Design languages

for multi-disciplinary architectural synthesis and analysis of complex systems in the context of an aircraft cabin

Priv.-Doz. Dr.-Ing. Stephan Rudolph

Dipl.-Ing. Peter Arnold

Dipl.-Ing. Marc Eheim

Dipl.-Ing. Stefan Hess

Dipl.-Ing. Martin Motzer

Dipl.-Ing. Marius Riestenpatt genannt Richter

Dipl.-Ing. Jens Schmidt

Dipl.-Ing. Roland Weil

Similarity Mechanics Group Institute for Statics and Dynamics of Aerospace Structures (ISD) University of Stuttgart, Germany

outline

Why

using graph-based design languages?

How

using graph-ased design languages aircraft cabin (3D geometry and 3D network routing)

More

digital factory, fault-tree analysis, ... fiber-reinforced structures

Future

cooperation possibilities (EU-and national projects) workshop in Stuttgart March 2015

research question

research assumption

design languages

system of systems

"The" problem

"The" solution

evolution of programming languages

evolution of design languages

class decomposition

UML class diagramm

graph-based design language (in UML)

vocabulary (as UML classes)

rules (as UML model-transformations)

 production system (as UML activity diagram) consists of a sequence of design rules

design language

design loops

outline

Why

using graph-based design languages?

How

using graph-ased design languages aircraft cabin (3D geometry and 3D network routing)

More

digital factory, fault-tree analysis, ... fiber-reinforced structures

Future

cooperation possibilities (EU-and national projects) workshop in Stuttgart March 2015

aircraft cabin (geometry + systems + ...)

system of systems

rule definition (M2M-transformation)

domain expert(s) → **rule:** add instances to an existing instance aircraft

domain experts → rule: specialization of a generic cable to a specific type (cast, slots added)

production system (activity diagram)

cabin layout

layout design language: calculation of layout according to requirements

geometry design language: generation of aircarft cabin geometry

from cabin layout to network

integration on class layer

network generation and full 3-D routing

design trades (2 network variants)

outline

Why

using graph-based design languages?

How

using graph-ased design languages aircraft cabin (3D geometry and 3D network routing)

More

digital factory, fault-tree analysis, ... fiber-reinforced structures

Future

cooperation possibilities (EU-and national projects) workshop in Stuttgart March 2015

aircraft design language

aircraft panel

aircraft panel (CATIA V5)

digital factory

manufacturing sequence

digital factory

outline

Why

using graph-based design languages?

How

using graph-ased design languages aircraft cabin (3D geometry and 3D network routing)

More

digital factory, fault-tree analysis, ... fiber-reinforced structures

Future

cooperation possibilities (EU-and national projects) workshop in Stuttgart March 2015

propulsion system (design and FTA)

design language shown encodes

"systematic german design methodology" (Pahl and Beitz, 1972)

\$\frac{1\text{10}}{1\text{10}}\$\$

Reliability

Design Language

Mass Balance

Pahl and Beitz (1972)
 design means consistent mapping:
 requirements → abstract product
 functions → solution principles →
 embodiments

cooperation

How

using graph-ased design languages aircraft cabin (3D geometry and 3D network routing)

More

digital factory, fault-tree analysis, ... fiber-reinforced structures

Future

cooperation possibilities (EU-and national projects) knowledge-based methods workshop at Stuttgart University in March 2015

thanks / questions

```
.... ask / approach me for cooperation ideas....
Horizon 2020 Factory of the Future (FoF program)...
```

- ... you provide the application know-how
- ... we do the processing
- ...and the PhD candidates of the "Similarity Mechanics Group"
- Dipl.-Ing. Peter Arnold
- Dipl.-Ing. Marc Eheim
- Dipl.-Ing. Jürgen Freund
- Dipl.-Ing. Stefan Hess
- Dipl.-Ing. Martin Motzer
- Dipl.-Ing. Marius Riestenpatt genannt Richter
- Dipl.-Ing. Jens Schmidt
- Dipl.-Ing. Roland Weil