar{R} = 6.5$ (b) $\delta_0 = 22.6$

(c) $C_{pp} = 0.05$, $C_{pv} = 0.20$

(d) $C_D^{PP} = 0.118$

(a) $\sigma = 48^{\circ}$

(b) $M_c = 0.8$

(c) $C_{D_p} = 0.65$

(a) $C_{p1} = 0$, $C_{p2} = 0.837$ (b) $c_d = 0.4835$

(c) $c_l = 0.8374$

 $4.35 M_3 = 2.85$

4.39

(a) $|\alpha| > 3^{\circ}$

(b) $\alpha = \pm 2.5^{\circ}$

Chapter 5

5.1 $M_2 \approx 2.2$, dy/dx = 0.869

No	K_	K ₊	θ (deg)	ν (deg)	M	μ (deg)
1	-0.14	-29.86	-15	14.86	1.6	36.68
2	20.73	-20.73	0	20.73	1.8	33.75
3	29.86	0.14	15	14.86	1.6	36.68
4	20.73	-29.86	-4.565	25.295	1.96	30.68
5	29.86	-20.73	4.565	25.295	1.96	30.68
6	20.73	-29.86	-4.565	25.295	1.96	30.68
7	29.86	-29.86	0	29.86	2.1	28.44
8	29.86	-20.73	4.565	25.295	1.96	30.68

5.5

(a) $\theta_{w,\text{max}} = 22.875^{\circ}$ (c) dy/dx = -2.37

(d) dy/dx = 0.3823

References 509

References

- Abbott, I.H., von Doenhoff, A.E.: Theory of Wing Sections. Dover Publications, New York (1959)
- Adler, A.: Effects of Combinations of Aspect Ratio and Sweepback at High Subsonic Mach Numbers. NACA RM L7C24, Langley Field (1947)
- Aly, S., Ogot, M., Pelz, R., Siclari, M.: Jig-shape static aeroelastic wing design problem: a decoupled approach. J. Aircr. 39(6), 1061–1066 (2002). doi:10.2514/2.3035
- 4. Anderson, J.: Fundamentals of Aerodynamics, 5th edn. McGraw Hill, New York (2010)
- 5. Anderson, J.D.: Introduction to Flight. McGraw Hill, New York (2000)
- Anon.: Transonic data memorandum; method for predicting the pressure distribution on swept wings with subsonic attached flow. ESDU TM 73012, London (1973)
- 7. Anon.: Airbus Industrie A 310. L'Aeronautique et L'Astronautique 6(91), 15 (1981)
- 8. Anon.: Fact Sheets: X29. www.nasa.gov/centers/dryden (2008)
- Arnal, D., Casalis, G.: Laminar-turbulent transition prediction in three-dimensional flows. Prog. Aerosp. Sci. 36, 173–191 (2000)
- Bendiksen, O.O.: Transonic limit cycle flutter of high-aspect-ratio swept wings. J. Aircr. 45(5), 1522–1533 (2008). doi:10.2514/1.29547
- Bendiksen, O.O.: Influence of shocks on transonic flutter of flexible wings. In: Proceedings of the 50th AIAA/ASME/AHS/ACS Structures, Structural Dynamics, and Materials Conference, AIAA 2009-2313, pp. 1–29. Palm Springs, CA, May 2009. doi:10.2514/6.2009-2313
- Bergrun, N.R.: An Empirically Derived Basis for Calculating the Area, Rate, and Distribution of Water-Drop Impingement on Airfoils. NACA TR 1107 (1952)
- Biao, Z., Zhide, Q., Chao, G.: Transonic flutter analysis of an airfoil with approximate boundary method. In: Grant, I. (ed.) Proceedings of the 26th Congress of the International Council of the Aeronautical Sciences. ICAS 2008-7.10.5 (2008)
- Bisplinghof, R.L., Ashley, H., Halfman, R.: Aeroelasticity. Dover Publications, Mineola, New York (1996)
- Boyne, W.J.: Boeing B-52: A Documentary History. Smithsonian Institution Press, Washington (1981)
- Broadbent, E.G., Mansfield, O.: Aileron Reversal and Wing Divergence of Swept Wings, ARC Technical Report R&M 2817. London (1954)
- Chambers, J.R.: Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s. SP 2003-4529, NASA (2003)
- 18. Collar, A.R.: The first fifty years of aeroelasticity. Aerospace 5(2), 12-20 (1978)
- Deyhle, H., Bippes, H.: Disturbance growth in an unstable three-dimensional boundary layer and its dependence on environmental conditions. J. Fluid Mech. 316(1), 73–113 (1996). doi: 10. 1017/S002112066000456
- Dowell, E.H., Hall, K.C., Thomas, J.P., Kielb, R.E., Spiker, M.A., Li, A., Charles, M., Denegri, J.: Reduced order models in unsteady aerodynamic models, aeroelasticity and molecular dynamics. In: Grant, I. (ed.) Proceedings of the 26th International Congress of the Aeronautical Sciences. ICAS 2008-0.1 (2008)
- Drela, M., Giles, M.B.: Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J. 25(10), 1347–1355 (1987). doi:10.2514/3.9789
- Dusto, A.R.: An analytical method for predicting the stability and control characteristics of large elastic airplaneas at subsonic and supersonic speeds, part 1—analysis. In: Aeroelastic Effects from a Flight Mechanics Standpoint, vol. 46. AGARD (1970)
- Dykins, D.H., Jupp, J.A., McRae, D.M.: Esso energy award lecture, 1987. Application of aerodynamic research and development to civil aircraft wing design. Proc. R. Soc. Ser. A. Math. Phys. Sci. 416(1850), 43–62 (1988)
- Garrick, I.E., Rubinov, S.I.: Flutter and Oscillating Air-Force Calculations for an Airfoil in a Two-Dimensional Supersonic Flow. NACA Report No. 846, Langley Research Center, Hampton Virginia (1946)

Appendix B Normal Shock Table

Table B.1 shows the normal shock table for $\gamma = 1.4$

Table B	.1 N	ormal	shock t	table	for v	- 1	4

M_1	<i>M</i> ₂	T_2/T_1	p_2/p_1	ρ_2/ρ_1	p_{t2}/p_{t1}	P_{t2}/p_1	$\Delta s/R$
1	1	1	1	1	1	1.8929	0
1.02	0.9805	1.01E+00	1.05E+00	1.03E+00	1.00E+00	1.94E+00	9.96E-06
1.04	0.962	1.03E+00	1.10E+00	1.07E+00	1.00E+00	1.98E+00	7.67E-05
1.06	0.9444	1.04E+00	1.14E+00	1.10E+00	1.00E+00	2.03E+00	2.49E-04
1.08	0.9277	1.05E+00	1.19E+00	1.13E+00	9.99E-01	2.08E+00	5.69E-04
1.1	0.9118	1.06E+00	1.25E+00	1.17E+00	9.99E-01	2.13E+00	1.07E-03
1.12	0.8966	1.08E+00	1.30E+00	1.20E+00	9.98E-01	2.19E+00	1.79E-03
1.14	0.882	1.09E+00	1.35E+00	1.24E+00	9.97E-01	2.24E+00	2.74E-03
1.16	0.8682	1.10E+00	1.40E+00	1.27E+00	9.96E-01	2.29E+00	3.96E-03
1.18	0.8549	1.12E+00	1.46E+00	1.31E+00	9.95E-01	2.35E+00	5.45E-03
1.2	0.8422	1.13E+00	1.51E+00	1.34E+00	9.93E-01	2.41E+00	7.23E-03
1.22	0.83	1.14E+00	1.57E+00	1.38E+00	9.91E-01	2.47E+00	9.31E-03
1.24	0.8183	1.15E+00	1.63E+00	1.41E+00	9.88E-01	2.53E+00	1.17E-02
1.26	0.8071	1.17E+00	1.69E+00	1.45E+00	9.86E-01	2.59E+00	1.44E-02
1.28	0.7963	1.18E+00	1.74E+00	1.48E+00	9.83E-01	2.65E+00	1.75E-02
1.3	0.786	1.19E+00	1.81E+00	1.52E+00	9.79E-01	2.71E+00	2.08E-02
1.32	0.776	1.20E+00	1.87E+00	1.55E+00	9.76E-01	2.78E+00	2.45E-02
1.34	0.7664	1.22E+00	1.93E+00	1.59E+00	9.72E-01	2.84E+00	2.86E-02
1.36	0.7572	1.23E+00	1.99E+00	1.62E+00	9.68E-01	2.91E+00	3.30E-02
1.38	0.7483	1.24E+00	2.06E+00	1.65E+00	9.63E-01	2.98E+00	3.77E-02
1.4	0.7397	1.25E+00	2.12E+00	1.69E+00	9.58E-01	3.05E+00	4.27E-02
1.42	0.7314	1.27E+00	2.19E+00	1.72E+00	9.53E-01	3.12E+00	4.81E-02
1.44	0.7235	1.28E+00	2.25E+00	1.76E+00	9.48E-01	3.19E+00	5.38E-02

(continued)

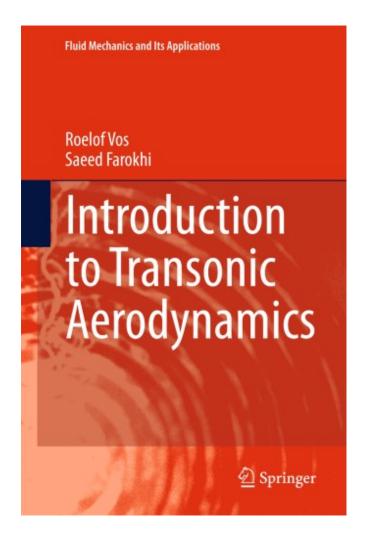
[©] Springer Science+Business Media Dordrecht 2015
R. Vos and S. Farokhi, Introduction to Transonic Aerodynamics,
Fluid Mechanics and Its Applications 110, DOI 10.1007/978-94-017-9747-4

Index Glossary

A	В	
Adiabatic, 46	Blasius equation, 327	
Aerodynamic	Boundary layer, 303	
center, 482	blending layer, 333	
damping, 492	confluence, 404	
stiffness, 492	crossflow, 461	
twist, 476	laminar, 303	
Aeroelastic	merging layer, 333	
penalty, 489	overlap layer, 333	
tailoring, 476	separation, 302, 304, 470	
Aeroelastic penalty, 475	shock wave interaction, 319	
Aeroelasticity, 474	thickness, 305, 306	
dynamic, 474	transition, 343, 372, 464	
static, 474	turbulent, 313	
Aeroservoelasticity, 495	Boussinesq assumption, 67	
Aft loading, 376	Bréguet range formula, 2	
Aileron	Buffet, 405	
high-speed, 488	onset boundary, 405	
reversal, 481	transonic, 405, 412	
Airfoil, 368		
bi-convex, 173, 198		
bi-convex parabolic, 200	C	
circular-arc, 173	Calorically-prefect gas, 150	
hexagonal, 198, 200	Camber, 369	
laminar flow, 372	line, 369	
natural-laminar-flow, 374	Canonical form, 35	
'peaky', 382	Center of mass, 491	
shock-Free, 379	Characteristic	
sonic rooftop, 390	coordinates, 24	
supercritical, 375	curves, 35	
Angle-of-attack	Characteristic Mach number, 150, 151	
effective, 476	Characteristics, 211	
Area rule, 12	Chord	
supersonic, 13	length, 369	
transonic, 288	Clauser's equilibrium parameter, 335	
Attachment line, 465	Coles, 333	
instability, 465	Coles' wake parameter, 333, 362	
© Springer Science+Business Media Dordrecht 201	15	551
R. Vos and S. Farokhi, Introduction to Transonic Ae		
Fluid Mechanics and Its Applications 110, DOI 10.	1007/978-94-017-9747-4	

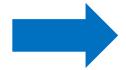
Latin symbols

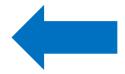
```
Cross-sectional area or axial force (m<sup>2</sup>, N)
          Ambient speed of sound (a = \sqrt{\gamma RT}) (m/s<sup>2</sup>)
          Aspect ratio (~)
B
          Non-dimensional constant in law of the wake (6.109) (~)
          Wing span (m)
         Characteristic curve in physical space (N/A)
          Chord length, wave propagation speed, or specific heat capacity in a soild
          (m, m/s, J/kg/K)
          Section axial force coefficient (~)
c_a
          Three-dimensional drag coefficient or dissipation coefficient (~, ~)
C_D
          Section drag coefficient (~)
C_f
          Friction coefficient C_f = \frac{1}{c} \int_0^l c_f dx (~)
          Local friction coefficient (~)
         Lift coefficient (~)
          Section lift coefficient (~)
          Section moment coefficient (~)
          Section normal force coefficient (~)
          Pressure coefficient (~)
          Specific heat at constant pressure (J/kg/K)
          Specific heat at constant volume (J/kg/K)
          Drag (N)
          Young's modulus (N/m<sup>2</sup>)
          Internal energy, Oswald factor or normalized distance between elastic axis
          and aerodynamic center (J/kg, ~, ~)
          Total energy (J/m3)
          Fineness ratio of a body (~)
G
          Shear modulus (N/m<sup>2</sup>)
         Gravitational constant (m/s2)
                                                                                    545
© Springer Science+Business Media Dordrecht 2015
R. Vos and S. Farokhi, Introduction to Transonic Aerodynamics,
Fluid Mechanics and Its Applications 110, DOI 10.1007/978-94-017-9747-4
```



Acknowledgements

- TU Delft leadership:
 - Leo Veldhuis
 - Hester Bijl
 - Michel van Tooren
- Feedback + assistance:
 - Egbert Torenbeek
 - Ali Elham
 - Luca Guadani
- Student assistants:
 - Lisanne van Veen
 - Kevin Haagen
 - Maaike Weerdesteyn
 - Thomas Stasny
 - Amool Raina

Questions?




Interested?

	TU staff/student	External
eBook	€ 0	€ 75
MyCopy Softcover Edition	€ 25	X
Hard Copy	€ 76	€ 95

www.springerlink.com

