Conceptual design of a passenger aircraft for aerial refueling operations. Comparison with direct and staging flight

G. La Rocca M. Li

Introduction

- One of the biggest challenges for future aviation is represented by the increasing cost and scarcity of fossil fuel.
- The demand of air transportation is steadily increasing, while environmental constraints are getting more stringent.
- New designs AND operational concepts are required to meet the ambitious challenges set by ACARE.

The FP7 project RECREATE

SEVENTH FRAMEWORK PROGRAMME

www.cruiser-feeder.eu

- In the RECREATE (**RE**search on a **CR**uiser **E**nabled **A**ir **T**ransport **E**nvironment) project, European research institutes, universities and small businesses work together to investigate a future air transportation system based on the **cruiser-feeder** concept.
- Air-to-Air Refueling (AAR) operations for passenger aircraft is one of the addressed concepts.

Dr. R. K. Nangia Nangia Aero Research Associates

Payload Range Efficiency vs. Range

- Splitting a flying mission into multiple smaller submissions, either using staging flight or AAR, yields fuel savings. Less fuel is burnt to transport fuel.
- Fuel efficiency of different aircraft can be compared using the **Payload Range Efficiency (PRE)**: $PRE[m] = \frac{WP[kg] \cdot R[m]}{WFB[kg]}$

Objectives of this research work

AAR is a proven concept in military operations, however...

Is it possible to adopt this operational approach for passenger aircraft operations?

- Is it necessary to design a new aircraft or would it be possible to achieve fuel savings also using existing aircraft for AAR operations?
- How much fuel can be saved by implementing the AAR operational approach w.r.t. direct and staging flight?

Cruiser Top level requirements

Payload	 250 Pax at 106kg incl. luggage No extra freight, cargo hold sized for LD3 containers 			
Total range	9260km (5000nm)			
Number of refueling	1 @ \approx 2500nm (half mission)			
Cruise conditions	M0.82 @ 10668m altitude (35000ft)			
Refueling conditions	M0,82 @ 8000m altitude			
Engine technology	SFC = 0.525 Kg/N·h			
Cabin Comfort	Twin aisle, single class Seat pitch 85cm; Seat width 48cm; Aisle width 50cm			
TO & Landing performance	2500m BFL according to CS			
Climbing gradient	According to CS			
Climbing rate	348m/min (OEI)			
Fuel reservation	250 nm to alternate airport + 30 min loiter +5%			

Cruiser-tanker configuration during AAR

Is this the most convenient AAR configuration when 250 passengers are sitting on board of the refueled aircraft?

This was the selected configuration

Cruiser-tanker configuration during AAR

Advantages

- No hazard of collision with parts detaching from the tanker
- Cruiser pilots are not required to perform the approach maneuver
- Only tanker aircraft to be provided with air-to-air radar
- Passengers not subjected to maneuvering acceleration
- No extra thrust requirement for passenger aircraft during refueling
- Cruiser's architecture and payload volume minimally affected by the presence of the refueling system (boom on tanker).

Cruiser-tanker configuration during AAR

Disadvantages

- Gravity force cannot be used to transfer fuel. A pump is required.
- An unconventional forward extending boom is required, able to extend against wing and gravity (i.e., unstable, subject to divergence)

Proposed solution in: Timmerman, H.S. and La Rocca, G. *Feasibility study of a forward extending flying boom for passenger aircraft aerial refueling*. in: RAS Applied Aerodynamics Conference 2014, Bristol, 2014.

Design tool (AC-X) development

Design of the cruiser

OEW [kg]	52,589
MTOW [kg]	100,865
OEW / MTOW	0.52
Total mission fuel weight [kg]	32,929
Fuel received via AAR [kg]	14,505
Fuel reservation [kg] (250nm diversion+30 minutes loitering+5%	3,352
T/MTOW	0.3
Wing Area [m²]	164
Span [m]	42.4
Aspect Ratio	11
Cruise L/D	16.2
PRE [nm]	4,024
X [nm]	14,409
PRE/X	0,279

Design of the cruiser

$$PRE[m] = \frac{WP[kg] \cdot R[m]}{WFB[kg]}$$

$$X[m] = \frac{V[m/s] \cdot L/D[-]}{SFC[1/s]}$$

How does the AAR cruiser compare with respect to direct and staging flight?

Comparison of AAR with Staging and Direct flight

AAR cruiser *C-5k* 5000nm with AAR

3

*I-2.5kI*ntermediate stops2500nm range

Drect flight variant 5000nm range

All aircraft designed with same tool

What about implementing the AAR operational approach with existing passenger airplanes?

Comparison of the Cruiser with existing aircraft when used for AAR

Cruiser vs B737-800 & B767-300 (same **5,000nm AAR** mission)

				4. 4.	
	Cruiser	B737-800*	Δ	B767-300**	Δ
MTOW [kg]	100,865	75,477	-25.1%	147,985	46.7%
OEW [kg]	52,589	38,624	-26.5%	79,028	50.3%
Payload [kg]	26,500	18,587	-29.9%	25,017	-5.6%
Pax	250	186	-25.6%	260	4.0%
Seat Pitch [m]	.85	.76	-10.4%	.80	-5.9%
Mission fuel [kg]	32,929	28,201	-14.3%	51,140	55.3%
PRE [nm]	4,024	3,297	-18.1%	2,446	-39.2%
PRE/X	0,279	0,267	-4,2%	0,187	-33%

^{*}B737-800 similar design range

^{**}B767-300 similar passenger capacity

What is the overall fuel saving yielded by AAR operations, when accounting for the fuel burnt by the tanker?

Design of the tanker

Fuel offload per tanker [kg]	14,505
Number of refueled cruisers per mission	1-5
Refueling radius [nm]	250-500
Contact time during refueling [min]	20
Waiting time between refueling [min]	20
Mach @ cruise	0.82
TO&L field Length at sea level [m]	2500

Design of the tanker

Design of the tanker

Li, M. and La Rocca, G. *Conceptual design of a joint-wing tanker for civil operations*. in: RAS Applied Aerodynamics Conference 2014, Bristol, 2014.

Overall fuel savings: **AAR versus Direct and Staging flight**

Conclusions (1/3)

Is it possible to adopt the AAR operational approach used by military aircraft also for passenger aircraft?

Conclusions (2/3)

Is a new aircraft design necessary or would it be possible to achieve fuel savings also using existing aircraft for AAR operations?

	Cruiser	B 737-800	Δ	B767-300	Δ
MTOW [kg]	100,865	75,477	-25.1%	147,985	46.7%
OEW [kg]	52,589	38,624	-26.5%	79,028	50.3%
Payload [kg]	26,500	18,587	-29.9%	25,017	-5.6%
Pax	250	186	-25.6%	260	4.0%
Seat Pitch [m]	.85	.76	-10.4%	.80	-5.9%
Mission fuel [kg]	32.929	28.201	-14.3%	51.140	55.3%
PRE/X	0,279	0,267	-4,2%	0,187	-33%

$$PRE[m] = \frac{WP[kg] \cdot R[m]}{WFB[kg]} \qquad X[m] = \frac{V[m/s] \cdot L/D[-]}{SFC[1/s]}$$

Conclusions (3/3)

How much fuel can be saved with the AAR operational approach with respect to direct and staging flight?

Fuel savings	with Joint Wing tanker Radius: 250nm N. of served cruisers: 3	with Conventional Tanker Radius: 250nm No. of served cruisers: 3	with best existing tanker
AAR vs direct	15.2%	14.8%	10%
AAR vs Staging	1.7%	1.3%	-3.7%

The research leading to the results presented in this paper was carried within the project **RECREATE** (REsearch on a CRuiser Enabled Air Transport Environment) and has received funding from the **European Union 7th Framework Programme** under grant agreement no. 284741.

This publication reflects only the authors' views. The European Union is not liable for any use that may be made of the information contained therein.

