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Aircraft Subsystems – Conventional and All Electric

 Aircraft and equipment systems and subsystems are essential for the performance, safety, 

controllability and comfort
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Conventional Subsystems Architecture (CSA)

GB: Gearbox

P: Pump

G: Generator

IFE: In-Flight Entertainment

IPS: Ice Protection Systems

ECS: Environmental Control System
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More Electric Aircraft (MEA) – An Intermediate Step

www.boeing.com

www.airbus.com www.boeing.com

Airbus A380

 Electrohydrostatic Actuators (EHA)

 Electrical Backup Hydraulic Actuators (EBHA)

 Electric thrust reverser actuation system (ETRAS)

 Due to technological risk, the transition to All Electric Aircraft (AEA) will be progressive

 More Electric Aircraft (MEA) will appear in between

 Some subsystems, but not all, will be electric

 Such aircraft have already entered service – Airbus A380 and Boeing 787

 Question: Why do the A380 and B787 have different electrified subsystems?

 Question: How should the MEA designer decide which subsystems to electrify?

Boeing 787

 Electric (bleedless) ECS architecture

 Electric wing ice protection system (WIPS)

 Electro Mechanical Brake System (EMBS)

Two in-service 

More Electric 

Aircraft
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 Conceptual phase commercial aircraft sizing is driven by the design requirements:

 Payload & range requirements

 Operational requirements (TOFL, Vapp, CRMACH, etc.)

 The aircraft subsystems affect this process

 Aircraft empty weight (OEW)

 Engine SFC (shaft-power and bleed extraction)

 Drag increments (ram air inlets, etc.)

Consideration of Subsystems in Aircraft Conceptual Design

Refined sizing method (Raymer, Aircraft Design: A Conceptual Approach, 4th ed.[1])

(Notional curves are shown. B737 

and A320 points were plotted based 

on public domain information)
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 For conventional subsystems, the conceptual phase 

designer has access to a vast historical database of 

information

 This database and regression equations provide a starting 

point for estimation of subsystem weights

Integrating Subsystems Design in the Conceptual Design Phase

Weight of flight control system

(GD method)[2]

Weight of hydraulic, pneumatic, and 

electrical systems (Torenbeek method)[2]

 The conceptual phase designer of AEA / MEA

 Will not have access to such a historical 

database or regression equations

 Will have to account for significant 

interactions among subsystems

 Conceptual phase design of AEA/MEA can be 

facilitated through a methodology where

 subsystem sizing/analysis is done in 

parallel with that of vehicle and propulsor

 subsystem characteristics are fed back 

into vehicle and propulsor analyses
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1. Develop / identify methods suitable for subsystem 

sizing in conceptual design phase

2. Integrate methods into a framework that allows 

comparison of the vehicle and mission level 

effects of CSA and ESA architectures

3. Demonstrate and evaluate the effect of “cycling” 

the design to capture the “snowball” effects of 

subsystem architecture changes

Objectives and Proposed Approach

Test case: single-aisle narrow-body aircraft
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Flight Conditions

 Ailerons:    FAR 25.349 – Rolling conditions (VA, VC, VD)

 Elevators:  FAR 25.255 – Out-of-trim characteristics

 Rudder:     FAR 25.149 – Minimum control speed (VMCA)

FAR 25.351 – Yaw maneuver conditions

 Flight spoilers: Emergency descent at design dive speed (VD)

 Ground spoilers: Extension at max rated tire speed

 High-lift devices: Extension at max flap extension airspeed (VFE)

Control Surface Actuation – Actuation Loads

Actuation requirements for baseline aircraft control surfaces

Load characteristics

 Ailerons, elevators, rudder – hinge moment coefficients [3]

 Flight & ground spoilers – hinge moment coefficients [4]

 High-lift devices – scaling wind-tunnel results [5,6]

(or matching specifications of existing actuator)
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 Two types of electric actuators were modeled

 Electrohydrostatic actuator (EHA)

 Electromechanical actuator (EMA)

 Based on control surface actuation 

requirements (load, speed, stroke), actuator 

models were created to estimate

 Weight [8,9]

 power [10]

 The following association of actuators to 

control surfaces was considered

 each aileron – 2 x EHA

 each elevator – 2 x EHA

 rudder – 3 x EHA

 each spoiler – 1 x EHA

 each L/E device – 1 x EHA

 each T/E flap – 2 x EMA

 The conventional hydraulic system was not 

modeled in detail. Instead its weight was 

estimated from empirical relationships [2]

Control Surface Actuation – Actuator Models

+

EHA EMA

Electrohydrostatic and Electromechanical Actuators [7]
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 Landing gear weight was set as a fraction of the aircraft MTOW [11]

 Kinematic parameters were set based on gear leg length [12]

 Gravitational moment predominates during retraction/extension [13]

 Actuator ram position and force were obtained by solving the linkage kinematics

 Max force, max rate, and stroke were identified. Retraction at max actuator rate was assumed

Landing Gear Actuation

Summary of landing gear geometry & kinematic parametersLanding gear geometry and kinematics
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 Braking force requirements were obtained by considering 2 static cases [14] & 2 dynamic cases [15]

 Braking force → Braking torque → Axial force

 Brake “heat-stack” mass was computed based on 

thermal capacity required to dissipate the kinetic 

energy (KE) within a permissible gross temperature rise

 Weight predictions obtained were in fair agreement with

published weights for steel and carbon-carbon brakes [16,17]

 For the electric brake, the mass of the EMA was added 

to the mass of the heat-stack

Wheel Braking

Braking 

force

Braking 

torque

Axial

force

+
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 Nose landing gear parameters were set based on conceptual design phase guidelines [1]

 The conditions cited in FAR 25.499 (Nose-wheel yaw and steering) were used to estimate the 

moment about the steering axis

 Aircraft at Maximum Ramp Weight (MRW)

 Vertical force equal to 1.33 times the maximum nose gear static reaction

 Nose gear side (lateral) force of 0.8 times the vertical ground reaction

 The steering moment was computed from the tire lateral force using the steering geometry

 Predicted steering moment showed good agreement with results from ELGEAR project (A320) [18]

Nose-wheel Steering

+
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 Cabin was considered divided into thermal zones, 

each with independent temperature setting

 Thermal loads considered:

 Passenger metabolic heat load

 Galley loads, Electrical/electronic heat loads

 Heat exchange with ambient through cabin wall

 Minimum mass flow rate was set 

 Zone thermal load and inlet temperature constraints were used to determine

 Required mass flow rate

 Required inlet temperature

Environmental Control System – Cabin Air Requirements

Thermal zones considered for ECS cabin model
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 Return air from cabin zones enters mixing 

manifold (for recirculation)

 50% recirculation was assumed

 Fresh (conditioned) pack air received from 

two ECS packs

 Each ECS pack was supplied by 2 cabin air 

compressors (CACs)

 Cabin zone with lowest inlet temperature 

requirement sets the output temperature 

from the mix manifold

 The temperature requirements of the 

remaining zones are satisfied using “trim” 

air (hot air that bypasses the ACMs)

 Source of fresh cabin air

 Electric ECS: external ram air 

compressed by CACs

 Conventional ECS: engine bleed air

Environmental Control System – Air Distribution & Recirculation

FD A B C D

Mixing manifold

ECS Packs 

( x 2) 

Cabin Air

Compressors

( 2 x 2 )

Zones

+
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 Protected areas

 Slats 2, 3, 4, 5, 6, 7

 Engine nacelle inlets

 Required heat flux depends on ambient 

conditions and also the target skin temperature

 Evaporative systems: 37 – 50 ᵒC

 Running-wet systems: 4 – 10 ᵒC

 Surface heat flux is the resultant of heat fluxes 

from five processes [19,20]:

 Convection

 Sensible heating

 Evaporation

 Kinetic heating

 Aerodynamic heating

Ice Protection System – Computation of Required Heat Flux
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Ice Protection System – Pneumatic & Electrothermal

Pneumatic IPS Electrothermal IPS [21]
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 Electric motors were assumed to be driving the main gear axles (as opposed to nose gear)

 Main requirements are acceleration, max taxiing speed, and achieving breakaway torque

 A linearly-reducing acceleration profile was assumed to compute velocity as a function of time

 The required tractive force per tire was used to compute max torque and power requirement

 Predicted motor power compared well with

published figure from Airbus/Honeywell/Safran

“Electric Green Taxiing System” (EGTS) test

program (2 x 50 kW, A320 aircraft) [22]

Electric Taxiing
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Integration of Methods & Models into Pacelab SysArc Environment

Actuation subsystems + Electric Taxiing

Environmental Control System (ECS)

Ice Protection System (IPS)

 Subsystem component 

models, methods, etc. 

were incorporated into 

Pacelab SysArc 

“Engineering Objects” 

(EO’s)

 Several existing EO’s 

were used, with 

modifications made 

where necessary

 No detailed model of 

conventional centralized 

hydraulic architecture 

was created
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Power Generation and Distribution

 The Electric Subsystem 

Architecture (ESA) was built 

around the Power Generation & 

Distribution system

 Partly based on the architecture 

of the Boeing 787 [24,25]

 Sizing of generators based 

power consumption of flight-

critical systems during One 

Engine Inoperative (OEI) flight

 APU sizing driven by ECS 

operation on ground

 Electric loads (e.g. control 

surface actuators) were 

connected to electric busses in 

a manner similar to association 

of hydraulic actuators to 

redundant hydraulic systems
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Subsystem Architecture in Pacelab SysArc – Logical Connections

ECS

CIPS CIPS

WIPS WIPS

L/E devices L/E devices

T/E devices T/E devices

Aileron Aileron

Elevators & Rudder

Spoilers Spoilers

LG actuation, 

brakes, 

steering, e-taxi

Power gen & dist.
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Subsystem Architecting in Pacelab SysArc – Physical Connections

Routing algorithm:

Used to translate logical 

connections (port-to-port) 

into physical connections 

using sized physical 

connectors (e.g., wires, 

pipes, ducts, etc.)
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Estimating Change in Aircraft Operating Empty Weight (OEW)

 Empirical relationships were 

used to estimate Δweight 

due to deletion of hydraulic 

& pneumatic systems 

 Power-to-weight ratios of 

generators, APU, & ATRU 

were based on public 

domain information

 Electric taxiing system was 

not considered further 

(more likely to be a retro-fit 

for short haul operations)

 Change in fixed equipment 

→ change in vehicle OEW

→ change in required fuel

→ change in vehicle MTOW
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 Engine decks for mission performance analysis were generated using the 

Numerical Propulsion System Simulation (NPSS) tool [27], which was used to 

generate two engine decks

 for CSA-design: shaft-power extraction + bleed (i.e, mixed off-take)

 for ESA-design: only shaft-power extraction

 Engine decks were representative of the CFM56-7B27 engine [28], but did not utilize 

or contain any proprietary information

Mission Definition and Engine Performance Tables
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Subsystem Activity Schedules

 Control surface 

movements were 

characterized by 

amplitude and 

frequency for each 

flight phase

 Figures for cruise are 

representative of a 

turbulence encounter

 Common loads were 

scaled from previous 

AEA studies 

 For both architectures, 

50% ECS recirculation 

was assumed

 IPS set to “OFF” in 

cruise for both designs
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Propagating Effect of CSA-to-ESA Architecture Transition

CSA ESA-I ESA-U ESA-C

Δ Sw - 2.92 %

Δ W/S -

Δ SLST - 2.92 %

Δ T/W -

Δ OEW - 2.97 %

Δ MTOW - 2.92 %

Δ Fuel - 5.12 %

Δ Sw -

Δ W/S - 1.98 %

Δ SLST -

Δ T/W + 2.02 %

Δ OEW - 1.69 %

Δ MTOW - 1.98 %

Δ Fuel - 4.20 %

Δ Sw -

Δ W/S - 0.88 %

Δ SLST -

Δ T/W + 0.88 %

Δ OEW -

Δ MTOW - 0.88 %

Δ Fuel - 3.50 %

Sw (sq.ft.) 1,343

W/S (psf) 127.5

SLST (lbf) 54,600

T/W 0.3189

OEW (lb) 92,310

MTOW (lb) 171,200

Fuel (lb) 38,704

Baseline Intermediate Uncycled Cycled

 Isolates the effect of 

transitioning from mixed 

off-take to “bleedless”

 Shows that it is possible 

to absorb some amount 

of OEW increase

 Isolates the effect of 

CSA→ESA with fixed 

propulsor & geometry

 Shows that increased 

range and/or payload 

capability is possible

CSA: Conventional 

Subsystems 

Architecture

ESA: Electric 

Subsystems 

Architecture

 Captures the additional 

“snowball” effect by 

“cycling” the design

 Iteration affects vehicle, 

propulsor, and

subsystems

CSA→ESA 

Hold…

OEW,

geometry,

thrust

Factor in
Δ OEW

Hold…

geometry,

thrust

Resize 

vehicle & 

propulsor

+
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Conclusions:

 Subsystem sizing and analysis methods suitable for the conceptual aircraft design phase were 

developed / identified for major aircraft subsystems

 Actuation subsystems (flight controls, landing gear, brakes, steering)

 Environmental control system (ECS)

 Ice protection system (IPS)

 These methods were integrated into an environment (Pacelab SysArc) that allowed the 

propagation of subsystem effects on the aircraft and its mission performance to be analyzed

 A proposed methodology to integrate the sizing and analysis of subsystems into aircraft 

conceptual design was demonstrated by considering the vehicle and mission level effects of 

transitioning from conventional to electric subsystem architecture

Future work:

 Enhance the physics modeling in the analysis methods used

 Consider additional subsystems (e.g., thrust reversers, etc.)

 Consider the effect of electric subsystems on different categories of aircraft:

(general aviation, business jets, commercial transports of varying size)

Conclusions & Future Work
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Nose-wheel steering moment (ELGEAR project)

MRW (kg) Moment (Nm)

68,400 (A320-100) 7,270

79,229 (B737-800) 8,421

* A320 variant was not specified.

Ramp weight vs. predicted steering moment
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