

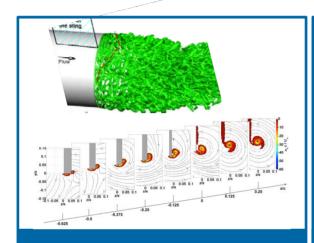
http://ewade2013.AircraftDesign.org http://dx.doi.org/10.5281/zenodo.546423

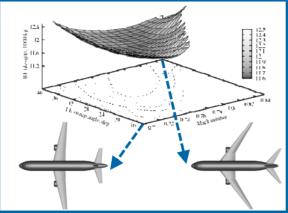
Eike Stumpf

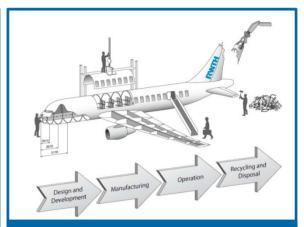
Institute of Aerospace Systems (ILR) RWTH Aachen University, Germany

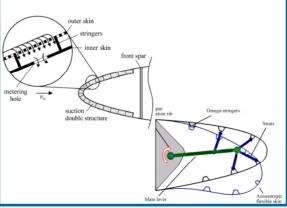
Aircraft Design Lectures at RWTH Aachen University, Germany

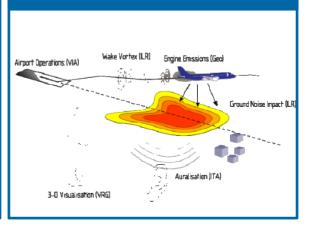
11th European Workshop on Aircraft Design Education Linköping, 17.-19.09.2013





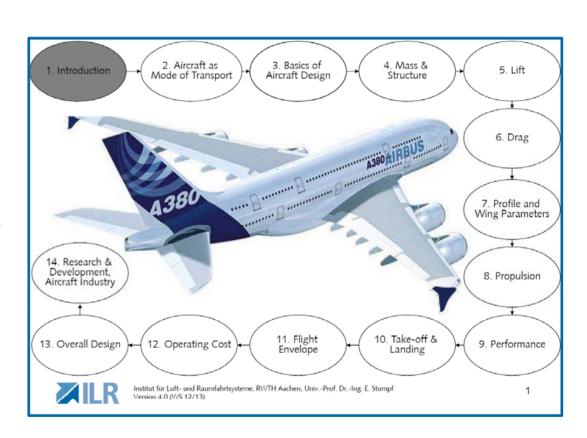

- 1. Institute of Aerospace Systems at RWTH Aachen University
- 2. ILR Fixed Wing Aircraft Course → Practical Aspects
 - Analysing old Concepts
 - Paper & Pencil Aircraft Design
- 3. Computer-Aided Aircraft Design: Familiarization with MICADO
- 4. Template for MICADO C++ Tool Development
- 5. Summary



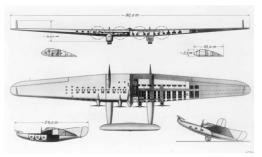

Vortex Dynamics/ Aeroacoustics

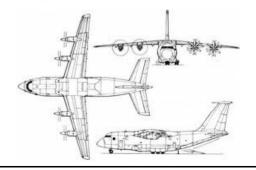
Aircraft Design/ Technology Integration and Assessment

Air Transport System/ Life Cycle Analysis


Fixed Wing Aircraft I	Fixed Wing Aircraft II	Short Course: Computer-Aided Aircraft Design
Aircraft Acoustics	Air Transportation System	Short Course: Aircraft Testing
Helicopters	Selected Current Research Topics in Aeronautics	Short Course: Windtunnel Testing
Aerospace Systems	Spacecraft I & II	Short Course: Delta Wings

- Fixed Wing Aircraft I is attended by Bachelor students with various study backgrounds → goal is to teach fundamentals, e.g.:
 - 3. Basics of A/C Design: AC decomposition, standard atmosphere, forces & moments, coefficients & dimensionless characteristic quantities
 - 9. Performance: Gliding flight, air speed stability, specific air range, climb performance
 - 13. Overall Design:

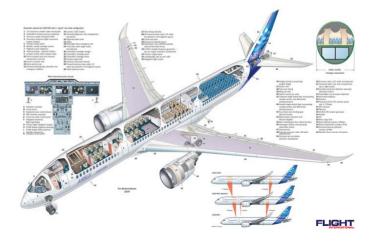

 Configurational decision,
 fuselage & empenage layout,
 engine installation, options for undercarriage, industrial design process
- Lecture provides basic knowledge and design-"language" resp. design-"philosophy" → practical aspects given in exercises



- Excercises contain calculations of separate aspects e.g.:
 - Range
 - Take-off and Landings Distances
 - DOC
- No continuous design process is run through here
- Since this year: In order to teach the students that
 - It is needed to see the bigger picture
 - It helps to analyze and learn from the past
 we let them investigate on past configurations
 which feature currently re-visited aspects, e.g.
 - Blended Wing Body/Flying Wing → Junkers 1000
 - Isogrid Structure → Vickers Wellington
 - Fan Wing Lift Concept → Ryan 5a
 - Counter-Rotating Prop → AN70
- Work is done in groups of 5 students as homework, all on different topics → Open administrative issues

- Fixed Wing Aircraft II is attended by Master students with background knowledge → goal is to teach advanced aspects, e.g.:
 - 1. -4. Preliminary A/C Design:
 Top level aircraft requirements, initial sizing, layout of fuselage, cabin, wing, engine, undercarriage, empennage, mass estimation, aero estimation, performance, assessment based on general and specific criteria
 - 9. Fly-by-Wire/Load Control:
 FBW architecture, laws,
 protections, mechanical backup,
 load control options
- Lecture provides basic introduction into aircraft design process, but mainly advanced insight on system level → practical aspects given in exercises

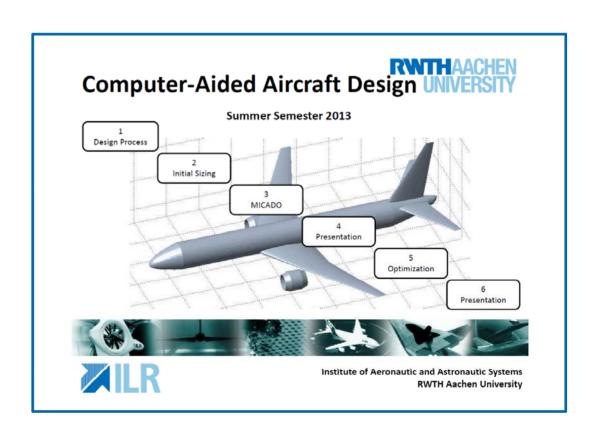




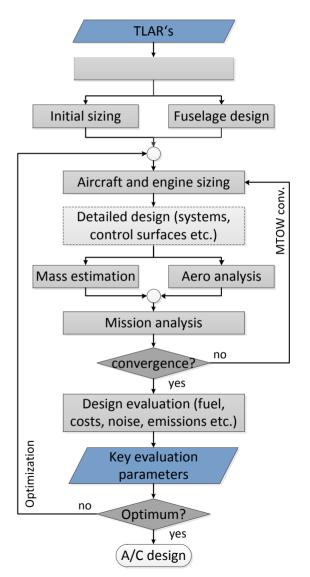
- Excercises contain calculations of separate aspects e.g.:
 - TLARs
 - Initial sizing
 - Undercarriage layout
 - Performance
- No complete design cycle is done yet
- Since this year: In order to teach the students
 - A "feeling" for dimensions
 - A knowledge of interdependencies

we let them re-design current aircraft configurations on paper & pencil-basis, e.g.

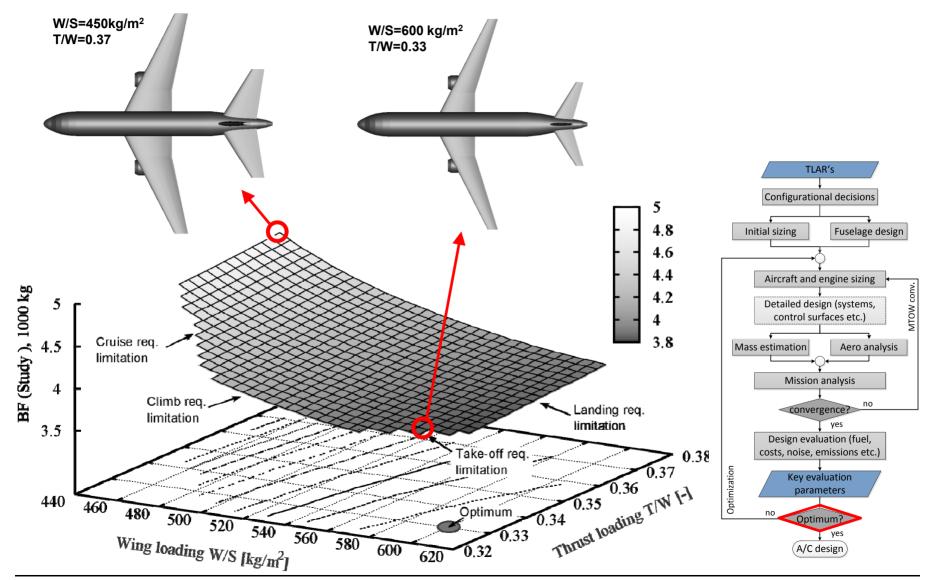
- Boeing 787
- Airbus A350
- Sukhoi Superjet
- Work is done in groups of 5-8 students as homework, all on the same configuration, statistics and complementary infos are provided



- Computer-Aided Aircraft Design is attended by Master students with background knowledge → goal is to:
 - Teach execution of complete aircraft design cycle with advanced conceptual aircraft design tool
 - Understanding and usage of ILR design tool MICADO:
 - For preparation to use MICADO for bachelor/master thesis
 - For qualification of students as student assistants or to pursue a PhD at ILR
- Lecture provides insight into aircraft design process, but fully aligned with ILR-MICADO tool → perfect double-use option resp. win-win situation



MICADO Design Methodology – Process Overview


- White sheet design approach starting from a set of top-level reg's (TLARs)
- Aircraft design programs size geometry components
 → general arrangement
- Optionally, more detailed design programs
- Design undergoes performance analysis (masses, aerodynamics, mission)
- Full a/c design iteration
- Assessment against evaluation criteria
- Evaluation parameters can be used for overall aircraft design optimizations
- → Capturing of particular design changes or system integration on overall aircraft level due to component resizing and snowball effects
- → A full initial design synthesis (w/o optimization) takes about 15 min. on a normal desktop PC

MICADO Short Range Design – Block Fuel Optimization

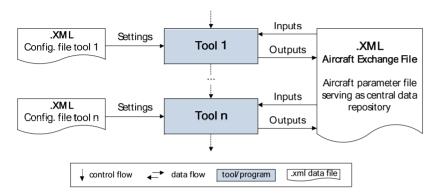
Motivation:

Contribution of Student Theses to MICADO software development

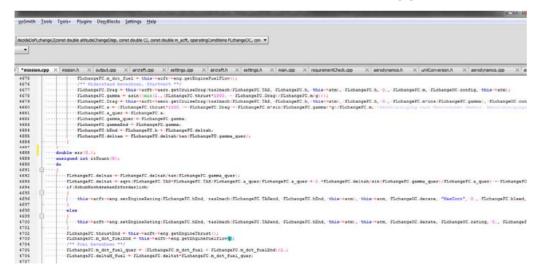
Problem:

MICADO is based on object-oriented class structure (C++) Many Students have no or limited programming skills

Approach:


A template has been created (already at the beginning of the MICADO developent phase) that already includes all C++ software features and templates, e.g.

- Geometry classes
- XML parsers → access to Aircraft and Settings XML files
- Engines, Aerodynamic, ISA etc. libraries
- Automatic plot generation
- → Completely working program package
- → Students only have to insert their methods and have a stand-alone program

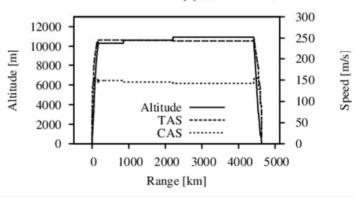


MICADO control and data flow

MICADO mission classes code snippet

Automatic generated html report

Report Missionsanalyse Airbus-A320-200	
--	--


Leermasse (OWE)	42567.6	kg	
Reichweite (gefordert)	2500	NM	
Nutzlast	14250	kg	
Passagiere	150		
Frachtmasse	645	kg	
Startmasse (TOW)	77097-4	kg	= OWE + PL + Loaded Fuel - Taxi Fuel (T/O)
Getankte Kraftstoffmenge (loaded fuel)	20520.4	kg	= Block Fuel + Reserve Fuel
Blockfacl	46254	k_{g}	- Trip Fuel : Taxi Fuel (T/O : Ldg)
Trip Fuel	15772.8	kg	
Restkraftstoff	4266.38	kg	
Taxi-Fuel Start	240.6	kg	
Taxi-Fuel Landung	240.6	kg	
Landemasse	61324.6	kg	
Missionsstrecke (berechnet)	2501.24	NM	
Gesamte Flugzeit	5-47	h	
Blockzeit	5.81	h	
			·

Ermitteltes optimales Cruise-Profil:

Cruise Step Flight Level [100 ft] Rel. Cruise Step Length [%]

1	338.7	16
2	348.7	47-9
	258 2	100

Mission Profile Step Cruise Range = 4630 km, m_{payload} = 14250 kg

- Aircraft design /technology integration and assessment represents main research field at ILR
- In ILR lecture Fixed Wing Aircraft I: students will work on old aircraft concepts to build up "system thinking"
- In ILR lecture Fixed Wing Aircraft II: students will execute a full design cycle to build up "system knowledge"
- In ILR lecture Computer-Aided Aircraft Design: students get familiarized with current conceptual aircraft design tool
- C++ tool templates enable to motivate students to do tool development (which otherwise would refuse)

Thank you for your attention!

