

Florian Schültke

Institute of Aerospace Systems (ILR) RWTH Aachen University, Germany Univ.-Prof. Dr.-Ing. Eike Stumpf

Short Range Reference Aircraft CeRAS

4th Symposium of Collaborative Aircraft Design, Toulouse, 26.11.2014

Problem statement, motivation & objectives

Problems in common practice:

- Limited availability of consistent reference A/C data for research community
- Restricted data authorization from industry
- Repeated/redundant definition processes
 - → consumes cost & resources + makes comparability difficult

Objective: Central Reference A/C Data System

for Research Community → CeRAS

Pilot Project at ILR, RWTH Aachen University sponsored by Airbus, cooperation with FPO Hamburg

	1	Test and "living" phase of ref. A/C database					
July (2013)	Sept	Dez	Feb. (2014)	March	1		
					1		
M1 Kick-Off, Airbus HH	M2 CEAS, Linköp.	M3 ILR Aachen	M4 Airbus HH	M5 Final Airbus HH	_		

User group and advantages of CeRAS

Advantages for different users in research community:

Research institutes and universities	Industry, e.g. Airbus:
Quick download of reference A/C with much more detailed data	Reduction of data authorization processes
Usage as baseline A/C in research projects (OAD, technology evaluation)	Referencing to central ref. A/C database towards external partners
Usage for calibration of own platforms and tools → higher quality of external methods and results	 Smarter use of external data (quality assurance, reliability, consistency) Capability development (e.g. for ref. database)

CeRAS: Requirements

Requirements:

- Complete, consistent & unique description of reference A/C parameter and units
- Standardized data & process for creation of new reference a/c (V&V process)
- Common standard for data exchange in research community
- Compatibility of different reference A/C versions
- Long-term goal: Extensibility of reference a/c system by additional ref. A/C, depth (e.g. component level) & width (towards overall air transport system)
- → Open-Source Reference Database and V&V environment

CeRAS: First Reference Aircraft?

Which Reference Aircraft? → Conventional short range A/C

- ... why?! Everyone has an aircraft design for a short range configuration!
- ... **but:** different versions, data, methods available with different accuracy, validity
- → unique version and definitions required agreed by Airbus & research community
- → Good starting point to set up a standardized database upload and download process and enable method calibration and data comparison
- → Doesn't lead to a new or better short range configuration ... just to a consistent, agreed, validated and reliable dataset!

CSR-01
(CeRAS Short Range – Version 01)

Overview of Design Approach for CSR-01

Design Approach:

- CSR-01: CeRAS Short Range A/C
- ILR Multidisciplinary Integrated Conceptual Aircraft Design and Optimization (MICADO*) aircraft software platform applied

Application of MICADO useful for:

- Generation of complete and consistent OAD datasets
- Quick generation of sizing sensitivities >
 usage by partners without own design tools
- Compatibility with common standards: CPACS, Airbus "readability"

^{*}K. Risse, E. Anton, T. Lammering, K. Franz, R. Hoenschemeyer.

An Integrated Environment for Preliminary Aircraft Design and Optimization.

In 8th AIAA Multidisciplinary Design Optimization Specialist Conference, 2012

CSR-01: Starting point and approach

Data specified by Airbus:

- MTOW = 77000 kg
- $S_{ref} = 122,4 \text{ m}^2$
- Engines: 2 x V2527-A5
- SLST = 26500 lb

Aircraft Characteristics						
	WV010	WV011				
Maximum Takeoff	Kilograms	77 000	75 500			
Weight (MTOW)	Pounds	169 756	166 449			
Maximum Landing	Kilograms	64 500	66 000			
Weight (MLW)	Pounds	142 198	145 505			
Maximum Zero Fuel	Kilograms	61 000	62 500			
Weight (MZFW)	Pounds	134 482	137 789			

[Airbus, "A320 Aircraft Characteristics Airport and Maintenance Planning", 2012]

Derived data:

- Geometry from CAD 3-view, design masses from Airbus AC Characteristics
- TLARs and Key AC characteristics (e.g. design masses) derived from public available sources, e.g. Airbus AC Characteristics

Creation of consistent OAD reference data by using ILR MICADO software

CSR-01: Plausibility checks against public data

[Airbus, "A320 Aircraft Characteristics Airport and Maintenance Planning", 2012]

Comparison with CPACS geometry

Comparison with CPACS geometry data standard

- Automated export of watertight .stp file from MICADO XML
- Automatic generation of CPACS XML file from MICADO XML
- Comparison of MICADO .stp file and CPACS XML file using DLR TIGL Viewer

CSR-01: Wing geometry and aerodynamics

CSR-01: C₁ and lift distribution

Comparison for Do 728 [DLR-AS]

Figure 22. Do 728 wing: circulation distribution and lift coefficient distribution, Ma=0.78.

[Liersch, C., Wunderlich, T., "A Fast Aerodynamic Tool for Preliminary Aircraft Design", ISSMO, AIAA, 2008]

CSR-01: Verification of performance data

Climb performance data

(from BR to ICA, @ MTOW=77to, ISA)

■ Time [min]: **24.6** (25.5)*

• BF [kg]: **1917** (1988)

Range [NM]: 155 (160)

* MICADO value (from climb table)

© A319/320/321	IN FLIGHT PERFORMANCE	3.05.10	P 3	
FLIGHT CREW OPERATING MANUAL	CLIMB	SEQ 120	REV 25	

CLIMB - 250KT/300KT/M.78														
MAX. CLIMB THRUST						IS	Α		FROM BRAKE RE			LEASE		
NORMAL	AIR C	ONDIT	IONINO	3		CG=3	33.0%		TIME (MIN)			FUEL (KG)		
ANTI-ICIN	ANTI-ICING OFF						DISTANCE (NM)			TAS (KT)				
	WEIG	ht at	BRAK	RELE	ASE (1	000KG	i)							
FL	6	6	6	8	7	0	7	2	74 76 78				8	
390														
370	24 152	1748 385	25 163	1851 387	27 175	1966 389	29 190	2096 391						
350	21 132	1619 377	22 140	1703 378	24 149	1794 380	25 158	1892 381	26 169	2000 383	28 182	2121 385	30 196	2258 388
330	19 117	1515 369	20 124	1589 370	21 131	1668 371	22 138	1751 373	23 146	1840 374	25 155	1935 376	26 165	2040 378
310	17 104	1419 361	18 110	1486 362	19 115	1556 363	20 121	1629 364	21 128	17Ub 365	22 135	1788 366	23 142	1876 368
290	16 92	1322 350	16 96	1382 351	17 101	1444 352	18 106	1510 353	19 111	1578 354	20 117	1649 355	21 123	1725 356

CSR-01: Creation of sizing tables (example)

Creation of off-design and resizing sensitivities:

- Quick generation of sizing sensitivities using MICADO
 - → usage by partners without own design tools
- Generation of complete and consistent OAD datasets for resizing sensitivities
 - → derivation of 1 % tables

Table: Resizing sensitivities (1% tables)

Parameter	Δ <i>OWE</i> 1 %	Δ <i>C</i> _{<i>D</i>} 1 %	Δ <i>SFC</i> 1 %
wing area horizontal tail area vertical tail area SLST (per Engine) MTOW MZFW MLW OWE wing mass Block fuel @ SPP design mission Block fuel @ SPP study mission	0.95%	0.28%	0.34%
	1.45%	0.43%	0.53%
	1.37%	0.42%	0.50%
	0.95%	0.29%	0.34%
	0.96%	0.29%	0.35%
	0.97%	0.08%	0.10%
	0.82%	0.25%	0.30%
	1.43%	0.12%	0.14%
	5.93%	0.21%	0.24%
	0.79%	1.03%	1.20%

CeRAS online

Presentation of reference data in the world wide web:

All reference data is stored and distributed by an internal server within the ILR. The server can be reached via

http://ceras.ilr.rwth-aachen.de/

Main characteristics:

- Accessibility and extensibility by a larger research and industrial community
- Complete, consistent and unique description of ref. A/C on OAD level
- Common standards for data exchange between industry and research partners

Where is CeRAS used so far?

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Liebherr-Aerospace Lindenberg GmbH

Required effort for continuing CeRAS support

Creation of additional reference aircraft:

- Agreement on reference aircraft
- Agreement on TLARs and key aircraft characteristics
- Collection of reference data
- Aircraft design with MICADO (according to all TLARs and specifications)
- Verification with user group (including Airbus)
- Final design
- Upload to homepage w.r.t. CeRAS standards, styles, processes, ...

Technical maintenance and administration of CeRAS homepage

- Feedback from user group (contents, styles, feature requests, errors, ...)
- Update of design data
- Communication with RWTH IT Center
- Security standards (update of software components, ...)
- Hardware maintenance
- Guarantee of permanent homepage access

Summary and next steps

- Reference a/c database (CeRAS) for research community created:
 - Sponsored by Airbus in a half year pilot project
 - First reference a/c designed → CSR-01 (research version)
 - Standardized data and processes defined for usage of database
 - Homepage on internal server → V&V environment for research community

Next steps:

- Agreement on long range aircraft (e.g. Airbus A330, Boeing B777, ...)
- Meeting with research community for discussion of CeRAS homepage (Meeting location?, participants?)
- "list of experts"
- Make CeRAS detectable by Google
- Use and enhancement of CeRAS in national and international research projects

Thank you for your attention!

Questions?

RWTHAACHEN UNIVERSITY

M.Sc. Florian Schültke

Wüllnerstraße 7 52062 Aachen (Germany) Tel +49 (0) 241 80 968 22 Fax +49 (0) 241 80 922 33 schueltke@ilr.rwth-aachen.de www.ilr.rwth-aachen.de