

Contents

1. Problem setup

2. Integrated Design and Control

Contents

1. Problem setup

2. Integrated Design and Control

- ➤ Previous PhD thesis: "Handling Qualities resolution for Blended-Wing Body" (Saucez, 2013) at the Future Projects Office in Airbus, Toulouse and ISAE-Supaero
 - Flying Wing configuration very promising
 - ➤ Handling qualities were a major challenge and not deeply studied yet

►Initial configuration:

- ➤ Previous PhD thesis: "Handling Qualities resolution for Blended-Wing Body" (Saucez, 2013) at the Future Projects Office in Airbus, Toulouse and ISAE-Supaero
 - Flying Wing configuration very promising
 - ➤ Handling qualities were a major challenge and not deeply studied yet

→Initial configuration:

PhD conclusions:

- No major showstopper concerning Handling qualities
- Vertical surfaces needed
- Multicontrol surfaces necessary
- Active control mandatory

Focus on the need for active stabilisation

Natural Aircraft

Focus on the need for active stabilisation

Natural Aircraft

- Consequences of the active stabilization:
- ⇒High-rate control surfaces

create large secondary power demand

Cost of instability on A/C design

Augmented Aircraft

How unstable is the flying wing? Longitudinal modes

- Max instability: 1,25 rad/s @ Mlight & low Mach
- Impact on actuators Bandwidth? Optimal actuators sizing?

Contents

1. Problem setup

2. Integrated Design and Control

Control Problem Setup

Aircraft Model:

• Longitudinal Model, 4 states
$$X = \begin{bmatrix} \delta V \\ \delta \alpha \\ \delta q \\ \delta \theta \end{bmatrix}$$

• 11 Controls

• Measures for control:
$$\mathbf{Y} = \begin{bmatrix} \delta & \alpha \\ \delta q \\ \delta \theta \end{bmatrix}$$

Standard form for H2/H∞ control

• Standard form:

Standard form for H2/H∞ control

Standard form:

• H2/H∞ control problem:

$$\min_{K} \quad ||T_{w\to u}||_2$$

$$\min_{K} ||T_{w \to u}||_{2}$$

subject to: $||T_{w \to z_{inf}}||_{\infty} \le \gamma$

Standard form for H2/H∞ control

Standard form:

• H2/H∞ control problem:

$$\min_{K} ||T_{w \to u}||_2$$

 $\min_{K} ||T_{w \to u}||_{2}$
subject to: $||T_{w \to z_{inf}}||_{\infty} \le \gamma$

Weighting function on pitch acceleration:

Controller structure

Static 11x3 State-feedback

- Linear Control Allocation is performed by the compensator
 - Allocation strategy is given by the optimisation
 - How to mix Nonlinear Control Allocation (ie including saturations) with structured controller is an open question for us

- Co-design:
 - Meaningful physical parameters are considered as controller parameters
 - Physical parameters are optimised in the controller synthesis
 - Example: in (Alazard et al., 2013), a delay accounting for sensor quality is optimised conjointly with an attitude controller

- Co-design:
 - Meaningful physical parameters are considered as controller parameters
 - Physical parameters are optimised in the controller synthesis
 - Example: in (Alazard et al., 2013), a delay accounting for sensor quality is optimised conjointly with an attitude controller
 - In litterature:
 - Integrated design and control (also known as plant-controller optimization) was performed using LMI framework (Niewhoener et al., 1995)
 - Full-order controllers
 - Handling Qualities requirements hardly translated into H∞ constraints
 - Adress this problem using nonsmooth optimization tools for structured controllers

• Parametrized first-order bandwidth:

$$\frac{y_{act}}{u_{act}}(s) = \frac{\omega_i}{\omega_i + s}, \ i = 1...11$$

• Parametrized first-order bandwidth:

$$\frac{y_{act}}{u_{act}}(s) = \frac{\omega_i}{\omega_i + s}, \ i = 1...11$$

Closed-loop model for synthesis:

• Parametrized first-order bandwidth: $\frac{y_{act}}{u_{act}}(s) = \frac{\omega_i}{\omega_i + s}, \ i = 1...11$

Closed-loop model for synthesis:

• New optimization problem:

$$\min_{K,\Omega} \max \{W_2 || T_{w \to u} ||_2, W_3 || T_{u_{act} \to \dot{y}_{act}} ||_2 \}$$

subject to:
$$||T_{w \to z_{inf}}||_{\infty} \le \gamma$$
, $0 \le \Omega \le \Omega_{max}$

Systune

- Why using Systune?
 - Allows for mixed H2/H∞ synthesis and multiobjective optimization.

Systune

- Why using Systune?
 - Allows for mixed H2/H∞ synthesis and multiobjective optimization.
 - Allows for structured parameters for the controller and physical parameters;
 bounds on these variables are easily applicable

Systune

- Why using Systune?
 - Allows for mixed H2/H∞ synthesis and multiobjective optimization.
 - Allows for structured parameters for the controller and physical parameters;
 bounds on these variables are easily applicable
 - Directly specifying closed-loop structure and tunable blocks. Single Simulink model for linear synthesis and nonlinear simulation.
 - Variety of constraints: H∞ but also pole placement constraints: more applicable for Handling Qualities purpose

First results

• Frequency-domain response of $T_{w \to zinf}$ (blue) and W^{-1} (yellow)

First results

• Frequency-domain response of $T_{W \to zinf}$ (blue) and W^{-1} (yellow)

$$||T_{w\to u}||_2 = 1.38$$

- Comparison: $||T_{w\to u}||_2 = 0.6$ for LQ minimal energy control
- $||T_{W\to u}||_2 = 1.26$ for mixed H2/H $^{\infty}$ control with infinite bandwidth

First results

• Frequency-domain response of $T_{W \to zinf}$ (blue) and W^{-1} (yellow)

$$||T_{w\to u}||_2 = 1.38$$

- Comparison: $||T_{w\to u}||_2 = 0.6$ for LQ minimal energy control
- $||T_{w \to u}||_2 = 1.26$ for mixed H2/H $^{\infty}$ control with infinite bandwidth

Controller:

$K_{opt} =$	0.5816	1.1211	6.0981	LDQ1
	1.3919	2.2578	14.5759	LDQ2
	1.0279	1.7584	10.5422	LDQ3
	0.9229	1.6367	10.0334	LDQ4
	0.2329	0.3630	1.5500	LDQ5
	0.5824	1.1203	6.0976	RDQ1
	1.3904	2.2612	14.5797	RDQ2
	1.0262	1.7594	10.5529	RDQ3
	0.9235	1.6349	10.0309	RDQ4
	0.2287	0.3664	1.5525	RDQ5
	-0.0017	0.0028	0.0021	DR
	α	q	θ	
	a	9	U	

Co-design first results

Contents

1. Problem setup

2. Integrated Design and Control

Control surfaces size parametrization and aero model calculation

- LFT form of the parametrized aerodynamic model
- Co-design on the LFT form for control surfaces sizing

- LFT form of the parametrized aerodynamic model
- Co-design on the LFT form for control surfaces sizing
- Pole placement constraints

- LFT form of the parametrized aerodynamic model
- Co-design on the LFT form for control surfaces sizing
- Pole placement constraints
- More physical criterion: mass / energy minimization through actuators mass models

Thank you for your attention

Questions?

Annexes

Simulink

Focus on the need for multicontrol

Multicontrol mandatory or not.

- ⇒ Internship on multicontrol allocation
- ⇒ Developement of a control allocation module

Control allocation: Attainable Moments Subset

Direct control allocation

Calculation of the intersection facet

