

CEAS –TCAD 2014 4th Symposium of Collaborative Aircraft Design

Reference Aircraft

General Aviation Aircraft Design

Fabrizio NICOLOSI
University of Naples «Federico II»
Dept of Industrial Eng. –Aerospace Division
fabrizio.nicolosi@unina.it

GA and Commuter Aircraft Scenario

GAMA – General Aviation Manufacturers Association Each Year Databook on General Aviation (Statistics & Industry Outlook)

General aviation is defined as all aviation other than military and scheduled commercial airlines. Consider the scope of general aviation:

- Over 320,000 galleral aviation aircraft worldwide, ranging from two-seat training aircraft to intercontinental business jets, are flying today; over 223,000 of those aircraft are based in the United States.
- General aviation contributes more than \$150 billion to the U.S. economy annually and employs more than 1,265,000 people.
- In the U.S., general aversion aircraft fly aircs, 2.5 million hours and carry 166 million passenges annually.
- There are nearly 4,000 pawed general aviation airports open to the public in the U.S. By contrast, scheduled airlines serve less than 500 airports.
- Over two-thirds of all the hours flown by general aviation aircraft are for business purposes.
- General aviation is the primary training ground for most commercial airline pilots.

Possible future Scenario

SAT – Small Air Transport Roadmap (EC Research fin. Project)

Commuter Aircraft Scenario

GAMA Data-book is an impressive source of data and statistics for those interested in GA, and it is mainly related to US.

Average Age of Registered General Aviation Fleet

2.9 Average Age of Registered General Aviation Fleet (2005-2010)

Aircraft Type	Engine Type	Seats	Average Age in 2005 in Years	Average Age in 2006 in Years	Average Age in 2007 in Years	Average Age in 2008 in Years	Average Age in 2009 in Years	Average Age in 2010 in Years
Single-Engine	Piston	1-3	37	38	38	48.1	-	-
omgro Engino	1101011	4	35	36	36	38.2	_	-
		5-7	30	31	32	33.5	-	-
		8+	44	44	43	49.3	-	-
		All	-	-	-	-	42.2	46.3
	Turboprop	All	13	10	14	13.6	16.1	15.2
	Jet	All	34	34	35	44.4	44.0	44.1
Multi-Engine	Piston	1-3	32	32	33	48.9	-	-
		4	35	35	35	36.0	-	-
		5-7	36	36	39	39.3	-	-
		8+	38	39	40	41.6	-	-
		All	-	-	-	-	41.2	39.0
	Turboprop	All	25	26	27	28.8	28.0	27.0
	Jet	All	16	16	16	16.2	17.0	16.2
All Airplanes			34	35	35	39.3	39.5	37.3

Small Aircraft Operation

Small Aircraft Transport will serve:

- The need for low-intensity intercity routes
- Regions with less developed infrastructures
- The needs of European business travel

Main Costraints:

- REGULATORY
- OPERATIONAL
- FINANCIAL

General Aviation (**GA**) refers to all flights other than military and scheduled airline and regular cargo flights, both private and commercial.

In USA the Regulatory framework is significantly different from the European one

An example of design issues and drivers, P2006T 4-seat

P2006T

Propeller location
Easy cabin access
Nacelle aerodynamic s
CG travel
Low drag
Wing-fus interference
Propeller noise
Engine cooling

Commuter Aircraft (7-20 seats)

Some Typical Existing Airplanes

Vulcanair A Viator

Some Typical New or Future Airplanes

Tecnam P2012 Traveller

GA and Commuter Aircraft General requirements

- Reduced Take-off and Landing distances from NOT PREPARED runways
- Engine with low SFC and possible use of MO Gas (mainly Piston Engine)
- Cruise speed of about 160-200kts
- Climb and OEI altitude operative limitations (OEI ceiling)
- Low Direct Operative Cost (DOC)
- Easy and low-cost Maintenance
- Glass cockpit
- Moderate use of composite
- FAR23, EASA CS-23 Certification
- Fixed Landing Gear (?)
- Easy to access, comfortable cabin and luggage
- Multi-purpose internal arrangement
- COMMONALITY 10 to 19 pax

Commuter Aircraft Scenario

P2012 Traveller Aircraft

http://www.tecnam.com/

P2012 Traveller Features:

- Light 9-pax Aircraft
- High wing configuration (clearance, better accessibility, propeller location)
- Fixed landing gear (simple, light, low costs both operative and maintenance)
- Short take-off and landing distances also from not prepared surfaces
- Cabin design and improved cabin comfort
- Glass Cockpit
- TEO-540 Turbocharged Engine dual fuel capable (AVGAS/MOGAS) with low fuel consumption (114 l/h for 2 engines).

Nicolosi, F., Della Vecchia, P., Corcione, S., «Design and Aerodynamic Analysis of a Twin-engine Commuter Aircraft,» *Aerospace Science and Technology* 40(2015) 1-16

FUSELAGE DESIGN

- Pass. Comfort (32" seat pitch)
- Streamlined symmetrical tail shape (low drag)
- Upsweep carefully estimated for take-off rotation
- Careful aerodynamic design of Karman

- Wing area strongly dependent from max achievable lift coefficient (TAKE-OFF and LNDG)
- Integrated symmetrical nacelle (propeller clearance) => low drag and effect on lift
- Double tapered planform with rectangular shape for the inboard (simple inboard flap)
- Winglet essential for OEI climb performances
- Single slotted flap with sensible increase of chord => One of DESIGN DRIVERS

P2012 Conceptual Design - Winglet Importance

WINGLET EFFECT Flight Measured on P2006T

Winglet designed through panel method opt., CFD analysis and wind-tunnel tests

b = 11.2 m S = 14.7 m²

First prototype, no winglets

Winglets installed

increase :
About +10-12%

Oswald factor

Table 10 Geometrical and aerodynamic characteristics before and after winglet installation

				C_{D0}	Os	wald factor, e		
	S , m^2	AR	Estimated	Measured flight test	Estimated	Measured flight test	ARe	Max lev. speed, kt
No winglet	14.74	8.46	0.0258	0.0248	0.72	0.71	6.0	153
With winglet	14.76	8.76	0.0260	0.0249	0.82	0.80	7.0	154

Nicolosi, F., De Marco, A., Della Vecchia, P., «Flight Tests, Performances, and Flight Certification of a Twin-Engine Light Aircraft,» *Journal of Aircraft*, Vol 48, N. 1 (2011)

P2012 Conceptual Design - Winglet Importance

CEAS –TCAD 2014, 4th Symposium of Collaborative Aircraft Design

	Value
AR _h	5.32
Λ _{c/4}	12.5°
λ	0.67
η _h	0.9
c _e /c _h	0.3
i _{to}	-2°

- High AR with moderate sweep
- Full-span elevator (ce/ch=0.30)
- Vertical position is extremely critical (possible interaction with wing wake, correct estimation of downwash, dyn. pres
- Pendular stability and all non-linearities to be considered for aircraft trim capab.

HORIZONTAL TAIL DESIGN

- Check of max CL achievable with CG max FWD
- Non-linear elevator efficiency to be considered
- Pendular stability (non-linear slope) to be considered
- Correct estimation of downwash and dyn. pressure ratio

VERTICAL TAIL DESIGN

	Value
AR _v	1.80
Λ _{c/4}	30.0°
λ_{V}	0.35
η_{V}	0.90
c _r /c _v (average value)	0.38
$\delta_{ m r.max}$	30°

- Sizing driven by Vmc requirements
- Choice of Aspect ratio
- High rudder chord ratio
- Interference effects to be carefully considered
- Check of cross-wind capabilities in approach

VERTICAL TAIL DESIGN

Check of cross-wind flight capabilities

- Non-linear aerodynamic characteristics considered
 (Non-linearities in A/C directional stability + Non-linear rudder efficiency)
- Effect of dorsal fin in preliminary design phase (?)
- Interference effects to be carefully considered

Commuter Aircraft – Typical Performances and Characteristics

	King Air	Twin Otter	Viator	Cessna Caravan	Cessna F406	Cessna 402	EV-55	Skylander	P2012 Traveller
Ref. Year	1961	1964	1980	1984	1983	1966	2011	2001 ann.	2012
MTOW Kg	5352	5670	3000	3629	4246	3107	4600	8618	3290
Power	2 PT6 (850hp x2)	2 PT6 (659hp x2)	2 RR 250 (328hp x2)	1 PT6A 675 hp	2 PT6 (500hp x2)	2 TSIO 520 2 x 325	2 PT6 (536hp x2)		2 Lycoming (350 hp x2)
Pax #	13	20	8-10	8-13	12	9	14	19	9-10
Max Range Km	2455	1297	1575	1960	2135	2350	2258	2148	1100
Max Speed Knots	265	160	213	186	218	213	220	235	205
Take-off (50ft) [m]	643	411	490	626	823	670	450		560
	Pressurized	Fixed LG		Fixed LG				Fixed LG	Fixed LG

Twin Otter end of production in 1988, 844 Airplanes sold in 80 countries. Cessna Caravan => more than 2000 airplanes.

Design goal and marketing driving factor

Utility Value = (kts x ft³ x usefu loadl) / (2 x T.O. over 50 ft x total power) plus 20% for either multi engine or pressurized

Even MORE IMPORTANT Market DRIVERS:

- Possibility to use MOGAS
- Low DOC (Low fuel consumption) => Efficient engine and Low Drag
- Short Take-Off from not prepared runway => High-wing prop and Vert Tail Design (Vmc)

Commuter Aircraft main Aerodynamic Design Problems

WING DESIGN

- Wing design and HIGH-LIFT System
- Wing span loading (effect of nacelles and fuselage)
- Winglet design

FUSELAGE DESIGN

- Passengers accomodation
- Wing-Fuselage interaction
- Low-Drag
- TAILPLANES DESIGN (Stability&Control)
 - Wing wake for HT position
 - VMC (accurate estimation of interf. effects for a right sizing of Vertical tail)

LANDING GEAR

- Fixed or rectractable? Estimation of Landing-Gear DRAG contribution

Numerical Aerodynamic Analysis

Preliminary with Panel method

- Preliminary estimation of lift curve slope
- Effect of fuselage and nacelles on spanwise aerodynamic load
- Effect of fuselage and nacelle on long stability

CFD Navier-Stokes

Num/Exp investigation on wing-span loading

Num/Exp investigation on wing-span loading

CEAS –TCAD 2014, 4th Symposium of Collaborative Aircraft Design

Flow visualization: laminar separation bubbles and transition strips

Isolated Body

Wing-Winglet-Body-Nacelles

Wing-Winglet-Body

Complete Aircraft Flap down

CEAS –TCAD 2014, 4th Symposium of Collaborative Aircraft Design

Experimental investigation about the vertical position of the horizontal tail

- **Fuselage tailcone shape linked to HT position**
- Required angle for take-off rotation (landing gear type)
- Higher positions can lead to easier ground operation
- Vertical tail mounted complex and more expensive solution
- **Cruciform tail lead to lower Vertical Tail aerodynamic performances**
- Fuselage tailcone upsweep and HT position influences VT efficiency

 CEAS -TCAD 2014, 4th Symposium of Collaborative Aircraft Design

Possible Configurations

Experimental investigation about the vertical positioning of the horizontal tail

CEAS –TCAD 2014, 4th Symposium of Collaborative Aircraft Design

Experimental investigation about the vertical positioning of the horizontal tail

CEAS –TCAD 2014, 4th Symposium of Collaborative Aircraft Design

Experimental investigation about the vertical positioning of the horizontal tail

Wake visualization tests through tufts

POS. B
- flap 15deg
- aoa 0deg

POS. B
- flap 15deg
- aoa 10deg

Lateral-Directional Analysis

Directional analysis: stability and control

analysis

Tested configurations:

- Isolated Vertical Tail
- <u>Isolated Body</u>
- Complete Aircraft

Strong interference effects on vertical tail stabilizing efficiency

Yawing moment vs. sideslip angle

CEAS –TCAD 2014 , 4th Symposium of Collaborative Aircraft Design

Lateral-Directional Analysis

Lateral stability: effect of winglets

Rolling moment coefficient vs. sideslip angle

CFD RANS ANALYSIS:

Longitudinal Aerodynamic Analysis

Very good agreement in terms of lift curve slope (in particular in clean condition) Numerical and experimental data differ in C_{Lo} : uncertainty of wind tunnel measured flap deflection and chocked flap channel due to the very low local Reynolds numbers Differences arise from: geometry and incidence uncertainties of the experimental model, bending and twist of the model tail

CFD ANALYSIS:

Lateral-Directional Aerodynamic Analysis

Complete Aircraft Directional Analysis

Complete aircraft in sideslip, effect of dorsal fin vortices, β =20°, Re=0.6°6

Dihedral effect Navier-Stokes vs WT

Complete Aircraft Lateral Analysis

Design and complete aerodynamic analysis of a 16-seats aircraft

CEAS –TCAD 2014, 4th Symposium of Collaborative Aircraft Design

Design and complete aerodynamic analysis of a 16-seats aircraft

Design and complete aerodvnamic analysis of a 16-seats aircraft

(a) Lift coefficient C_L of each component from CEASIOM (b) Pitching moment C_m of wing and the total aircraft from CEASIOM and ADAS

ADAS H-tail 0.35 CEASIOM H-tail 0.3 CEASIOM H-tail Prop ON 0.25 -0.05

tion from CEASIOM and ADAS

(c) Pitching moment C_m of fuselage and nacelle contribu- (d) Pitching moment C_m of horizontal tail from CEASIOM and ADAS

Conclusions

- Despite light and simple Commuter aircraft presents critical design issues.
- Concerning aerodynamics, propulsive effects must be considered.
- Complementary use of CFD (even panel method) and wind-tunnel tests is very important.