Is Joined-Wing Configuration Feasible for Transonic Civil Aircraft?

A. Rizzi¹, M. Zhang¹, & R. Nangia²

Contents

- Introduction & Background
 - NOVEMOR EU Project
 - Conventional configuration morphing tips etc
 - Join wing configuration feasibility
- Trade offs: non-planar wing concepts
 - what are the advantages/promises of non-planar wing concepts
 - Overview past & present work JWA
 - aircraft targeted (short range airliner)
- What are the challenges?
- Work in Progress Regional Jet
 - Transonic wing design Joined wing
- Conclusions

Wing Shape & Span Efficiency Factor

Munk stagger theorem → Transonic design → sweeping the wing does not affect vortex drag provided lift distribution remains constant when staggering lifting surfaces

Transonic BoxWing — Pros & Cons (Torenbeek)

Is it a competitive design for civil transport?

Bottom Line – "some inherent properties makes this proposal **questionable**":

- Aerodynamically and structurally complex
- ■Costly to develop into efficient lifting system free from unacceptable aero-elastic behaviour
- Low induced drag gained at cost of:
 - increased parasitic drag
 - reduced max lift due to low chord Re number
 - presence of non-lifting vertical tip planes
- Due to integrated character, family concept is impossible without major re-design

However finds "JoinWing has inherent advantages over conventional configurations making it a serious candidate for designing airliners of widely-different capacities"

Advantages Claimed

- Reduce induced drag
- Improve Stability
- Strengthen Wing
- Prevent Flutter

Kroo/Gallman Joined-Wing baseline (1991-96)

- AR ≈ 6.86 (Very low !!)
- wing weight depends strongly on applied loads
- JW structures carries loads differently from conventional A/C
- JW results compared to DC-9-30
- Fully-stressed design to avoid buckling instability increases DOC by 4%
 - maybe less for other structure design
- Any design change to reduce tail sweep improves performance
- Low max lift in TO → takeoff field length

Torenbeek Book (p177-82) → JWA Advantages Claimed (1)

Advantages claimed....

- Lightness
- Stiffness
- Low vortex drag
- ■Low wave drag good transonic area distribution
- Direct lift & side-force control capability
- High trimmed max lift
- •Quieter in climb-out & landing approach than conventional A/C

Structural Principles & Weight

- ■Low structural weight Note: effective bending axis tilted
 - Thinner wings possible (RBM less !!)
- Less flutter tendency
- ■Fuselage supported at 2 points...... Wide body (2 aisle feasible)
- ■Under positive load factors, rear wing in compression → overall column buckling is critical design issue

Torenbeek → JWA Advantages Claimed (2)

Aerodynamic Aspects

- ■Low CDi (higher effective AR possible) see CEAS 2009 paper
- CDi varies as 1/span^2
- ■Low Trim Drag
- Low wave drag better volume distribution

Design integration

- Integrated structure requires deeper analyses
 - Integrated Aero + Structures + unsteady analysis
- ■Locate undercarriage in Fuselage less weight but blip/fillet required on fuselage

Stability & Control

" a well-designed JWA configuration is likely to have S & C characteristics as good as, or better than, a conventional one" Torenbeek

BENDING MOMENT RELIEF - JW (0.6 y/s)

Tilted Bending Axis & Components of lift

Less Bending Moment!!

- Out-of-plane components bend wing structures about bending axis tilted to longitudinal axis
- In-plane components well resisted by truss structure formed by joined wings

JW1 - SPANWISE LOADINGS WITH & WITHOUT MUTUAL INTERFERENCE. Mach 0.35, AoA = -2 deg, CL = 0.66

Joined-Wing Concept for Efficient Civil Transport

Nangia CEAS 2009 Paper: JW32
 Aerodynamic – Efficient Configurations& Structural
 Design Challenges Arising – Joined Wings & Oblique
 Wings

CPACS Data Model

<u>Common Parametric Aircraft Configuration Scheme</u>

- Extensible Markup Language XML: Open W3C standard.
- Text format using <tags> to build hierarchic structure.
- CPACS is a XML schema definition containing conventions of possible elements and their arrangement.
- Actual CPACS files are built for the specific use case following the CPACS schema.

name

description

Auto Grid Gen - Delaunay Meshes

"There exists one triangulation/tetrahedrization of (the convex hull of) a set of points such that the circum-circle/-sphere of any simplex contains no other points than its corners."

Chew: Surface mesh: 2D, use circumsphere.

- Careful on thin objects wings, esp. near sharp TE
- High arithmetical precision required in geometric calculation
- 1. Initialization:

Surface: quad mesh in parameter space, Volume: bounding surface points

L.P. Chew, *Guaranteed-Quality Mesh Generation for Curved Surfaces,*Proc. 9th Annual Symp. Comp.
Geometry, San Diego, 1993

2. Improvement:

Iterate:

add points, rearrange locally ("edge flips" in 2D) until all criteria satisfied

Initial Aero Characteristic: Euler Simulation

Two test conditions:

- M 0.35
- M 0.80

-Strong shock occurs M = 0.35

at M 0.8 – high drag

1.7
11.6
1.2
0.8
0.4
0

CL = 0.3, Euler solution

Shift of neutral point & Undercarriage Location Assessment

Simplification towards Main Wing Design

First the Main Wing then the second wing

Main Wing at Mach = 0.78, maintain CL ~

JW32 baseline with designed airfoils DS0

JW32 baseline with designed airfoils DS0

Room for optimization!

Choose a designed target, 1

• Designed point at Mach 0.78, CL ~ 0.45

Choose a designed target, 2

Work on progess – ITER 30: Shock Reduction!

Recent Work – Inverse Wing Design Wings in presence of each other Needed

Joined Wing, Challenges, CONSIDER

- Efficient low-weight design needs material props, structure / applied loads.
- Generic layout: continuous box: forward low wing to tip: optimum
- Rear wing joined to the forward wing on a fuel tank and fairing, reducing adverse aerodynamic interference. Load diffusion at join needs analysis.
- For positive "G", End loads & Buckling Modes on Rear Wing.
- The inner rear wing needs further evaluation. Attachment to rear mounted nacelles reduces the length of the rear wing; Attractive.
- Large negative sweep of the rear wing allows a high t/c for a given amount of compressibility drag: Benefit wing stiffness.
- Wing mounted moveable surfaces to be finalised narrow and slender. The torsion loads fed into the wing box by the control surfaces needs evaluation.
- Ailerons Possibly substituted by roll spoilers!

Joined Wing, Challenges (2), CONSIDER

- Passive load alleviation desired Washout through Aero-elastic tailoring
- Develop New structural tools / methods scaled expts.
- Wing Structure Weight Analysis
 - Wing Junctions: Forward-Swept Rear Root
 - Fuselage / Propulsion integration, additional forces, Moments & Aero-elastics
 - Off-Design Performance, Lateral & Directional Aero-elastics
 - Experimental Work (Many Aspects)

Concluding Remarks

Torenbeek concludes:

- -"Joined wing has several inherent advantages over conventional config \rightarrow serious candidate for designing":
 - Small-passenger planes
 - Airliners large & small

-JWA is highly integrated concept with more complex lifting and flight control systems than usual \rightarrow probably more costly to

manufacture and maintain

- -Less solid knowledge base
 - need to start
- -Need now to built that knowledge base
 - Configuration development
 - Structural verification
 - propulsion integration

