Feasibility study of a nuclear powered blended wing body aircraft for the **Cruiser/Feeder concept** http://ewade2013.AircraftDesign.org http://dx.doi.ora/10.5281/zenodo.546482

G. La Rocca - TU Delft

M. Li - TU Delft

M. Chiozzi - La Sapienza, Uni Roma September 2013

11th European Workshop on Aircraft Design Education Linköping, Sweden

Introduction

- One of the biggest challenges for future aviation is represented by the increasing **cost and scarcity of fossil fuel**.
- The demand of air transportation is steadily increasing, while the constraints on the allowed environmental impact by authorities are getting more stringent
- New designs and operational concepts are required to meet the ambitious challenges devised by ACARE

The RECREATE project

- In the RECREATE (REsearch on a CRuiser Enabled Air Transport Environment) project, European research institutes, universities and small businesses work together to investigate a future air transportation system based on the cruiser-feeder concept
- Next to In Flight Refueling operations for passenger aircraft, the feasibility study of Nuclear Powered Blended Wing body aircraft for in flight exchange of payload is second concept addressed by RECREATE.

The RECREATE design agenda

The Cruiser/Feeder concept

Mission Profile and Requirements

Early 1950ies. A B-36 and some Tupolev TU-119 converted for testing of nuclear radiations shielding.

The B-36 carried a **1 MW**, air cooled nuclear reactor with a **4 ton** lead disc shield to protect crew from radiation.

The B36 cabin crew was situated in a massive **11 ton structure** from lead.

Rubber and water tanks were placed at the aft to absorb any escaping radiation

Preliminary NASA studies from late 60ies, early 70-ies

- Indirect Brayton cycle. A heat exchanger transfers the heat generated by the nuclear reactor (helium cooled) to the compressed air
- Possibility of **hybrid propulsion**:
 - Nuclear mode oversea
 - Standard kerosene mode overland

Payload exchange concepts

Considered air vehicles configurations:

- Cruiser: Nuclear powered BWB
- Feeder: Prandtl Plane

Considered concept for pax exchange:

Through pressurized, prefilled containers (100 pax each)

Payload exchange concepts

Passengers exchange approach (detachable containers)

TUDelft

Payload exchange concepts

Large aircraft use trapeze to catch small aircraft (USAF 1955)

Hook up mechanism feeder/cruiser (trapeze system)

Conceptual design challenges:

- It is a blended wing body
 - → payload collocation, aerodynamics, stability and control strongly affect each other
 - \rightarrow Very scarce statistics to support/initiate the design
- There is no fuel!...Breguet cannot help us : (
- Power and size of the reactor depend on aircraft weight,which depends on the weight of the reactor shielding,which depends on the power and size of the reactor...

A possible way out:

- **1.** Start sizing the planform:
 - **Center body** size based on inside-out approach
 - 1000 pax
 - Containerized freight
 - Two reactors with shields (5 m X 10 m)
 - Two fuselage like containers (3 m X 25 m)
 - Outer body size based on required total span and surfaces to achieve L/D>20 (from reqs)

Payload: 1000 pax + freight (100 pax X 10 docking operations)

Description	Symbol	Value	
Maximum root thickness	t _{root}	10m	
Root chord length	c _r	60m	
Inner part taper ratio	$l_1 (c_m/c_r)$	0.416	
Main wing taper ratio	$l_2(c_t/c_m)$	0.25	
Inner part length	b _m	20m	
Outer wing length	$\mathbf{b}_{\mathbf{w}}$	40m	
Span length	b	120m	
Wing Surface	S	2947m ²	
Aspect ratio	Α	4.89	
Zero Lift Drag	C _{D0}	0.006	
Coefficient Maximum aerodynamic efficiency	(L/D) _{max}	23.32	

A possible way out (continued):

2. Breguet-less preliminary weight estimation

- Nuclear propulsion system weight estimation
- Some statistics (large aircraft, paper study, etc..)
- Class II-1.2 weight approach
- Iterate...

Class II-1/2 wing weight estimation tool

4th CEAS Air & Space Conference, Linköping, September 2013

TUDelft

	Cruiser	% W _{то}	A-380	% W _{то}	B-747	% W _{то}
W _{TO} (10 ³ kg)	875	-	560	-	343	-
W _{OE} (10 ³ kg)	383.3	43.7	277	49.5	212	61.8
W _{PL} (10 ³ kg)	250	28.6	85	15.2	60.5	17.6
W _P (10 ³ kg)	241.7	27.6	-	-	-	-

- W_{TO}: maximum take off weight (note the cruiser can takeoff empty and reach maximum weight during cruise)
- W_{OE}: Operational Empty Weight
- W_{PL}: passengers plus freight
- W_P: weight of propulsive system (shielding, fuel, core, cooling systems, but NO engines)

	Symbol	Value	Units
Root thickness	t _{root}	10	m
Span width	b	120	m
Wing Surface	S	2947	m²
Aspect Ratio	А	4.89	-
Aerodynamic Efficiency	L/D	23.32	-
Take-Off Weight	W _{TO}	875	10 ³ kg
Operative Empty Weight	W_{OE}	383.3	10 ³ kg
Payload Weight	W _{PL}	250	10 ³ kg
Power Plant Weight	W _P	241.7	10 ³ kg
Wing loading	W/S	297	kg/m ²
Thrust	Т	1900	kN
Power	Р	344.5	MW
Rate of Climb	RC	6	m/s
C _{Lmax} take-off	C _{L-TO}	1.4	-
C _{Lmax} landing	C _{L-L}	2.2	-

4th CEAS Air & Space Conference, Linköping, September 2013

20

What next?

- Revision and consolidation of the current conceptual design
- Focus on the design and integration of the nuclear propulsion system (including shielding analysis by means of NRG codes)
- Design of the docking and loading mechanism for pax exchange
- Hybrid propulsion (nuclear + standard fuel)
- Other engine concept (Rankine instead of Brayton?)

The research leading to the results presented in this paper was carried within the project RECREATE (REsearch on a CRuiser Enabled Air Transport Environment) and has received funding from the European Union Seventh Framework Programme under grant agreement no. 284741.

Operative Condition	Assumptions	T/W		T (kN)	P (MW)
Cruise	• $C_{D0c} = C_{D0} + 0.03$ • $v = 236.3 \text{ m/s}$ • $h = 11000 \text{ m}$	0.053		457 @ h 1254 @ s.l.	108 300
Maneuver	• $n_{max} = 2.5$ • $h = 11000 \text{ m}$ • $v = 236.3 \text{ m/s}$	0.17		1458	344.5
Take-off	 X_{TO} = 3000 m Sea level 				
Landing	 v_{st} = 43.73 m/s Sea level 				
Rate of Climb	• $C_{LTO} = 1.4$				
Ceiling	• $RC_{ceiling} = 1.5 \text{ m/s}$	0.0273		234 @ h 637 @ s.l.	55.3 150
Climb Gradient	• 4 engines • $C_{LTO} = 1.4$ • $C_{LL} = 2.2$ • $v_2 = 1.2* v_{st}$	Initial climb Transition climb Second part climb Route climb Aborted landing Aborted landing	0.157 0.165 0.174 0.151 0.184 0.222	1900	100

Class I weight estimation

WTO is the sum of the following three weight components:

- WPL (Payload Weight). It is the sum of passengers weight Wpax and cargo weight Wcargo.
- WOE (Operative Empty Weight). It includes the weight contributions of structures, engines, lubricants, and crew.
- WP (Power Plant Weight). It includes the weight of the nuclear reactors, the cooling system and the shielding. It does not include the weight of the engines, whose contribution is accounted in WOE).

