4th SCAD – Symposium on Collaboration in Aircraft Design

Fernass Daoud 25.11.2014

Overview

- Introduction: Bottlenecks in Airframe Development
 - Gap Analysis
- Technology Road Map
 - Current State of Integrated Process
 - Scope of Development (24 Months)
- Summary

Bottlenecks in Airframe Development

Gap Analysis

Gap Analysis

Due to

- Limited fidelity i.e. reliability of assessment during concept design phase
- Gap between "Conceptual Design" and "Detailed Design"
 - Tools and methods and models
 - Limited intermediate analysis capabilities (mainly used during multidisciplinary optimisation)
- Detailed analysis models require too much time

Following high priority gaps have to be closed:

- 1) Intermediate level analysis (fast and accurate methods, 80% solution)
- 2) Fast analysis and model generation also in Detailed Design
- 3) Reliable assessment in Conceptual Design through numerical analysis
- 4) Continuity in assessment (methods, models) between Conceptual and Detailed Design (multi-fidelity approach)

Overview

- Introduction: Bottlenecks in Airframe Development
 - Gap Analysis
- Technology Road Map
 - Current State of Integrated Process
 - Scope of Development (24 Months)
- Summary

Technology Road Map

Summary

- For the sake of high-performance and affordable aircraft Airbus Defence & Space has identified following development demand
 - 1) Intermediate level analysis (fast and accurate methods, 80% solution)
 - 2) Fast analysis and model generation in Detailed Design
 - 3) Reliable assessment in Conceptual Design
 - Continuity in assessment (methods, models) between Conceptual and Detailed Design
- The technology road map foresees an integrated multidisciplinary development process assisted by a decentral / distributed IT framework
 - Based on central parametric geometry model (Descartes)
 - Loose coupled competence tools
 - Central MDO data management
 - Multi-fidelity numerical analysis and optimisation environment
 - "numerical Conceptual Design
 - Fast and reliable exploration of design space assisted by MDO

Intermediate Level Structure MDO

Automation of the Global Airframe Development Process

Automation of the Major Airframe Sizing Phases

Three Pillars of Optimisation

Multidisciplinary structure optimisation (variable structure & variable loads)

Optimisation Model

Parametric model defining the design variables:

- Cross-sectional area of bars (sizing)
- Thickness of shell or membrane elements (sizing)
- Ply thickness of composites (sizing)
- Fibre orientation in composite stacks (angles)
- Coordinates of FE nodes (shape)
- Coordinates of control points (CAD, NURBS)
- Trimming variables (angles of attack)

Trimmed flight conditions

Integrated & Automated Sizing by LAGRANGE

LAGRANGE is an Airbus DS software which *combines the traditional airframe analysis tools* (loads, dynamics, stress, manufacturing etc.) with mathematical optimization methods *in order to automate the structural development and sizing process*. This results in an *"integrated, and highly efficient design process"* in contrast to the traditional *"iterative, subsequent processes of single disciplines"*.

Page

state: gust, flutter)

Dr. Gerd Schuhmacher

Parametric model (Design Variables)

Full Parametric Model

Component	Design Parameter	No. Design Variables	
Wing	Skin: composite ply thicknesses		
	Stringers: height and ply thicknesses	372	
	Spars: cap cross-sectional areas, web thickness		
Fuselage	Skin: metallic skin thicknesses	358	
	Metallic shear walls, frame, longeron thicknesses		
Empennage	Skin: composite ply thicknesses		A A CONTRACTOR OF THE PARTY OF
	Stringers: height and ply thicknesses	241	
	Spars: cap cross-sectional areas, web thickness		V. T. ×
		074	
Total		971	
Dr. Gerd Schuhmacher			AIRBUS

DEFENCE & SPACE

Criteria Model

Strength & Stability Criteria Model:

2.892.780 strength constraints 598.278 buckling constraints

Total: 3.497.174 constraints

Criteria Model

Flutter

Displacement

Manufacturing

$\sum_{x} M_{x} = 0$ $\sum_{y} M_{y} = 0$ $\sum_{x} Z = 0$ $\sum_{y} Z = 0$

5 constraints / load case

7 load cases

Displacement constraints

35 constraints

7 flutter constraint / Altitude / mass configuration

1 constraints

6116 manufacturing constr.

Additional 6160 constraints

Totally 3,503,334 constraints

Exemplary Results: Thickness Distribution

Thickness of Skin Contour Plot Element Thickness(Scalar value) -5.88 -5.35 Model info: /caegrp/Talarion/OptVTALv40/JOBS/Nastran/GFEMv003_NormaModes/GFEM-TAL_v0003_120711_r0000ff_NM-C.bdf
Result: /caegrp/Talarion/OptVTALv40/JOBS/Job_20/j20L15/30.hypv/RF.res Loadcase 1: Lagrange Thicknesses 4.82 4.29 -3.76 -3.22 -2.69 2.16 1.63 1.10 Max = 15.00 Shell 11050799 Min = 1.10 Shell 11023441 **Plots** differently Contour Plot Element 7 scaled 8.00 top 7.24 6.49 5.73 4.98 4.22 3.47 2.71 1.96 bottom **AIRBUS**

Page 18

Exemplary Results: Minimum Reserve Factor Map

• Overall Map of minimum Reservefactors for strength and stability constraints

Fast Model Generation

Vision of Integral Multidisciplinary Aircraft Design

Tool platform for modular, robust and decentral software coupling

Vision of Descartes

- Tool platform for easy shape modifications including parameterisation on different levels keeping consistency of geometry model including all intersections!
 - ☐ Aircraft level (fuselage length, wing span length, position of wing, etc.)
 - ☐ Component level (twist, radius, etc.)
 - ☐ Local level (coordinates of control points)

© 2014 Airbus Defence and Space - All rights reserved. The

Vision of Descartes

 Tool platform for easy generation of numerical analysis models including the link between geometry and analysis mesh

 Descartes is based on the TIXI / TIGL, a framework developed by DLR. The core geometry capabilities are based on openCascade.

Descartes uses a central CPACS database and provides functionalities for

automatic model generation and modification.

CPACS: Common Parametric Aircraft Configuration Sche

- Common Language within DLR
- > Development from 2005 TIVA, VAMP, FrEACs
- ➤ Public Release March 2012
- ➤ Open Source Version 2.1

Descartes: Use Cases

■ Tool platform for easy pitch studies (e.g. rib, stringer or frame pitches)

Descartes: Use Cases

- Tool platform for shape optimisation
 - Wing / fuselage span length
 - > Chord length, twist
 - ➤ Profile shape
 - > Etc.

Initial wing geometry (top view) with parameterised sections (chord length)

 C_p distribution

Displacements

MDO Integrated Framework

Vision of Integral Multidisciplinary Aircraft Design

additional input, additional requirements e.g. target wing pressure, material allowables, etc.

